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Abstract

We are concerned with the global existence and decay rates of large solutions for the Poisson–

Nernst–Planck equations. Based on careful observation of algebraic structure of the equations and

using the weighted Chemin–Lerner type norm, we obtain the global existence and optimal decay rates

of large solutions without requiring the summation of initial densities of a negatively and positively

charged species is small enough. Moreover, the large solution is obtained for initial data belonging to

the low regularity Besov spaces with different regularity and integral indices for the different charged

species, which indicates more specific coupling relations between the negatively and positively charged

species.
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1 Introduction

For the simplest model in semiconductor device simulation, the dynamics of the negatively and positively

charged species are governed by the drift-diffusion system of bipolar type, which is described by the

following elliptic-parabolic coupled system of Poisson–Nernst–Planck equations (cf. [10]):





∂tn−∆n = −∇ · (n∇φ) in R
d × (0,∞),

∂tp−∆p = ∇ · (p∇φ) in R
d × (0,∞),

−ε∆φ = p− n in R
d × (0,∞),

n(x, 0) = n0(x), p(x, 0) = p0(x) in R
d,

(1.1)

where n = n(x, t) and p = p(x, t) denote the densities of a negatively and positively charged species,

respectively, φ stands for the electric potential, and the positive constant ε is the so-called Debye length

that stands for the screening of the charged species.

System (1.1) was formulated by W. Nernst and M. Planck at the end of the nineteenth century as a

basic model for the diffusion of ions in an electrolytes. It is also referred as the van Roosbroeck system

in semiconductor devices, as the drift-diffusion Poisson system in plasma physics and as a basic model

in chemotaxis (see for example [9, 15, 26]). Since finer structures of the semiconductor devices is now

demanded, further mathematical discussion for the dynamics of the charged species is now required and
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2 Global Existence and Temporal Decay for the Poisson–Nernst–Planck Equations

is getting more important. Mathematical analysis of this system was first focused on the initial boundary

value problems in 1980’s, and some analytical results related to the existence, uniqueness and regularity of

solutions and the asymptotic stability of stationary solutions were obtained by using the Green’s function,

the Poincaré inequality and the maximum principle of equations of parabolic type, see [2, 4, 5, 12–14,23]

and references therein for more details.

For the Cauchy problem of the system (1.1), the solvability of solutions has been relatively well-

developed in various classes of functions and distributions. Kozono–Sugiyama [21] proved local existence

of solutions in the Lebesgue space Lp(Rd) with d
2 < p < d and the Sobolev spaceW 2,p(Rd) with 1 < p ≤ 2.

Biler–Cannone–Guerra–Karch [3] established global existence of solutions for small initial data in critical

pseudomeasure space PMd−2(Rd). Ogawa–Shimizu [24, 25] established global existence of solutions

for two dimensional system (1.1) with small initial data in the critical Hardy space H1(R2) and the

homogeneous Besov space Ḃ0
1,2(R

2), respectively. Considering the well-posedness and ill-posedness issues

of the system (1.1) in largest low regularity Besov spaces, Karch [19] proved global existence for small

initial data and local existence for large initial data in critical Besov space Ḃ
−2+ d

p
p,∞ (Rd) with d

2 < p < d.

Zhao–Liu–Cui [31] further extended these results in [19] to more extensive Besov spaces Ḃ
−2+ d

p
p,q (Rd) with

1 < p < 2d and 1 ≤ q ≤ ∞. Recently, Deng–Li [11] established a dichotomy for well-posedness and

ill-posedness issues of the two dimensional system (1.1), more precisely, they proved that the system

(1.1) is well-posed in Ḃ
− 3

2
4,2 (R

2), and ill-posed in Ḃ
− 3

2
4,q (R

2) for 2 < q ≤ ∞. Iwabuchi–Ogawa [18] further

proved that the system (1.1) is ill-posed in Ḃ
−2+ d

p
p,q (Rd) with 2d < p ≤ ∞ and 1 ≤ q ≤ ∞, or p = 2d and

2 < q ≤ ∞.

Notice that the above well-posed results for the drift-diffusion system (1.1) is quite different from

unipolar type one (p = 0), or the Keller–Segel system of chemotaxis. Iwabuchi and Nakamura [17] showed

the global existence of solutions of the Keller–Segel system with small initial data in Ḟ−2
∞,2(R

d) = BMO−2

through the Triebel–Lizorkin spaces, which combining the well-posed results in [16] tell us that the Keller–

Segel system is well-posed in Ḃ
−2+ d

p
p,∞ (Rd) (max{1, d2} < p < ∞) and Ḟ−2

∞,2(R
d) = BMO−2, but ill-posed

in Ḃ
−2+ d

p
p,∞ (Rd) (2 < q ≤ ∞). These results are parallel to the well-posed and ill-posed results for the

Navier–Stokes equations, see [7, 20, 27] in details.

In this paper, we are concerned with the global existence and optimal decay rates of large solutions

for the system (1.1) in negative Besov spaces. For simplicity, we assume that ε = 1 and denote v := n−p

and w := n+ p, then the system (1.1) is reduced into the following equations:





∂tv −∆v = ∇ · (w∇(−∆)−1v) in R
d × (0,∞),

∂tw −∆w = ∇ · (v∇(−∆)−1v) in R
d × (0,∞),

v(x, 0) = v0(x), w(x, 0) = w0(x) in R
d,

(1.2)

where

v0(x) = n0(x)− p0(x), w0(x) = n0(x) + p0(x),

and the electric potential φ, which is determined by the Poisson equation (the third equation of (1.1)),

has been represented as the volume potential of v:

φ(x, t) = −(−∆)−1v(x, t) =




− 1

d(d−2)Ωd

∫
Rd

v(y,t)
|x−y|d−2dy, d ≥ 3,

1
2π

∫
R2 v(y, t) log |x− y|dy, d = 2,

where Ωd denotes the surface area of the unit sphere in R
d.

It has fundamental importance to observe that the second equation of system (1.2) is a linear equation

for w, which has been observed by Deng–Li [11] and Iwabuchi–Ogawa [18] in analyzing the well-posedness

and ill-posedness issues of (1.1) in the largest critical Besov spaces. Moreover, considering the algebraic
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structures of the nonlinear coupling terms in (1.2), by [16], the nonlinear term v∇(−∆)−1v has a nice

structure as

∂xi
v∂xi

(−∆)−1v =
1

2
∂xi

(−∆){((−∆)−1v)(∂xi
(−∆)−1v)}

+ ∂xi
∇ · {((−∆)−1v)(∇∂xi

(−∆)−1v)}

+
1

2
∂2
xi
{((−∆)−1v)v}. (1.3)

This enables us to treat the equation of w in a weaker Besov space Ḃ
−2+ d

p
p,q with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞.

However, the nonlinear term w∇(−∆)−1v has lack of such a symmetric structure, which can not exhibit

such a good expression as (1.3) and prevents us to obtain good estimates for the equation v in a weaker

Besov spaces. These careful observations essentially indicate that the difference of charged species v plays

more important role than the summation of charged species w in mathematical analysis of the system

(1.1). Based on these careful observations, by using analytical methods in [22,32], we aim at proving the

global existence of large solutions without smallness condition imposed on initial data w0. Moreover, we

consider the functional space of solutions of the system (1.2) with initial datum v0 and w0 belonging to

the different low regularity Besov spaces with different regularity and integral indices, which can indicate

more specific coupling relations between the negatively and positively charged species.

Before we state the main results, let us first introduce the definition of the homogeneous Besov spaces.

We denote the Schwartz class of rapidly decreasing function by S(Rd), the space of tempered distributions

by S ′(Rd).

Definition 1.1 Let ϕ ∈ S(Rd) be a positive radial function such that ϕ is supported in the shell C =

{ξ ∈ R
d, 3

4 ≤ |ξ| ≤ 8
3}, and

∑

j∈Z

ϕ(2−jξ) = 1 for ξ ∈ R
d\{0}.

Let h = F−1ϕ. Then for any f ∈ S ′(Rd), we define the homogeneous dyadic block ∆j and the partial

summation operator Sj as follows:

∆jf(x) := 2dj
∫

Rd

h(2jy)f(x− y)dy, Sjf(x) :=
∑

k≤j−1

∆kf(x).

Let S ′
h(R

d) be the space of tempered distribution f ∈ S ′(Rd) such that

lim
j→−∞

Sjf(x) = 0.

