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Abstract. We consider the nonlinear massless wave equation belonging to
some family of the Friedmann–Lemâıtre–Robertson–Walker (FLRW) space-

time. We prove the global in time small data solutions for supercritical powers

in the case of decelerating expansion universe.

1. Introduction

In this paper, we prove the global existence (in time) of small data solutions to
the Cauchy problem for the semilinear wave equation with scale-invariant damping
and decreasing in time propagation speed

(1)


utt(t, x)− (1 + t)−2`∆u(t, x) + β

1+tut(t, x) = f(u(t, x)), t ≥ 0, x ∈ Rn,

u(0, x) = 0 = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

with ` ∈ (0, 1) and β > 0. We assume that f(u) = |u|p for some p > 1 or, more in
general, f verifies the following local Lipschitz-type condition

(2) |f(u)− f(v)| ≤ C |u− v|
(
|u|p−1 + |v|p−1

)
.

The case β = 2 in (1) is well known as FLRW spacetime model for the decelerating
expansion universe, whereas in the particular case ` = 2

3 , (1) is the nonsingular
covariant massless field in the Einstein- de Sitter spacetime (see [15]).

Let us start with the state of the art in the case ` = 0. If β ≥ 5
3 for n = 1,

β ≥ 3 for n = 2, or β ≥ n + 2 for n ≥ 3, by assuming data in the energy
spaces with additional regularity L1(Rn), the global (in time) existence result for
(1) was proved in [3] for p > pF (n)

.
= 1 + 2

n , the well known Fujita index [14].
The exponent pF (n) is critical for this model, that is, for p ≤ pF (n) and suitable,
arbitrarily small data, there exists no global weak solution [8]. As conjectured in
[7] and [9], if β becomes smaller with respect to the space dimension n, the critical
exponent increase to max{pS(n+ β), pF (n)}, where pS is the Strauss exponent for
the semilinear undamped wave equation [18], [24]. In [20] the authors proved a
blow-up result and gave the upper bound for the lifespan of solutions to (1) for

1 < p ≤ pS(n + β) and β ∈ [0, β?), with β? = n2+n+2
n+2 . It is worth noticing that if

β ∈ [0, β?), then pF (n) < pS(n+ β) and, pF (n) = pS(n+ β?).
Recently, in [4] it is proved, in the case ` = 0, that the critical exponent to (1) is
equal to max{pS(n+β), pF (n)} for n = 1 and, in [5] it is proved the global existence
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of small data solutions for p > pF (n) and β ≥ n in space dimension 2 ≤ n ≤ 5. As
far as we know, it is still a open problem to prove global existence of small data
solutions for p > pF (n) in the cases β? < β < n for n ≥ 3 and for p > pS(n + β)
for 0 < β < β? for n ≥ 2.

For ` ∈ [0, 1), β ≥ 0 and n ≥ 2, let pS(n, `, β) be the positive root of the
quadratic equation(

n− 1 +
β − `
1− `

)
p2 −

(
n+ 1 +

β + 3`

1− `

)
p− 2 = 0.

Recently, in [21] and, independently in [25] and [26], the authors have proved blow-
up in a finite time and upper estimates of the lifespan for solutions to (1) for

1 < p ≤ max{pF (n(1− `)), pS(n, `, β)}.

A blow-up result for β = 2 and ` ∈ (0, 1) in (1) was also proved in [15].
It is worth noticing that if pF (n(1− `)) = pS(n, `, βc(n, `)), where

βc(n, `)
.
= `+ (1− `)

(
n+ 1− 2

pF (n(1− `))

)
=
n2(1− `)2 + n(1− `)(1 + 2`) + 2

2 + n(1− `)
.

In particular, if β ≥ βc(n, `), then pS(n, `, β) ≤ pF (n(1− `)).
In [2], the authors proposed a classification of non-effective and effective dissi-

pation, respectively, for the damped wave equation

utt(t, x)− a2(t)∆u(t, x) + b(t)ut(t, x) = 0

with increasing speed of propagation. The authors derived sharp estimates for
solutions to the Cauchy problem and, in the case of effective dissipation, i.e.,

b(t)
A(t)

a(t)
→∞, as t→∞, A(t) = 1 +

∫ t

0

a(τ) dτ,

derived global existence (in time) results for the semilinear problem with power
nonlinearities. A similar classification was introduced in [12] in the case a ∈ L1.
A natural generalization for the model (1) is to consider a positive and decreasing
speed of propagation a(t), with a /∈ L1. But in this paper we restrict ourselves
to the case in which a is a irrational function, since it includes interesting models
by itself, for instance, if ` = 2

3 in (1), the considered model coincides with the
non-singular wave equation in the Einstein de Sitter space-time ([16], [17]).

The main goal in this paper is to prove, under the assumption of small initial
data in L1(Rn) ∩ Hk−1(Rn), k > 1, the global existence (in time) of solutions
to (1) for supercritical powers p > pF (n(1 − `)), by supposing that β ≥ βc(n, `).
Combine the obtained results in this paper with the blow-up results derived in [26]
we conclude that pF (n, `) = 1 + 2

n(1−`) is the critical exponent for the global in

time existence of solutions for β ≥ βc(n, `).
As far as we know, it is still a open problem to prove global existence of small data
solutions to (1) for p > pS(n, `, β) and 0 < β ≤ βc(n, `). It is expected that a similar
approach to those used for the semilinear free wave equation may be appropriate
to decrease values of β and to overcame some gaps that appear in this paper.
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2. Main results

To simplify the writing, from now we consider

(3) pc(n, `)
.
= pF (n(1− `)) = 1 +

2

n(1− `)
.

In the next theorems, due to the fact that pc(n, `)→∞ as `→ 1, the choice of the
spaces of solutions is related to fixed ranges for ` ∈ [0, 1) and the space dimensions
n ≥ 2. To state our first result, let us define the following parameters

(4) q̄
.
=

2(npc(n, `)− 1)

n+ 1
, q]

.
=

2(n+ 1)

n− 1
.

Theorem 2.1. Let ` be such that{
0 ≤ ` < 1− n−1

2n , if 2 ≤ n ≤ 5

1− 2(n+1)
n(n−3) ≤ ` < 1− n−1

2n , if 6 ≤ n ≤ 8

and

β ≥ `+ (n+ 1)(1− `)− 2

q̄
(1− `),

with q̄ ∈ [pc(n, `), q]], where pc(n, `), q] and q̄ are given by (3) and (4). If

pc(n, `) < p ≤ 4pc(n, `)

n+ 3
+ 1,

then there exists δ > 0 such that for any initial data

u1 ∈ D = L1(Rn) ∩ L2(Rn), ||u1||D ≤ δ,
there exists a unique weak solution u ∈ C([0,∞), Lpc(Rn)∩Lq](Rn)) to (1). More-
over, the solution satisfies the following estimates for pc ≤ q ≤ q]:
If β > `+ (n+ 1)(1− `)− 2

q (1− `) then 1

(5) ||u(t, ·)||Lq . (1 + t)−n(1− 1
q )(1−`)||u1||D

whereas if ` + (n + 1)(1 − `) − 2
q̄ (1 − `) ≤ β ≤ ` + (n + 1)(1 − `) − 2

q (1 − `), then

for any ε > 0

(6) ||u(t, ·)||Lq . (1 + t)[ε−(n−1)( 1
2−

1
q )](1−`)− β−`

2(1−`) ||u1||D.

Remark 2.1. One of the crucial property in the proof of Theorem 2.1 is that
r(q)pc(n, `) < q], for all pc(n, `) ≤ q ≤ q], with

(7)
1

r(q)

.
=

1

2n
+

1

2
+

1

nq
.

This condition is satisfied under some condition on `, namely,

r(q])pc(n, `) < q] ⇔ ` < 1− 4

q](n+ 1)− 2(n− 1)
= 1− n− 1

2n
.

Since r(q) ≤ r(q]) for all pc(n, `) ≤ q ≤ q], we also have

r(q)pc(n, `) < q] ⇔ ` < 1− n− 1

2n
.