Then for any s ∈ R, 1 ≤ p, r ≤ ∞ and f ∈ S ′(Rd), we set

‖f‖Ḃs
p,r

:=





(∑
j∈Z

2srj‖∆jf‖
r
Lp

) 1
r

for 1 ≤ r < ∞,

supj∈Z
2sj‖∆jf‖Lp for r = ∞,

and the homogeneous Besov space Ḃs
p,r(R

d) is defined by

• For s < d
p
(or s = d

p
if r = 1), we define

Ḃs
p,r(R

d) :=
{
f ∈ S ′

h(R
d) : ‖f‖Ḃs

p,r
< ∞

}
.

• If k ∈ N and d
p
+ k ≤ s < d

p
+ k + 1 (or s = d

p
+ k + 1 if r = 1), then Ḃs

p,r(R
d) is defined as the

subset of distributions f ∈ S ′(Rd) such that ∂βf ∈ Ḃs−k
p,r (Rd) whenever |β| = k.
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The above homogeneous dyadic block ∆j and the partial summation operator Sj satisfy the following

quasi-orthogonal properties: for any f, g ∈ S ′(Rd), one has

∆i∆jf ≡ 0 if |i− j| ≥ 2 and ∆i(Sj−1f∆jg) ≡ 0 if |i− j| ≥ 5. (1.4)

Moreover, using Bony’s homogeneous paraproduct decomposition (cf. [1, 6]), one can formally split the

product of two temperate distributions f and g as follows:

fg = Tfg + Tgf +R(f, g), (1.5)

where the paraproduct between f and g is defined by

Tfg :=
∑

j∈Z

Sj−1f∆jg =
∑

j∈Z

∑

k≤j−2

∆kf∆jg,

and the remaining term is defined by

R(f, g) :=
∑

j∈Z

∆jf∆̃jg and ∆̃j := ∆j−1 +∆j +∆j+1.

Next, we recall the definition of the so-called Chemin–Lerner mixed time-space spaces.

Definition 1.2 For 0 < T ≤ ∞, s ∈ R and 1 ≤ p, r, ρ ≤ ∞. We define the mixed time-space

Lρ(0, T ; Ḃs
p,r(R

d)) as the completion of C([0, T ];S(Rd)) by the norm

‖f‖Lρ
T (Ḃs

p,r)
:=


∑

j∈Z

2srj

(∫ T

0

‖∆jf(·, t)‖
ρ
Lpdt

) r
ρ




1
r

< ∞

with the usual change if ρ = ∞ or r = ∞.

Now we are ready to state our main results. The first one is the global existence of large solutions for

the system (1.1).

Theorem 1.3 Let p, q be two positive numbers such that

1 ≤ p, q < ∞ and max{
1

p
−

1

q
,
1

q
−

1

p
} <

1

d
<

1

p
+

1

q
. (1.6)

There exist two constants c0, C0 such that if the initial data (v0, w0) ∈ Ḃ
−2+ d

p

p,1 (Rd)× Ḃ
−2+ d

q

q,1 (Rd) satisfies

C0‖v0‖
Ḃ

−2+ d
p

p,1

exp{C0‖w0‖
Ḃ

−2+ d
q

q,1

} ≤ c0, (1.7)

then the system (1.2) admits a unique global solution (v, w) satisfying




v ∈ C([0,∞), Ḃ

−2+ d
p

p,1 (Rd)) ∩ L∞(0,∞; Ḃ
−2+ d

p

p,1 (Rd)) ∩ L1(0,∞; Ḃ
d
p

p,1(R
d)),

w ∈ C([0,∞), Ḃ
−2+ d

q

q,1 (Rd)) ∩ L∞(0,∞; Ḃ
−2+d

q

q,1 (Rd)) ∩ L1(0,∞; Ḃ
d
q

q,1(R
d)).

Remark 1.1 The initial condition (1.7) exhibits that the initial data w0 can be taken large as long as

we take the initial data v0 small enough compared with the size of w0, which we can still get the global

existence of solutions to the system (1.2). Hence, Theorem 1.3 implies global existence of solutions for

the system (1.1) with only requiring the difference of initial charge densities of a negatively and positively

charged species is small enough. Indeed, back to the original system (1.1), if n0 ≡ p0, then the above

condition (1.7) implies that we can get global large solutions of system (1.1) without any smallness
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assumption imposed on n0 + p0, which means that the difference of a negatively and positively charged

species plays more important role in mathematical analysis of system (1.1).

Remark 1.2 The specific coupling relation between v and w was indicated by the condition (1.6), which

tells us that the regularity of solution v or w can be taken beyond the regularity index − 3
2 , but one can

not take both of them less than − 3
2 at the same time. Indeed, the regularity of v can be taken much

weaker as long as the regularity of w is not that much weaker, i.e., p can be taken large enough as long

as we take q closing to d such that the condition (1.6) holds. Hence, Theorem 1.3 can be regarded as an

extension of global existence results in [11, 18, 19, 31], where the global existence of solutions with small

initial data was proved in critical Besov spaces with the same regularity and integral indices for v and w.

The second purpose of this paper is that we are attempt to establish the optimal decay rates of global

large solutions obtained in Theorem 1.3. In our previous paper [30], we have established the regularizing-

decay estimates of solutions to the system (1.2), which showed the analyticity of spatial variables as

well as temporal decay estimates on spatial derivatives of solutions for large time. More specifically, we

proved that for (v0, w0) ∈ L
d
2 (Rd), let (v, w) be the corresponding solution of the system (1.2) satisfying

(v, w) ∈ Xp for some p ∈ (d2 , d), where

Xp = C([0,∞), L
d
2 (Rd)) ∩

{
u : u ∈ C((0,∞), Lp(Rd)) and sup

t>0
t1−

d
2p ‖u(t)‖Lp < ∞

}
,

besides, assume further that there exist two finite constants M1 and M2 such that

sup
0<t<∞

‖(v(t), w(t))‖
L

d
2
≤ M1 and sup

0<t<∞
t
d
2 (

1
d
− 1

p
)‖(v(t), w(t))‖Lp ≤ M2. (1.8)

Then there exist two positive constants K1 and K2 (depending only on d, p, M1 and M2) such that

‖(∂β
x v(t), ∂

β
xw(t))‖Lq ≤ K1(K2|β|)

|β|t−
|β|
2 −1+ d

2q (1.9)

for all d
2 ≤ q ≤ ∞ and β ∈ N

d
0, where |β| :=

∑d
i=1 βi and ∂β

x := ∂β1
x1

· · · ∂βd
xd

for multi-index β :=

(β1, · · · , βd), N0 denotes the set of non-negative integers. Notice that if the initial data (v0, w0) is small

enough in L
d
2 (Rd), then the corresponding solution (v, w) naturally satisfies the condition (1.8). Moreover,

similar decay estimates still hold for the system (1.2) in critical Besov spaces Ḃ
−2+ d

p
p,∞ (Rd) with d

2 < p < d.

Motivated by the above decay estimates of solutions, we aim at improving the above decay rates

of solutions for initial data belonging to the negative Besov spaces and obtain the following two decay

results by using the general weighted energy approach and the interpolation techniques.

Theorem 1.4 Let the assumptions of Theorem 1.3 be in force, and if we assume further that (v0, w0) ∈

Ḃ−s
r,1(R

d) ∩ ḂN
r,1(R

d) for an integer N , a real number s > 0 and 1 ≤ r < ∞ such that

−s+ 1 +
d

p
> dmax{0,

1

p
+

1

r
− 1} and − s+ 1 +

d

q
> dmax{0,

1

q
+

1

r
− 1},

then for any ℓ ∈ [−s,N ], there exists a constant C0 such that for all t ≥ 0,

‖(v(t), w(t))‖Ḃℓ
r,1

≤ C0. (1.10)

Moreover, we obtain the following decay estimate of the solution (v(t), w(t)):

‖(v(t), w(t))‖Ḃℓ
r,1

≤ C0(1 + t)−
ℓ+s
2 . (1.11)

If we relax the high regularity condition imposed on the initial data in Theorem 1.4, then we can

obtain the following decay result for the lower-order derivative of solutions.
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Theorem 1.5 Let the assumptions of Theorem 1.3 be in force, and if we assume further that (v0, w0) ∈

Ḃ−s
r,1(R

d) with 1 ≤ r ≤ min{p, q}, s > max{0, 2− d
r
}, and

−s+ 1 +
d

p
> dmax{0,

1

p
+

1

r
− 1} and − s+ 1 +

d

q
> dmax{0,

1

q
+

1

r
− 1},

then for any ℓ ∈ [−s− d(1
r
− 1

p
),−2 + d

p
], there exists a constant C0 such that for all t ≥ 0,

‖v(t)‖Ḃℓ
p,1

≤ C0(1 + t)−
ℓ+s
2 − d

2 (
1
r
− 1

p
); (1.12)

and for any ℓ ∈ [−s− d(1
r
− 1

q
),−2 + d

q
], there exists a constant C0 such that for all t ≥ 0,

‖w(t)‖Ḃℓ
q,1

≤ C0(1 + t)−
ℓ+s
2 −d

2 (
1
r
− 1

q
). (1.13)

Remark 1.3 It is clear that (1.12) and (1.13) improve (1.9) since Lq(Rd) →֒ Ḃ−s
r,∞(Rd) with q = dr

d+sr
.