In particular, it implies the existence of q̄ satisfying q̄ < q].
For instance, for ` ∈

[
0, 3

4

)
if n = 2, and for ` ∈

[
0, 2

3

)
if n = 3.

1Let f, g : Ω ⊂ Rn → R be two functions. From now one we use the notation f . g if there
exists a constant C > 0 such that f(y) ≤ Cg(y) for all y ∈ Ω.
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Remark 2.2. By using that

r(q])pc(n, `) < q] ⇐⇒ pc(n, `)

(
1− r(q])

q]

)
+ 1 =

4pc(n, `)

n+ 3
+ 1 <

q]
r(q])

=
n+ 3

n− 1
,

with r(q) given by (7), we conclude that the upper bound for p in Theorem 2.1
satisfies

p ≤ min

{
pc(n, `)

(
1− r(q])

q]

)
+ 1,

q]
r(q])

}
=

4pc(n, `)

n+ 3
+ 1.

Remark 2.3. Taking into account that L1 − Lq linear estimates in Corollary 2 of

[5] hold only for 2(n−1)
n+1 ≤ q ≤ q], in the proof of Theorem 2.1 we have to assume

pc(n, `) ≥
2(n− 1)

n+ 1
.

Hence a restriction from below in ` is also needed, namely, ` ≥ 1− 2(n+1)
n(n−3) , n ≥ 4.

This condition is true for ` = 0 under the assumption 2 ≤ n ≤ 5 in Theorem 2.1.

Remark 2.4. Let n
r(q) = 1

2 + n
2 + 1

q . Condition (4) means that q̄ is defined by

pc(n, `)r(q̄) = q̄. In particular, thanks to (n− 1)pc(n, `) ≥ 1 for n ≥ 2 it holds

1

q̄
− n

pc(n, `)r(q])
+
n− 1

q]
=

n

pc(n, `)r(q̄)
− n− 1

q̄
− n

pc(n, `)r(q])
+
n− 1

q]

=
1

pc(n, `)

(
n

r(q̄)
− n

r(q])

)
− (n− 1)

(
1

q̄
− 1

q]

)
=

(
1

pc(n, `)
− n+ 1

)(
1

q̄
− 1

q]

)
≤ 0.

In the case q̄ = pc(n, `), Theorem 2.1 yields the threshold value

β ≥ `+ (1− `)
(
n+ 1− 2

pc(n, `)

)
= βc(n, `).

If ` = 0 then pc(n, 0) = 1 + 2
n and q̄ = 2, so we have to assume β ≥ n+ 1− 2

q̄ = n.

In particular for ` = 0 and n = 2, this condition coincides with the threshold value
β ≥ βc(2, 0) = 2.

In our results, the novelty is to use higher regularity Hk(Rn), k > n
2 , in order to

consider larger values on the parameter ` and to relax the condition in the upper
bound for p in Theorem 2.1. In particular, it is possible to include for n = 3 the
speed of propagation a(t) = (1 + t)−

2
3 , that appears in the well known Einstein de

Sitter model for decelerating expanding universe [16].
In the next two theorems we restrict our analysis to the case of small values for β,
whereas the simple case of large values for β is treated in Theorem 2.4.

Theorem 2.2. Let ` ∈
(
1− 2

n ,
2
n

)
for n = 2 or n = 3, and k

.
= 1 + n`

2 such that

either n
2 < k < 2 or k = 2, i.e., ` = 2

n , for n = 3. If ` + n(1 − `)(1 + `) ≤ β <
2− `+ n(1− `)(1 + `) and p > pc(n, `), with pc(n, `) given by (3), then there exists
δ > 0 such that for any initial data

u1 ∈ D = Hk−1(Rn) ∩ L1(Rn), ||u1||D ≤ δ,
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there exists a unique energy solution u ∈ C([0,∞), Hk(Rn)) to (1), which satisfies
the following estimates

||u(t, ·)||L2 . (1 + t)
n
2 (`−1)||u1||D,

||u(t, ·)||Ḣk−1 . h(t)||u1||D,
with

h(t) =

{
(1 + t)(`−1)(n2 +k−1), `+ n(1− `)(1 + `) < β < 2− `+ n(1− `)(1 + `),

(1 + t)
`−β

2 (ln(e+ t))
1
2 , β = `+ n(1− `)(1 + `),

and
||u(t, ·)||Ḣk . (1 + t)

`−β
2 ||u1||D.

Remark 2.5. We point out that

` > 1− 2

n
⇐⇒ k = 1 +

n`

2
>
n

2
⇐⇒ pc(n, `) > 2

for n ≥ 2. Moreover, k ≤ pc(n, `) iff `(1 − `)n2 ≤ 4, in particular, this is true if
` ∈

(
1− 2

n , 1
)

for n = 2, 3.

Example 2.1. If ` = 2
3 , the conclusion of Theorem 2.2 holds for n = 2, 3 with

β ≥ 1
3

(
2 + 5n

3

)
.

In the following result we may consider the case ` ∈
(

2
3 , 1
)

for n = 3, by looking

for solutions with additional regularity Hκ(r1)−1,r2(R3), with κ(r1) = 3
(

1
2 −

1
r1

)
and r1, r2 satisfying

(8) r1 >
2(3`− 1)

1− `
, 2 < r2 <

6

2κ(r1)− 1
.

Theorem 2.3. Let n = 3, ` ∈
(

2
3 , 1
)
, r1, r2 satisfying (8) with κ(r1) = 3

(
1
2 −

1
r1

)
.

If `+ 6(1− `)
(

1− 1
r1

)
≤ β < 2− `+ 3(1− `)(1 + `) and

(9) pc(3, `) < p < 1 +
r1(2− κ(r1))

3
,

with pc(3, `) given by (3), then there exists δ > 0 such that for any initial data

u1 ∈ D = Hκ(r1)−1(R3) ∩ L1(R3), ||u1||D ≤ δ,

there exists a unique energy solution u ∈ C([0,∞), Hκ(r1)(R3) ∩ Ḣκ(r1)−1,r2(R3))
to (1), which satisfies the following estimates

||u(t, ·)||Ḣjκ(r1) . (1 + t)(`−1)(n2 +jκ(r1))||u1||D, j = 0, 1;

and

‖u(t, ·)‖Ḣκ(r1)−1,r2 . (1 + t)
(`−1)

(
n
(

1− 1
r2

)
+κ(r1)−1

)
||u1||D.

Remark 2.6. We remark that (9) is not empty due to

r1 >
2(3`− 1)

1− `
⇐⇒ r1(2− κ(r1)) >

2

1− `
.

Since we are interested into consider small values of β, we take the smallest possible
value for r1.
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Remark 2.7. From r1 >
2(3`−1)

1−` it follows that κ(r1) > 6`−3
3`−1 and for ` ∈

(
2
3 , 1
)

we
have

6`− 3

3`− 1
>

3`

2
⇐⇒ 3`2 − 5`+ 2 < 0.

Therefore, for ` ∈
(

2
3 , 1
)

it holds that κ(r1) > k − 1, with k given by Theorem 2.2,
in particular,

`+ 6(1− `)
(

1− 1

r1

)
= `+ 3(1− `) + 2(1− `)κ(r1) > `+ 3(1− `)(1 + `).

In the last result we also consider higher space dimension, but due to the tech-
nique some additional lower bound for p and β come into play:

Theorem 2.4. Let ` ∈
(
1− 2

n , 1
)

for n ≥ 2 and k
.
= 1 + n`

2 .
If β ≥ 2− `+ n(1− `)(1 + `) and p > max{pc(n, `), k}, with pc(n, `) given by (3),
then there exists δ > 0 such that for any initial data

u1 ∈ D = Hk−1(Rn) ∩ L1(Rn), ||u1||D ≤ δ,

there exists a unique energy solution u ∈ C([0,∞), Hk(Rn)) to (1), which satisfies
the following estimates

(10) ||u(t, ·)||L2 . (1 + t)
n
2 (`−1)||u1||D;

and
(11)

||u(t, ·)||Ḣk . ||u1||D

{
(1 + t)(`−1)(n2 +k), β > `+ n(1− `) + 2k(1− `)
(1 + t)

`−β
2 (ln(e+ t))

1
2 , β = `+ n(1− `) + 2k(1− `).