Moreover, we do not assume that the Ḃ−s
r,1 norm of initial data is small enough, and this norm enhances

the time decay rates of the solution with the factor s
2 .

Remark 1.4 The general Lq temporal decay rates of solutions can be obtained by the standard embedding

theory, for instance, by (1.12), we know that for any 1 ≤ q < ∞,

‖v(t)‖Lq ≤ C‖v(t)‖
Ḣ

d
2
− d

q
≤ C‖v(t)‖

Ḃ
d
2
− d

q
2,1

≤ C(1 + t)−
s
2−

d
2 (

1
r
− 1

q
),

which is faster than (1.9) when |β| = 0.

This paper is organized as follows. In section 2, we first establish two crucial bilinear estimates in

the Chemin–Lerner type spaces, then give the proof of Theorem 1.3 by using weighted Chemin–Lerner

type norm. In section 3, applying the elementary Fourier splitting argument, we intend to establish two

weighted energy inequalities in terms of the lower-order and higher-order derivative of solutions, then we

complete the proof of Theorems 1.4 and 1.5 in section 4. Throughout the paper, C stands for a generic

constant, and we use the notation A . B to denote the relation A ≤ CB and the notation A ≈ B to

denote the relations A . B and B . A.

2 Global existence of large solutions

Before going to the proof, we recall the following two interpolation inequalities in stationary/time depen-

dent Besov spaces (cf. [1]). For s1, s2 ∈ R such that s1 < s2 and θ ∈ [0, 1], there exists a constant C such

that

‖u‖
Ḃ

s1θ+s2(1−θ)
p,r

≤ C‖u‖θ
Ḃ

s1
p,r

‖u‖1−θ

Ḃ
s2
p,r

. (2.1)

Moreover, for any 0 < T ≤ ∞, 1 ≤ ρ, ρ1, ρ2 ≤ ∞ such that 1
ρ
= θ

ρ1
+ 1−θ

ρ2
, one has

‖u‖
Lρ

T
(Ḃ

s1θ+s2(1−θ)
p,r )

≤ C‖u‖θ
L

ρ1
T

(Ḃ
s1
p,r)

‖u‖1−θ

L
ρ2
T

(Ḃ
s2
p,r)

. (2.2)

The essential parts in the proof of Theorem 1.3 are the following two bilinear estimates in the Chemin–

Lerner spaces. The first one corresponds to the nonlinear term ∇ · (w∇(−∆)−1v) in the first equation of

system (1.2), and one can easily see that

‖∇ · (w∇(−∆)−1v)‖
L1

T (Ḃ
−2+ d

p
p,1 )

≈ ‖w∇(−∆)−1v‖
L1

T (Ḃ
−1+ d

p
p,1 )

. (2.3)

For the right-hand side of (2.3), we get the following bilinear estimates.
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Lemma 2.1 Let p, q be two positive numbers such that 1 ≤ p, q < ∞ and 1
p
− 1

q
< 1

d
< 1

p
+ 1

q
. Then we

have

‖w∇(−∆)−1v‖
L1

T
(Ḃ

−1+ d
p

p,1 )
. ‖w‖θ1

L∞
T (Ḃ

−2+ d
q

q,1 )

‖w‖1−θ1

L1
T (Ḃ

d
q
q,1)

‖v‖θ2

L∞
T (Ḃ

−2+ d
p

p,1 )

‖v‖1−θ2

L1
T (Ḃ

d
p
p,1)

+ ‖w‖θ2

L∞
T

(Ḃ
−2+ d

q
q,1 )

‖w‖1−θ2

L1
T
(Ḃ

d
q
q,1)

‖v‖θ1

L∞
T

(Ḃ
−2+ d

p
p,1 )

‖v‖1−θ1

L1
T
(Ḃ

d
p
p,1)

, (2.4)

where 1
2 < θ1 ≤ 1, θ2 = 1− θ1 are two given constants.

Proof. Notice that the particular case 1 ≤ p = q < 2d has been established in [32]. Here we address the

case p 6= q. Thanks to the Bony’s paraproduct decomposition (1.5), one has

w∇(−∆)−1v = Tw∇(−∆)−1v + T∇(−∆)−1vw +R(w,∇(−∆)−1v). (2.5)

To estimate three terms on the right-hand side of (2.5), let 2 < ρ1 ≤ ∞ be large enough such that

1− 2
ρ1

> 0 and 1 + d
q
− d

p
− 2

ρ1
> 0, and let 1 ≤ ρ2 < 2 be the conjugate of ρ1, i.e.,

1
ρ1

+ 1
ρ2

= 1, then one

can apply (1.4) and the Hölder’s inequality to get

‖∆j(Tw∇(−∆)−1v)‖L1
T (Lp) .

∑

|j′−j|≤4

‖Sj′−1w‖Lρ1
T

(L∞)‖∆j′∇(−∆)−1v‖Lρ2
T

(Lp)

.
∑

|j′−j|≤4

∑

k≤j′−2

2
dk
q ‖∆kw‖Lρ1

T
(Lq)2

−j′‖∆j′v‖Lρ2
T

(Lp)

.
∑

|j′−j|≤4

2(1−
d
p
− 2

ρ2
)j′

∑

k≤j′−2

2(2−
2
ρ1

)k2(−2+ d
q
+ 2

ρ1
)k‖∆kw‖Lρ1

T
(Lq)2

(−2+ d
p
+ 2

ρ2
)j′‖∆j′v‖Lρ2

T
(Lp)

. 2(1−
d
p
)j

∑

|j′−j|≤4

2(−2+ d
p
+ 2

ρ2
)j′‖∆j′v‖Lρ2

T (Lp)‖w‖
L

ρ1
T (Ḃ

−2+ d
q
+ 2

ρ1
q,1 )

. (2.6)

Next we estimate the symmetric term T∇(−∆)−1vw. The case 1 ≤ q ≤ p is simple, it follows that

‖∆j(T∇(−∆)−1vw)‖L1
T (Lp) . 2(

d
q
− d

p
)j‖∆j(T∇(−∆)−1vw)‖L1

T (Lq)

. 2(
d
q
−d

p
)j

∑

|j′−j|≤4

‖Sj′−1∇(−∆)−1v‖Lρ1
T

(L∞)‖∆j′w‖Lρ2
T

(Lq)

. 2(
d
q
−d

p
)j

∑

|j′−j|≤4

∑

k≤j′−2

2(−1+d
p
)k‖∆kv‖Lρ1

T (Lp)‖∆j′w‖Lρ2
T (Lq)

. 2(
d
q
−d

p
)j

∑

|j′−j|≤4

2
(2−d

q
− 2

ρ2
)j′

∑

k≤j′−2

2
(1− 2

ρ1
)k
2
(−2+d

p
+ 2

ρ1
)k
‖∆kv‖Lρ1

T
(Lp)2

(−2+ d
q
+ 2

ρ2
)j′
‖∆j′w‖Lρ2

T
(Lq)

. 2(1−
d
p
)j

∑

|j′−j|≤4

2(−2+d
q
+ 2

ρ2
)j′‖∆j′w‖Lρ2

T
(Lq)‖v‖

L
ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

, (2.7)

while for the case q > p, one can derive from the fact 1
p
= 1

q
+ q−p

pq
that

‖∆j(T∇(−∆)−1vw)‖L1
T
(Lp) .

∑

|j′−j|≤4

‖Sj′−1∇(−∆)−1v‖
L

ρ1
T

(L
pq

q−p )
‖∆j′w‖Lρ2

T
(Lq)

.
∑

|j′−j|≤4

∑

k≤j′−2

2−k+d( 1
p
− q−p

pq
)k‖∆kv‖Lρ1

T (Lp)‖∆j′w‖Lρ2
T (Lq)

.
∑

|j′−j|≤4

2(2−
d
q
− 2

ρ2
)j′

∑

k≤j′−2

2(1+
d
q
− d

p
− 2

ρ1
)k2(−2+ d

p
+ 2

ρ1
)k‖∆kv‖Lρ1

T
(Lp)2

(−2+d
q
+ 2

ρ2
)j′‖∆j′w‖Lρ2

T
(Lq)

. 2(1−
d
p
)j

∑

|j′−j|≤4

2(−2+ d
q
+ 2

ρ2
)j′‖∆j′w‖Lρ2

T
(Lq)‖v‖

L
ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

. (2.8)
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Finally, we deal with the remaining term R(w,∇(−∆)−1v), we also need to consider two cases: In the

case 1 ≤ p < d, applying (1.4) yields that

‖∆jR(w,∇(−∆)−1v)‖L1
T (Lp) .

∑

j′≥j−2

‖∆j′w‖Lρ1
T

(L∞)‖∆̃j′∇(−∆)−1v‖Lρ2
T

(Lp)

.
∑

j′≥j−2

2(
d
q
−1)j′‖∆j′w‖Lρ1

T (Lq)‖∆̃j′v‖Lρ2
T (Lp)

.
∑

j′≥j−2

2(1−
d
p
)j′2

(−2+d
q
+ 2

ρ1
)j′

‖∆j′w‖Lρ1
T

(Lq)2
(−2+d

p
+ 2

ρ2
)j′

‖∆̃j′v‖Lρ2
T

(Lp)

. 2(1−
d
p
)j
∑

j′≥j−2

2(1−
d
p
)(j′−j)2(−2+ d

p
+ 2

ρ2
)j′‖∆̃j′v‖Lρ2

T
(Lp)‖w‖

L
ρ1
T

(Ḃ
−2+ d

q
+ 2

ρ1
q,1 )

; (2.9)

while in the case p ≥ d, it can be bounded that

‖∆jR(w,∇(−∆)−1v)‖L1
T (Lp) . 2

dj
q

∑

j′≥j−2

‖∆j′w‖Lρ1
T

(Lq)‖∆̃j′∇(−∆)−1v‖Lρ2
T

(Lp)

. 2
dj
q

∑

j′≥j−2

2(1−
d
p
− d

q
)j′2(−2+d

q
+ 2

ρ1
)j′‖∆j′w‖Lρ1

T
(Lq)2

(−2+d
p
+ 2

ρ2
)j′‖∆̃j′v‖Lρ2

T
(Lp)

. 2(1−
d
p
)j
∑

j′≥j−2

2(1−
d
p
−d

q
)(j′−j)2

(−2+d
p
+ 2

ρ2
)j′

‖∆̃j′v‖Lρ2
T (Lp)‖w‖

L
ρ1
T (Ḃ

−2+ d
q
+ 2

ρ1
q,1 )

. (2.10)

Combining all above estimates (2.6)–(2.10) and using Definition 1.2 we get

‖w∇(−∆)−1v‖
L1

T
(Ḃ

−1+ d
p

p,1 )
. ‖w‖

L
ρ1
T

(Ḃ
−2+ d

q
+ 2

ρ1
q,1 )

‖v‖
L

ρ2
T

(Ḃ
−2+ d

p
+ 2

ρ2
p,1 )

+ ‖w‖
L

ρ2
T

(Ḃ
−2+ d

q
+ 2

ρ2
q,1 )

‖v‖
L

ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

. (2.11)

By using the interpolation result (2.2) with θ1 = 1 − 1
ρ1

and θ2 = 1 − 1
ρ2
, we finally obtain (2.4). The

proof of Lemma 2.1 is achieved. 2

The second one corresponds to the nonlinear term ∇· (v∇(−∆)−1v) in the second equation of system

(1.2), and one can see that

‖∇ · (v∇(−∆)−1v)‖
L1

T
(Ḃ

−2+ d
q

q,1 )
≈ ‖v∇(−∆)−1v‖

L1
T
(Ḃ

−1+ d
q

q,1 )
. (2.12)

For the right-hand side of (2.12), we use the symmetric structure of this nonlinear term to get the

following bilinear estimate.

Lemma 2.2 Let p, q be two positive numbers such that 1 ≤ p, q < ∞ and 1
q
− 1

p
< 1

d
. Then we have

‖u∇(−∆)−1v + v∇(−∆)−1u‖
L1

T (Ḃ
−1+ d

q
q,1 )

. ‖u‖θ1

L∞
T (Ḃ

−2+ d
p

p,1 )

‖u‖1−θ1

L1
T (Ḃ

d
p
p,1)

‖v‖θ2

L∞
T (Ḃ

−2+ d
p

p,1 )

‖v‖1−θ2

L1
T (Ḃ

d
p
p,1)

+ ‖u‖θ2

L∞
T (Ḃ

−2+ d
p

p,1 )

‖u‖1−θ2

L1
T (Ḃ

d
p
p,1)

‖v‖θ1

L∞
T (Ḃ

−2+ d
p

p,1 )

‖v‖1−θ1

L1
T (Ḃ

d
p
p,1)

, (2.13)

where 1
2 < θ1 ≤ 1, θ2 = 1− θ1 are two corresponding constants in Lemma 2.1.

Proof. The particular case 1 ≤ p = q < ∞ has been established in [16, 29]. Here we address the case

p 6= q. We divide the proof of Lemma 2.2 into the following two cases.

Case 1: 1 ≤ p ≤ q. In this case, it is clear that the following identity holds:

u∇(−∆)−1v + v∇(−∆)−1u = −∇ ·
(
∇(−∆)−1u∇(−∆)−1v

)
. (2.14)

Then the imbedding relation Ḃ
d
p

p,1(R
d) →֒ Ḃ

d
q

q,1(R
d) yields that

‖ − ∇ ·
(
∇(−∆)−1u∇(−∆)−1v

)
‖
L1

T
(Ḃ

−1+ d
q

q,1 )
≈ ‖∇(−∆)−1u∇(−∆)−1v‖

L1
T
(Ḃ

d
q
q,1)
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. ‖∇(−∆)−1u∇(−∆)−1v‖
L1

T
(Ḃ

d
p
p,1)

. (2.15)

Based on this fact, we can strictly follow the argument in [16, 29] to complete the proof of (2.13), here

we omit the details.

Case 2, 1 ≤ q < p. The case q < p is a little tricky, here we resort to the Bony’s decomposition (1.5)

to split the left-hand side of (3.12) into the following three terms:

u∇(−∆)−1v + v∇(−∆)−1u := I1 + I2 + I3, (2.16)

where

I1 : =
∑

j′∈Z

Sj′−1u∇(−∆)−1∆j′v + Sj′−1v∇(−∆)−1∆j′u,

I2 : =
∑

j′∈Z

∆j′u∇(−∆)−1Sj′−1v +∆j′v∇(−∆)−1Sj′−1u,

I3 : =
∑

j′∈Z

∆j′u∇(−∆)−1∆̃j′v +∆j′v∇(−∆)−1∆̃j′u.

Since u and v play the same roles in our derivation, it suffices to deal with the first two terms in I1

and I2, and the left two terms can be analogously handled. Based on the conditions 1 ≤ q < p and
1
q
− 1

p
< 1

d
< 2

d
, one can derive that

‖∆j

∑

j′∈Z

Sj′−1u∇(−∆)−1∆j′v‖L1
T
(Lq) .

∑

|j−j′|≤4

‖Sj′−1u‖
L

ρ1
T

(L
pq

p−q )
‖∇(−∆)−1∆j′v‖Lρ2

T (Lp)

.
∑

|j−j′|≤4

2
(1−d

p
− 2

ρ2
)j′

∑

k≤j′−2

2
(2+d

p
− d

q
− 2

ρ1
)k
2
(−2+d

p
+ 2

ρ1
)k
‖∆ku‖Lp2

(−2+d
p
+ 2

ρ2
)j′
‖∆j′v‖Lρ2

T
(Lp)

. 2(1−
d
q
)j

∑

|j−j′|≤4

2(−2+ d
p
+ 2

ρ2
)j′‖∆j′v‖Lρ2

T
(Lp)‖u‖

L
ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

,

‖∆j

∑

j′∈Z

∆j′u∇(−∆)−1Sj′−1v‖L1
T (Lq) .