3. Representation of solutions to the linear Cauchy problem

Let s ≥ 0 be a parameter. We need to solve a family of parameter dependent
linear (f(u) = 0) Cauchy problems corresponding to (1):

(12)

 utt(t, x)− (1 + t)−2`∆u(t, x) + β
1+tut(t, x) = 0, t ≥ s

u(s, x) = g1(s, x)
ut(s, x) = g2(s, x).

We begin by applying Fourier transform to the solution of the problem (12). We
denote the partial Fourier transform of a tempered distribution or of a function
u : R+

0 ×Rn → C with respect to x, by û = Fu or û(t, ·) = Fu(t, ·). The notation
F−1 denotes the inverse Fourier transform, in the appropriate sense.

Following as in [12], we make the change of variables τ = (1+t)1−`

1−` |ξ| and v(τ, s) =

û(t, s, ξ). If u(t, s, x) is the solution of (12) then v(τ, s) satisfies

(13)


v′′(τ) + β−`

(1−`)τ v
′(τ) + v(τ) = 0

v
(

(1+s)1−`|ξ|
1−`

)
= ĝ1(s, ξ)

v′
(

(1+s)1−`|ξ|
1−`

)
= ĝ2(s,ξ)

|ξ| .

Moreover, if we are looking for a solution in the product form v(τ, s) = τρw(τ, s),
then w(τ, s) is a solution of the Bessel’s differential equation of order ±ρ:

(14) τ2w′′(τ) + τw′(τ) + (τ2 − ρ2)w(τ) = 0
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where ρ = 1−β
2(1−`) . We will use the set of Hankel functions, {H+

ρ (τ), H−ρ (τ)} to

write the general solution of the ODE (14). First, according to [27] we introduce
an auxiliary function

(15) ψj,γ,δ(t, s, ξ) = |ξ|j
∣∣∣∣∣∣ H

−
γ

(
(1+s)1−`|ξ|

1−`

)
H−γ+δ

(
(1+t)1−`|ξ|

1−`

)
H+
γ

(
(1+s)1−`|ξ|

1−`

)
H+
γ+δ

(
(1+t)1−`|ξ|

1−`

) ∣∣∣∣∣∣
where j, γ, δ, s are real parameters. Since H±γ = Jγ ± iYγ , we can rewrite it in the
form

(16) ψj,γ,δ(t, s, ξ) = 2i|ξ|j
∣∣∣∣∣∣ Jγ

(
(1+s)1−`|ξ|

1−`

)
Jγ+δ

(
(1+t)1−`|ξ|

1−`

)
Yγ

(
(1+s)1−`|ξ|

1−`

)
Yγ+δ

(
(1+t)1−`|ξ|

1−`

) ∣∣∣∣∣∣
if γ, γ + δ ∈ Z, or

(17) ψj,γ,δ(t, s, ξ) = 2i csc(γπ)|ξ|j
∣∣∣∣∣∣ J−γ

(
(1+s)1−`|ξ|

1−`

)
J−γ−δ

(
(1+t)1−`|ξ|

1−`

)
(−1)δJγ

(
(1+s)1−`|ξ|

1−`

)
Jγ+δ

(
(1+t)1−`|ξ|

1−`

) ∣∣∣∣∣∣
if γ, γ + δ 6∈ Z, where Jγ , Yγ denote the Bessel functions of the first and second
kind, respectively. We then determine the Fourier multipliers and the first order
partial derivatives with respect to t to represent û and ût in the explicit form.

Lemma 3.1. (see [10]) Let u(t, s, x) be the solution of (12). Then the partial
Fourier transform of u with respect to x, û, is represented by

(18) û(t, s, ξ) = m0(t, s, ξ)ĝ1(s, ξ) +m1(t, s, ξ)ĝ2(s, ξ)

with Fourier multipliers and the first order partial derivatives with respect to t given
by

(19) ∂jtmk =
(−1)kπi

4(1− `)
(1 + s)1+(β−1)/2(1 + t)(1−β)/2−j`ψ1+j−k,ρ+k−1,1−j−k

where ρ = 1−β
2(1−`) , k, j = 0, 1.