∑

|j−j′|≤4

‖∆j′u‖Lρ2
T

(Lp)‖∇(−∆)−1Sj′v‖
L

ρ1
T (L

pq
p−q )

.
∑

|j−j′|≤4

‖∆j′u‖Lρ2
T

(Lp)

∑

k≤j′−2

2(1+
d
p
− d

q
− 2

ρ1
)k2(−2+d

p
+ 2

ρ1
)j′‖∆j′v‖Lρ1

T
(Lp)

. 2(1−
d
q
)j

∑

|j−j′|≤4

2(−2+d
p
+ 2

ρ2
)j′‖∆j′u‖Lρ2

T (Lp)‖v‖
L

ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

.

The above two estimates tell us that for i = 1, 2,

‖∆jIi‖L1
T
(Lq) . 2(1−

d
q
)j

∑

|j−j′|≤4

2(−2+d
p
+ 2

ρ2
)j′(‖∆j′u‖Lρ2

T
(Lp) + ‖∆j′v‖Lρ2

T
(Lp)

)

×
(
‖u‖

L
ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

+ ‖v‖
L

ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

)
. (2.17)

Finally we tackle with the most difficult term I3. Inspired by observation (1.3), one can further split I3

into the following three terms for k = 1, 2, · · · , d:

I3 := I31 + I32 + I33, (2.18)

where

I31 : =
∑

j′∈Z

(−∆)
{(

(−∆)−1∆j′u
)(
∂xk

(−∆)−1∆̃j′v
)}

,
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I32 : =
∑

j′∈Z

2∇ ·
{(

(−∆)−1∆j′u
)(
∂xk

∇(−∆)−1∆̃j′v
)}

,

I33 : =
∑

j′∈Z

∂xk

{(
(−∆)−1∆j′u

)
∆̃j′v

}
.

Based on this decomposition, one can treat I3i (i = 1, 2, 3) as follows:

‖∆jI31‖L1
T (Lq) . 22j

∑

j′≥j−2

‖(−∆)−1∆j′u‖
L

ρ1
T (L

pq
p−q )

‖∂xk
(−∆)−1∆̃j′v‖Lρ2

T
(Lp)

. 22j
∑

j′≥j−2

2(−1− d
q
)j′2(−2+d

p
+ 2

ρ1
)j′‖∆j′u‖Lρ1

T
(Lp)2

(−2+ d
p
+ 2

ρ2
)j′‖∆̃j′v‖Lρ2

T
(Lp)

. 2(1−
d
q
)j
∑

j′≥j−2

2(−1−d
q
)(j′−j)2(−2+d

p
+ 2

ρ2
)j′‖∆̃j′v‖Lρ2

T (Lp)‖u‖
L

ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

,

‖∆jI32(∆jI33)‖L1
T
(Lq) . 2j

∑

j′≥j−2

‖(−∆)−1∆j′u‖
L

ρ1
T

(L
pq

p−q )
‖∆̃j′v‖Lρ2

T
(Lp)

. 2j
∑

j′≥j−2

2−
dj′

q 2
(−2+ d

p
+ 2

ρ1
)j′
‖∆j′u‖Lρ1

T
(Lp)2

(−2+ d
p
+ 2

ρ2
)j′
‖∆̃j′v‖Lρ2

T
(Lp)

. 2(1−
d
q
)j
∑

j′≥j−2

2−
d
q
(j′−j)2(−2+ d

p
+ 2

ρ2
)j′‖∆̃j′v‖Lρ2

T
(Lp)‖u‖

L
ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

.

As a consequence of these estimates, we obtain from (2.18) that

‖∆jI3‖L1
T (Lq) . 2(1−

d
q
)j
∑

j′≥j−2

2−
d
q
(j′−j)2

(−2+d
p
+ 2

ρ2
)j′

‖∆̃j′v‖Lρ2
T

(Lp)‖u‖
L

ρ1
T

(Ḃ
−2+ d

p
+ 2

ρ1
p,1 )

. (2.19)

Hence, plugging (2.17) and (2.19) into (2.16), we obtain

‖u∇(−∆)−1v + v∇(−∆)−1u‖
L1

T
(Ḃ

−1+ d
q

q,1 )
. ‖u‖

L
ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

‖v‖
L

ρ2
T (Ḃ

−2+ d
p
+ 2

ρ2
p,1 )

+ ‖u‖
L

ρ2
T (Ḃ

−2+ d
p
+ 2

ρ2
p,1 )

‖v‖
L

ρ1
T (Ḃ

−2+ d
p
+ 2

ρ1
p,1 )

. (2.20)

Again, we get (2.13) by using the interpolation result (2.2). The proof of Lemma 2.2 is achieved. 2

Once we get the above two desired bilinear estimates, one can apply the Banach contraction mapping

theorem to obtain that there exists T > 0 such that the system (1.2) has a unique solution (v, w) on

[0, T ) satisfying




v ∈ C([0, T ), Ḃ

−2+d
p

p,1 (Rd)) ∩ L∞(0, T ; Ḃ
−2+d

p

p,1 (Rd)) ∩ L1(0, T ; Ḃ
d
p

p,1(R
d)),

w ∈ C([0, T ), Ḃ
−2+d

q

q,1 (Rd)) ∩ L∞(0, T ; Ḃ
−2+d

q

q,1 (Rd)) ∩ L1(0, T ; Ḃ
d
q

q,1(R
d)).

(2.21)

Moreover, the solution is global if the initial data is small enough. The proof is more or less a standard

procedure, thus we safely omit it here, and for more details, we refer the readers to see [32].

Next, we intend to drop the smallness assumption imposed on w0 to still ensure the global existence of

solutions, which need us to employ the following product estimates in Besov spaces, for details, see [1,29].

Lemma 2.3 Let 1 ≤ p1, p2 ≤ ∞, s1 ≤ d
p1
, s2 ≤ min{ d

p1
, d
p2
}, and s1 + s2 > dmax{0, 1

p1
+ 1

p2
− 1}.

Assume that f ∈ Ḃs1
p1,1

(Rd), g ∈ Ḃs2
p2,1

(Rd). Then we have fg ∈ Ḃ
s1+s2−

d
p1

p2,1
(Rd), and there exists a

positive constant C such that

‖fg‖
Ḃ

s1+s2− d
p1

p2,1

≤ C‖f‖Ḃs1
p1,1

‖g‖Ḃs2
p2,1

. (2.22)
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Now we mainly use the ideas in [22,32] to complete the proof of Theorem 1.3. Let us denote by T ∗ the

maximal existence time of local solution (v, w) satisfying (2.21). Then to prove Theorem 1.3, it suffices

to prove T ∗ = ∞ under the initial condition (1.7).

We first estimate w. Let η > 0 be a small positive constant which the exact value will be determined

later, and denote

Tη := sup
{
t ∈ [0, T ∗) : ‖v‖

L∞
t (Ḃ

−2+ d
p

p,1 )
+ κ‖v‖

L1
t (Ḃ

d
p
p,1)

≤ η
}
. (2.23)

Applying the dyadic operator ∆j to the second equation of (1.2) and taking L2 inner product of the

resulting equation with |∆jw|
q−2∆jw, then using the following lower bound for the integral involving the

Laplace operator −∆ (see for example [8, 28]):

−

∫

Rd

∆∆jw · |∆jw|
p−2∆jwdx ≥ κ22j‖∆jw‖

p
Lp for any p ∈ [1,∞), (2.24)

where κ is a positive constant depending only on d and p, we derive from the Hölder’s inequality that

d

dt
‖∆jw‖Lq + κ22j‖∆jw‖Lq ≤ 2j‖∆j(v∇(−∆)−1v)‖Lq . (2.25)

Integrating the above inequality (2.25) in time interval [0, t] for any 0 < t < Tη, then multiplying by

2(−2+d
q
)j and taking l1 norm to the resultant inequality, we can deduce that

‖w‖
L∞

t (Ḃ
−2+ d

q
q,1 )

+ κ‖w‖
L1

t (Ḃ
d
q
q,1)

≤ ‖w0‖
Ḃ

−2+ d
q

q,1

+ ‖v∇(−∆)−1v‖
L1

t (Ḃ
−1+ d

q
q,1 )

. (2.26)

Applying Lemma 2.2, the second term of the right hand side of (2.26) can be bounded by choosing u = v,

θ1 = 1 and θ2 = 0,

‖w‖
L∞

t (Ḃ
−2+ d

q
q,1 )

+ κ‖w‖
L1

t (Ḃ
d
q
q,1)

≤ ‖w0‖
Ḃ

−2+ d
q

q,1

+ C1‖v‖
L∞

t (Ḃ
−2+ d

p
p,1 )

‖v‖
L1

t (Ḃ
d
p
p,1)