4. Lp − Lq estimates

In order to obtain an estimate of (18) we have to distinguish between large and
small τ values. We divide the extended phase space R+

0 × R+
0 × R+ into three

zones. We define the zone of high frequencies

Z1 = {(t, s, |ξ|) : |ξ| ≥ (1 + s)`−1},
and the zones of low frequencies

Z2 = {(t, s, |ξ|) : (1 + t)`−1 ≤ |ξ| ≤ (1 + s)`−1},

Z3 = {(t, s, |ξ|) : |ξ| ≤ (1 + t)`−1},
separated by the boundary {(t, s, |ξ|) : (1 + t)1−`|ξ| = (1− `)}.

Given a cut-off function χ ∈ C∞(Rn) satisfying

{
1 if r ≤ 1

2
0 if r ≥ 1

we define

χ1(s, ξ) = 1− χ((1 + s)1−`|ξ|),
χ2(t, s, ξ) = χ((1 + s)1−`|ξ|)

(
1− χ((1 + t)1−`|ξ|)

)
,

χ3(t, s, ξ) = χ((1 + s)1−`|ξ|)χ((1 + t)1−`|ξ|),
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such that χ1 + χ2 + χ3 = 1.

Lemma 4.1. Let ` ∈ (0, 1), γ 6= 0, and k ≥ 0. It holds

|ξ|k|ψ0,γ,0(t, s, ξ)| .(20) 
|ξ|k−1(1 + s)(`−1)/2(1 + t)(`−1)/2 if (t, s, ξ) ∈ Z1

|ξ|k−|γ|−1/2(1 + s)(`−1)|γ|(1 + t)(`−1)/2 if (t, s, ξ) ∈ Z2

|ξ|k(1 + s)(`−1)|γ|(1 + t)(1−`)|γ| if (t, s, ξ) ∈ Z3,

for all s ≥ 0 and t ≥ s.

Proof. For any N ∈ (0, 1), the following properties hold:

|H±γ (τ)| . τ−
1
2 , τ ∈ [N,∞);(21)

|H±γ (τ)| . τ−|γ|, τ ∈ (0, N), γ 6= 0;(22)

|Jγ(τ)| . τγ , τ ∈ (0, N);(23)

|Yγ(τ)| . τ−γ , τ ∈ (0, N), γ 6= 0.(24)

To conclude the estimates in zones Z1 and Z2 we may use the representation (15),
estimates (21) and (22), whereas in the zone Z3 we use (16)-(17) and (23)-(24).

�

Proposition 4.1. Let n ≥ 2, q ≥ 2 and ` ∈ (0, 1).

Assume that g2 ∈
{
L1(Rn) ∩ Lm(Rn) if 0 ≤ k < 1

L1(Rn) ∩ Ḣk−1(Rn) if k ≥ 1
, with m ∈ [1, 2] such that

m = m(k, n, q) >
nq

n+ q(1− k)
, k ∈ [0, 1).

The solution u of the problem (12) satisfies the following a priori estimates.

• For k ∈ [0, 1) and 2 ≤ q < nm
[n−m+mk]+

:

(i): If 1 < β ≤ `+ 2n(1− `)
(

1− 1
q

)
+ 2k(1− `) then

(25) |||D|ku(t, s, ·)||Lq . (1 + t)
`−β

2 (1 + s)1+ β−`
2 +(`−1)(n(1− 1

q )+k)φ(g2);

(ii): If β > `+ 2n(1− `)
(

1− 1
q

)
+ 2k(1− `) then

(26) |||D|ku(t, s, ·)||Lq . (1 + s)(1 + t)(`−1)(n(1− 1
q )+k)φ(g2);

where φ(g2) = dq(t, s)||g2||L1 + (1 + s)n(1−`)(1− 1
m )||g2||Lm with

dq(t, s) =


(

ln
(
e+t
e+s

))1− 1
q

if β = `+ 2n(1− `)
(

1− 1
q

)
+ 2k(1− `)