,

where C1 is a constant. Therefore, we can choose η small enough such that C1η
κ

< 1, it follows from

(2.23) that

‖w‖
L∞

t (Ḃ
−2+ d

q
q,1 )

+ κ‖w‖
L1

t (Ḃ
d
q
q,1)

≤ ‖w0‖
Ḃ

−α+ d
q

q,1

+
C1η

2

κ
≤ ‖w0‖

Ḃ
−α+ d

q
q,1

+ η. (2.27)

Next we turn to bound v. Since the second equation of (1.2) is a linear equation for w, we intend to use

some weighted function f(t) to eliminate the difficulties caused by the nonlinear term ∇ · (w∇(−∆)−1v)

on the right-hand side of the first equation of (1.2) . Based on this idea, let us introduce the following

weighted Chemin–Lerner type norm: for f(t) ∈ L1
loc(0,+∞), f(t) ≥ 0, define

‖u‖Lρ

t,f
(Ḃs

p,r)
:=
{∑

j∈Z

2srj
( ∫ t

0

f(τ)‖∆ju(τ)‖
ρ
Lpdτ

) r
ρ

} 1
r

for s ∈ R, p ∈ [1,∞], ρ, r ∈ [1,∞) with the standard modification if ρ = ∞ or r = ∞. Let λ > 0 be a

positive constant which the exact value will be specified later, we set

f(t) := ‖w(·, t)‖
Ḃ

d
q
q,1

and vλ,f (x, t) := v(x, t) exp(−λ

∫ t

0

f(τ)dτ).

It is easy to verify that vλ,f satisfies the following equation:

∂tvλ,f + λf(t)vλ,f −∆vλ,f = ∇ · (w∇(−∆)−1vλ,f ). (2.28)

Applying the dyadic operator ∆j to (2.28) and taking L2 inner product of the resulting equation with

|∆jvλ,f |
p−2∆jvλ,f , one has

1

p

d

dt
‖∆jvλ,f‖

p
Lp + λf(t)‖∆jvλ,f‖

p
Lp −

∫

Rd

∆∆jvλ,f |∆jvλ,f |
p−2∆jvλ,fdx
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=

∫

Rd

∆j∇ · (w∇(−∆)−1vλ,f )|∆jvλ,f |
p−2∆jvλ,fdx.

Arguing like the derivation of (2.26) yields that

‖vλ,f‖
L∞

t (Ḃ
−2+ d

p
p,1 )

+ λ‖vλ,f‖
L1

t,f
(Ḃ

−2+ d
p

p,1 )
+ κ‖vλ,f‖

L1
t (Ḃ

d
p
p,1)

≤ ‖v0‖
Ḃ

−2+ d
p

p,1

+ ‖w∇(−∆)−1vλ,f‖
L1

t (Ḃ
−1+ d

p
p,1 )

. (2.29)

According to the Minkowski’s inequality, it is readily to see that

‖w∇(−∆)−1vλ,f‖
L1

t (Ḃ
−1+ d

p
p,1 )

≈

∫ t

0

‖w(τ)∇(−∆)−1vλ,f (τ)‖
Ḃ

−1+ d
p

p,1

dτ.

Then we can apply Lemma 2.3 by setting s1 = d
q
, s2 = −1 + d

p
, p1 = q and p2 = p to obtain that there

exists a constant C2 such that

‖w∇(−∆)−1vλ,f‖
Ḃ

−1+ d
p

p,1

≤ C2‖w‖
Ḃ

d
q
q,1

‖∇(−∆)−1vλ,f‖
Ḃ

−1+ d
p

p,1

≤ C2‖w‖
Ḃ

d
q
q,1

‖vλ,f‖
Ḃ

−2+ d
p

p,1

,

which implies that

‖w∇(−∆)−1vλ,f‖
L1

t (Ḃ
−1+ d

p
p,1 )

≤ C2‖vλ,f‖
L1

t,f
(Ḃ

−2+ d
p

p,1 )
. (2.30)

Taking (2.30) into (2.29) gives us to

‖vλ,f‖
L∞

t (Ḃ
−2+ d

p
p,1 )

+ λ‖vλ,f‖
L1

t,f
(Ḃ

−2+ d
p

p,1 )
+ κ‖vλ,f‖

L1
t (Ḃ

d
p
p,1)

≤ ‖v0‖
Ḃ

−2+ d
p

p,1

+ C2‖vλ,f‖
L1

t,f
(Ḃ

−2+ d
p

p,1 )
. (2.31)

Therefore, we can choose λ large enough, e.g., λ = 2C2, to eliminate the second term on the right-hand

side of (2.31):

‖vλ,f‖
L∞

t (Ḃ
−2+ d

p
p,1 )

+ (λ − C2)‖vλ,f‖
L1

t,f
(Ḃ

−2+ d
p

p,1 )
+ κ‖vλ,f‖

L1
t (Ḃ

d
p
p,1)

≤ ‖v0‖
Ḃ

−2+ d
p

p,1

,

which combining (2.27) gives us to

‖v‖
L∞

t (Ḃ
−2+ d

p
p,1 )

+ κ‖v‖
L1

t(Ḃ
d
p
p,1)

≤ ‖v0‖
Ḃ

−2+ d
p

p,1

exp
{
2C2

∫ t

0

‖w(τ)‖
Ḃ

d
q
q,1

dτ
}

≤ ‖v0‖
Ḃ

−2+ d
p

p,1

exp
{2C2

κ
(‖w0‖

Ḃ
−2+ d

q
q,1

+ η)
}
. (2.32)

Finally we conclude that if we take C0 large enough and c0 small enough in (1.7), then it follows from

(2.32) that

‖v‖
L∞

t (Ḃ
−2+ d

p
p,1 )

+ κ‖v‖
L1

t(Ḃ
d
p
p,1)

≤
η

2

for all t < Tη, which contradicts with the maximality of Tη, thus T ∗ = ∞. We complete the proof of

Theorem 1.3.

3 Weighted energy inequalities

In this section, we intend to establish two weighted energy inequalities in terms of the lower-order and

higher-order derivative of solutions to the system (1.2). Denote

E(t) := ‖v(t)‖
Ḃ

−2+ d
p

p,1

+ ‖w(t)‖
Ḃ

−2+ d
q

q,1

, Y (t) :=

∫ t

0

(
‖v(τ)‖

Ḃ

d
p
p,1

+ ‖w(τ)‖
Ḃ

d
q
q,1

)
dτ,
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and let us introduce the following two weighted functions:

ṽ(x, t) := e−KY (t)v(x, t), w̃(x, t) := e−KY (t)w(x, t),

where K > 0 is a positive constant which the exact value will be designated later. Then we see that

(ṽ, w̃) satisfies the following equations:





∂tṽ −∆ṽ = ∇ · (w∇(−∆)−1ṽ)−KY ′(t)ṽ,

∂tw̃ −∆w̃ = ∇ · (v∇(−∆)−1ṽ)−KY ′(t)w̃,

ṽ(x, 0) = v0(x), w̃(x, 0) = w0(x).

(3.1)

Applying Lemmas 2.1 and 2.2 by only neglecting the time variable and taking θ1 = 1 and θ2 = 0, one

can easily derive the following two weighted bilinear estimates.

Lemma 3.1 Let p, q be two positive numbers such that 1 ≤ p, q < ∞ and 1
p
− 1

q
< 1

d
< 1

p
+ 1

q
. Then we

have

‖w∇(−∆)−1ṽ‖
Ḃ

−1+ d
p

p,1

. Y ′(t)
(
‖ṽ‖

Ḃ
−2+ d

p
p,1

+ ‖w̃‖
Ḃ

−2+ d
q

q,1

)
. (3.2)

Lemma 3.2 Let 1 ≤ p, q < ∞ and 1
q
− 1

p
< 1

d
. Then we have

‖u∇(−∆)−1ṽ + v∇(−∆)−1ũ‖
Ḃ

−1+ d
q

q,1

. Y ′(t)
(
‖ũ‖

Ḃ
−2+ d

p
p,1

+ ‖ṽ‖
Ḃ

−2+ d
p

p,1

)
. (3.3)

Based on these two lemmas, one can get the following weighted energy estimates of the system (1.2).

Proposition 3.3 Let the assumptions of Theorem 1.3 be in force. Then there exists a constant K > 0

such that for all t ≥ 0, the unique solution (v, w) of the system (1.2) satisfies the following weighted

energy inequality:
d

dt
(e−KY (t)E(t)) + κe−KY (t)

(
‖v(t)‖

Ḃ

d
p
p,1

+ ‖w(t)‖
Ḃ

d
q
q,1

)
≤ 0, (3.4)

where κ is a constant appeared in (2.24).

Proof. Firstly, for the first equation of (3.1), one can proceed as the derivation of (2.25) to obtain the

estimate for v as

d

dt
‖∆j ṽ‖Lp + κ22j‖∆j ṽ‖Lp . 2j‖∆j(w∇(−∆)−1ṽ)‖Lp −KY ′(t)‖∆j ṽ‖Lp .

Multiplying the above inequality by 2(−2+ d
p
)j and taking l1 norm to the resultant inequality, one can

infer from Lemma 3.1 that

d

dt
‖ṽ‖

Ḃ
−2+ d

p
p,1

+ κ‖ṽ‖
Ḃ

d
p
p,1

≤ CY ′(t)
(
‖ṽ‖

Ḃ
−2+ d

p
p,1

+ ‖w̃‖
Ḃ

−2+ d
q

q,1

)
−KY ′(t)‖ṽ‖

Ḃ
−2+ d

p
p,1

. (3.5)

Secondly, similar to the derivation of (3.5), one can resort Lemma 3.2 to obtain the estimate for w as

d

dt
‖w̃‖

Ḃ
−2+ d

q
q,1

+ κ‖w̃‖
Ḃ

d
q
q,1

≤ CY ′(t)‖ṽ‖
Ḃ

−2+ d
p

p,1

−KY ′(t)‖w̃‖
Ḃ

−2+ d
q

q,1

. (3.6)

Adding up (3.5) and (3.6) together implies that

d

dt
(‖ṽ‖

Ḃ
−2+ d

p
p,1

+ ‖w̃‖
Ḃ

−2+ d
q

q,1

) + κ
(
‖ṽ(t)‖

Ḃ

d
p
p,1

+ ‖w̃(t)‖
Ḃ

d
q
q,1

)
≤ (2C −K)Y ′(t)(‖ṽ‖

Ḃ
−2+ d

p
p,1

+ ‖w̃‖
Ḃ

−2+ d
q

q,1

).

Finally, we can choose the constant K sufficiently large such that K > 2C, which directly leads to

d

dt
(‖ṽ‖

Ḃ
−2+ d

p
p,1

+ ‖w̃‖
Ḃ

−2+ d
q

q,1

) + κ
(
‖ṽ(t)‖

Ḃ

d
p
p,1

+ ‖w̃(t)‖
Ḃ

d
q
q,1

)
≤ 0.
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This is exactly (3.4). We complete the proof of Proposition 3.3. 2

Now we derive the lower-order and higher-order spatial derivatives of solutions to the system (1.2).

Let ℓ be a real number and 1 ≤ r < ∞, and let us denote

F(t) := ‖(v(t), w(t))‖Ḃℓ
r,1
.

We obtain the following weighted energy inequality.

Proposition 3.4 Let the assumptions of Theorem 1.3 be in force, and let us further assume that (v0, w0) ∈

Ḃℓ
r,1(R

d) with 1 ≤ r < ∞, and

ℓ + 1 +
d

p
> dmax{0,

1

p
+

1

r
− 1} and ℓ+ 1 +

d

q
> dmax{0,

1

q
+

1

r
− 1}.

Then there exists a positive constant K such that for all t ≥ 0, the unique solution (v, w) of the system

(1.2) satisfies the following weighted energy inequality:

d

dt
(e−KY (t)F(t)) +

κ

2
e−KY (t)‖(v(t), w(t))‖

Ḃ
ℓ+2
r,1

≤ 0. (3.7)

Proof. Applying the operator ∆jΛ
ℓ to the first and second equation of (3.1), then taking L2 inner

product with |∆jΛ
ℓṽ|r−2∆jΛ

ℓṽ to the first resultant, and |∆jΛ
ℓ−1w̃|r−2∆jΛ

ℓ−1w̃ to the second resultant,

respectively, we obtain that

1

r

d

dt
‖(∆jΛ

ℓṽ,∆jΛ
ℓw̃)‖rLr −

(
∆∆jΛ

ℓṽ, |∆jΛ
ℓṽ|r−2∆jΛ

ℓṽ
)
−
(
∆∆jΛ

ℓw̃, |∆jΛ
ℓw̃|r−2∆jΛ

ℓw̃
)

=
(
∆jΛ

ℓ∇ · (w∇(−∆)−1ṽ), |∆jΛ
ℓṽ|r−2∆jΛ

ℓṽ
)
+
(
∆jΛ

ℓ∇ · (v∇(−∆)−1ṽ), |∆jΛ
ℓw̃|r−2∆jΛ

ℓw̃
)

≤ ‖∆jΛ
ℓ∇ · (w∇(−∆)−1ṽ)‖Lr‖∆jΛ

ℓṽ‖r−1
Lr + ‖∆jΛ

ℓ∇ · (v∇(−∆)−1ṽ)‖Lr‖∆jΛ
ℓw̃‖r−1

Lr

−KY ′(t)‖∆jΛ
ℓṽ‖rLr −KY ′(t)‖∆jΛ

ℓw̃‖rLr ,

which one can easily obtain the following inequality:

d

dt
‖(ṽ, w̃)‖Ḃℓ

r,1
+ κ‖(ṽ, w̃)‖

Ḃ
ℓ+2
r,1

. ‖w∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

+ ‖v∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

−KY ′(t)‖(ṽ, w̃)‖Ḃℓ
r,1
. (3.8)

To prove Proposition 3.4, the case ℓ > −1 is simple due to the fact that Ḃℓ+1
r,1 (Rd)∩L∞(Rd) is a Banach

algebra and Ḃ
d
p

p,1(R
d) →֒ Ḃ0

∞,1(R
d) →֒ L∞(Rd) for all 1 ≤ p < ∞. Therefore, for the first term in the

right-hand side of (3.8), since the solution (v, w) is bounded in Ḃ
−2+ d

p

p,1 (Rd) × Ḃ
−2+ d

q

q,1 (Rd) with respect

to the time variable, we obtain

‖w∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

= ‖w∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

. ‖w‖L∞‖∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

+ ‖w̃‖
Ḃ

ℓ+1
r,1

‖∇(−∆)−1v‖L∞

. ‖w‖
Ḃ

d
q
q,1

‖ṽ‖Ḃℓ
r,1

+ ‖w̃‖
Ḃℓ+1

r,1
‖v‖

Ḃ
−1+ d

p
p,1

. ‖w‖
Ḃ

d
q
q,1

‖ṽ‖Ḃℓ
r,1

+ ‖v‖
1
2

Ḃ
−2+ d

p
p,1

‖v‖
1
2

Ḃ

d
p
p,1

‖w̃‖
1
2

Ḃℓ
r,1

‖w̃‖
1
2

Ḃ
ℓ+2
r,1

≤
κ

2
‖w̃‖

Ḃ
ℓ+2
r,1

+ C(‖v‖
Ḃ

d
p
p,1

+ ‖w‖
Ḃ

d
q
q,1

)‖(ṽ, w̃)‖Ḃℓ
r,1
, (3.9)

where we have used the following two interpolation inequalities according to (2.1):

‖v‖
Ḃ

−1+ d
p

p,1

. ‖v‖
1
2

Ḃ
−2+ d

p
p,1

‖v‖
1
2

Ḃ
d
p
p,1

, ‖w̃‖
Ḃ

ℓ+1
r,1

. ‖w̃‖
1
2

Ḃℓ
r,1

‖w̃‖
1
2

Ḃ
ℓ+2
r,1

.
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Similarly, one can derive that

‖v∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

≤
κ

2
‖ṽ‖

Ḃ
ℓ+2
r,1

+ C‖v‖
Ḃ

d
p
p,1

‖ṽ‖Ḃℓ
r,1
. (3.10)

On the other hand, in the case ℓ ≤ −1, one can apply Lemma 2.3 to estimate the term w∇(−∆)−1ṽ by

choosing f = w, g = ∇(−∆)−1ṽ, s1 = d
q
, s2 = ℓ+ 1, p1 = q and p2 = r:

‖w∇(−∆)−1ṽ‖
Ḃℓ+1

r,1
. ‖w‖

Ḃ
d
q
q,1

‖∇(−∆)−1ṽ‖
Ḃℓ+1

r,1
≈ ‖w‖

Ḃ
d
q
q,1

‖ṽ‖Ḃℓ
r,1
; (3.11)

while the term v∇(−∆)−1ṽ can be bounded by choosing f = v, g = ∇(−∆)−1ṽ, s1 = d
p
, s2 = ℓ + 1,

p1 = p and p2 = r:

‖v∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

. ‖v‖
Ḃ

d
p
p,1

‖∇(−∆)−1ṽ‖
Ḃ

ℓ+1
r,1

≈ ‖v‖
Ḃ

d
p
p,1

‖ṽ‖Ḃℓ
r,1
. (3.12)

Therefore, plugging (3.9)–(3.12) into (3.8), we conclude that

d

dt
‖(ṽ, w̃)‖Ḃℓ

r,1
+

κ

2
‖(ṽ, w̃)‖

Ḃ
ℓ+2
r,1

≤ (2C −K)Y ′(t)‖(ṽ, w̃)‖Ḃℓ
r,1
.

This yields (3.7) immediately by choosing K sufficiently large such that K > 2C, and we complete the

proof of Proposition 3.4. 2

4 Optimal decay rates of large solutions

We shall prove Theorems 1.4 and 1.5 by using the analytic approach illustrated in [29]. To prove Theorem

1.4, we first observe that Proposition 3.4 implies (1.10) directly, so it suffices to prove (1.11). To this

end, for any s > 0 such that

−s+ 1 +
d

p
> dmax{0,

1

p
+

1

r
− 1} and − s+ 1 +

d

q
> dmax{0,

1

q
+

1

r
− 1},

one can choose ℓ = −s in Proposition 3.4 to obtain that for all t ≥ 0,

‖(v(t), w(t))‖Ḃ−s
r,1

≤ C‖(v0, w0)‖Ḃ−s
r,1

≤ C0. (4.1)

This particularly yields (1.11) with ℓ = −s. On the other hand, for any ℓ ∈ (−s,N ], applying interpolation

inequality (2.1) yields that

‖(v(t), w(t))‖Ḃℓ
r,1

≤ C‖(v(t), w(t))‖
2

ℓ+s+2

Ḃ
−s
r,1

‖(v(t), w(t))‖
1− 2

ℓ+s+2

Ḃ
ℓ+2
r,1

.

This together with (4.1) implies that

‖(v(t), w(t))‖
Ḃ

ℓ+2
r,1

≥ C‖(v(t), w(t))‖
− 2

ℓ+s

Ḃ−s
r,1

‖(v(t), w(t))‖
1+ 2

ℓ+s

Ḃℓ
r,1

≥ C‖(v(t), w(t))‖
1+ 2

ℓ+s

Ḃℓ
r,1

,

which leads further to

‖(v(t), w(t))‖
Ḃ

ℓ+2
r,1

≥ C‖(v(t), w(t))‖
1+ 2

ℓ+s

Ḃℓ
r,1

= CF(t)1+
2

ℓ+s . (4.2)

Plugging (4.2) into (3.7), there exists a constant C such that

d

dt
(e−KY (t)F(t)) + Ce−KY (t)F(t)1+

2
ℓ+s ≤ 0,

which combining the fact that the function Y (t) is positive along time evolution yields that

d

dt
(e−KY (t)F(t)) + C(e−KY (t)F(t))1+

2
ℓ+s ≤ 0. (4.3)
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Solving this ordinary differential inequality directly yields that

F(t) ≤ eKY (t)

(
F(0)−

2
ℓ+s +

2Ct

ℓ+ s

)− ℓ+s
2

.

Since the function Y (t) is bounded, we know that for all t ≥ 0, there exists a constant C0 such that

‖(v(t), w(t))‖Ḃℓ
r,1

≤ C0 (1 + t)
− ℓ+s

2 . (4.4)

The proof of Theorem 1.4 is achieved.

Finally, we give the proof of Theorem 1.5. Since 1 ≤ r ≤ min{p, q}, we can infer from the imbedding

results in Besov spaces that

Ḃ−s
r,1 (R

d) →֒ Ḃ
−s−d( 1

r
− 1

p
)

p,1 (Rd) and Ḃ−s
r,1(R

d) →֒ Ḃ
−s−d( 1

r
− 1

q
)

q,1 (Rd),

which together with (4.1) yields that for all t ≥ 0,

‖v(t)‖
Ḃ

−s−d( 1
r
− 1

p
)

p,1

+ ‖w(t)‖
Ḃ

−s−d( 1
r
− 1

q
)

q,1

≤ C0. (4.5)

On the other hand, for any s ≥ max{0, 2− d
r
}, applying the interpolation inequality (2.1) yields that

‖v(t)‖
Ḃ

−2+ d
p

p,1

≤ C‖v(t)‖

2

s+ d
r

Ḃ
−s−d( 1

r
− 1

p
)

p,1

‖v(t)‖
1− 2

s+ d
r

Ḃ

d
p
p,1

,

‖w(t)‖
Ḃ

−2+ d
q

q,1

≤ C‖w(t)‖

2

s+ d
r

Ḃ
−s−d( 1

r
− 1

q
)

q,1

‖w(t)‖
1− 2

s+ d
r

Ḃ
d
q
q,1

.

This together with (4.5) implies that

‖v(t)‖
Ḃ

d
p
p,1

≥ C‖v(t)‖
− 2

s+ d
r
−2

Ḃ
−s−1−d( 1

r
− 1

p
)

p,1

‖v(t)‖
1+ 2

s+ d
r
−2

Ḃ
−2+ d

p
p,1

≥ C‖v(t)‖
1+ 2

s+ d
r
−2

Ḃ
−2+ d

p
p,1

,

‖w(t)‖
Ḃ

d
q
q,1

≥ C‖w(t)‖
− 2

s+ d
r
−2

Ḃ
−s−1−d( 1

r
− 1

q
)

q,1

‖w(t)‖
1+ 2

s+ d
r
−2

Ḃ
−2+ d

q
q,1

≥ C‖w(t)‖
1+ 2

s+ d
r
−2

Ḃ
−2+ d

q
q,1

.

It follows that

‖v(t)‖
Ḃ

d
p
p,1

+ ‖w(t)‖
Ḃ

d
q
q,1

≥ C(‖v(t)‖
Ḃ

−2+ d
p

p,1

+ ‖w(t)‖
Ḃ

−2+ d
q

q,1

)
1+ 2

s+ d
r
−2

= CE(t)
1+ 2

s+ d
r
−2 . (4.6)

Plugging (4.6) into (3.4), by using the function Y (t) is positive along time evolution, we obtain

d

dt
(e−KY (t)E(t)) + C(e−KY (t)E(t))

1+ 2

s+ d
r
−2 ≤ 0. (4.7)

Solving this ordinary differential inequality, we obtain

E(t) ≤ eKY (t)

(
E(0)

− 2

s+ d
r
−2 +

2Ct

s+ d
r
− 2

)−
s+ d

r
−2

2

.

Since the function Y (t) is bounded, there exists a constant C0 such that for all t ≥ 0,

‖v(t)‖
Ḃ

−2+ d
p

p,1

+ ‖w(t)‖
Ḃ

−2+ d
q

q,1

≤ C0 (1 + t)
−

s+ d
r
−2

2 . (4.8)
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Notice that (4.8) gives in particular (1.12) with ℓ = −2 + d
p
, and (1.13) with ℓ = −2 + d

q
, respectively.

Finally, for any ℓ ∈ [−s−d(1
r
− 1

p
),−2+ d

p
), by using the interpolation inequality (2.1) again, one obtains

that

‖v(t)‖Ḃℓ
p,1

≤ C‖v(t)‖

d
p
−ℓ−2

s+ d
r
−2

Ḃ
−s−d( 1

r
− 1

p
)

p,1

‖v(t)‖

ℓ+s+d( 1
r
− 1

p
)

s+ d
r
−2

Ḃ
−2+ d

p
p,1

,

which combining (4.5) and (4.8) implies that

‖v(t)‖Ḃℓ
p,1

≤ C0(1 + t)−( ℓ+s
2 )− d

2 (
1
r
− 1

p
).

Similarly, for any ℓ ∈ [−s− d(1
r
− 1

q
),−2 + d

q
), one has

‖w(t)‖Ḃℓ
q,1

≤ C‖w(t)‖

d
q
−ℓ−2

s+ d
r
−2

Ḃ
−s−d( 1

r
− 1

q
)

q,1

‖w(t)‖

ℓ+s+d( 1
r
− 1

q
)

s+ d
r
−2

Ḃ
−2+ d

q
q,1

,

which combining (4.5) and (4.8) again implies that

‖w(t)‖Ḃℓ
q,1

≤ C0(1 + t)−( ℓ+s
2 )−d

2 (
1
r
− 1

q
).

We complete the proof of Theorem 1.5.
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