1 otherwise
;

• For k ≥ 1:
(i): If 1 < β ≤ `+ n(1− `) + 2k(1− `) then

(27) ||u(t, s, ·)||Ḣk . (1 + t)
`−β

2 (1 + s)1+ β−`
2 +(`−1)(n2 +k)η(g2);

(ii): If β > `+ n(1− `) + 2k(1− `) then

(28) ||u(t, s, ·)||Ḣk . (1 + s)(1 + t)(`−1)(n2 +k)η(g2);
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where η(g2) = d2(t, s)||g2||L1 + (1 + s)(1−`)(n2 +k−1)‖g2‖Ḣk−1 with

d2(t, s) =


(

ln
(
e+t
e+s

)) 1
2

if β = `+ n(1− `) + 2k(1− `)
1 otherwise

.

Proof. It is showed the estimates for the three zones.
Considerations in Z3: In the zone Z3, by Lemma 4.1 we may estimate

|ξ|k|m1(t, s, ξ)| . |ξ|k(1 + s).

By using Haussdorff-Young inequality and Hölder inequality, setting

1

r
= 1− 1

q
,

for q ≥ 2, one may estimate

‖F−1(χ3(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖Lq . ‖χ3(s, ξ)|ξ|km1(t, s, ξ)ĝ2‖Lq′

. ‖χ3(s, ξ)|ξ|km1(t, s, ξ)‖Lr‖ĝ2‖L∞

. (1 + s)(1 + t)(`−1)(n(1− 1
q )+k)‖g2‖L1

thanks to

‖χ3(s, ξ)|ξ|k‖rLr(Z3) =

∫
Z3

|ξ|rk dξ . (1 + t)(kr+n)(`−1).

However, if β < `+ 2n(1− `)
(

1− 1
q

)
+ 2k(1− `), by using that

(29) (1 + s)(1 + t)(`−1)(n(1− 1
q )+k) ≤ (1 + t)

`−β
2 (1 + s)1+ β−`

2 +(`−1)(n(1− 1
q )+k)

we obtain

‖F−1(χ3(s, ξ)|ξ|km1(t, s, ξ))∗g2‖Lq . (1+t)
`−β

2 (1+s)1+ β−`
2 +(`−1)(n(1− 1

q )+k)‖g2‖L1 .

Considerations in Z1: In the zone Z1 by Lemma 4.1 we may estimate

|ξ|k|m1(t, s, ξ)| . |ξ|k−1(1 + s)(β+`)/2(1 + t)(`−β)/2.

By using Haussdorff-Young inequality and Hölder inequality, setting

1

r
=

1

q′
− 1

m′
=

1

m
− 1

q
, m ∈ [1, 2)

for 2 ≤ q < nm
(n−m+mk)+

and k ∈ [0, 1), one may estimate

‖F−1(χ1(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖Lq . ‖χ1(s, ξ)|ξ|km1(t, s, ξ)ĝ2‖Lq′

. ‖χ1(s, ξ)|ξ|km1(t, s, ξ)‖Lr‖ĝ2‖Lm′

. (1 + t)
`−β

2 (1 + s)
`+β

2 (1 + s)(n( 1
m−

1
q )+k−1)(`−1)‖g2‖Lm

thanks to

‖χ1(s, ξ)|ξ|k−1‖rLr(Z1) =

∫
Z1

|ξ|r(k−1)dξ . (1 + s)(n+r(k−1))(`−1), r(k−1) +n < 0.

For k ≥ 1 it is clear that

‖F−1(χ1(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖L2 . (1 + s)
`+β

2 (1 + t)
`−β

2 ‖g2‖Ḣk−1 .
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However, if β ≥ `+ 2n(1− `)
(

1− 1
q

)
+ 2k(1− `), by using that

(30) (1 + s)
`+β

2 (1 + t)
`−β

2 . (1 + t)(`−1)(n(1− 1
q )+k)(1 + s)`+(1−`)(n(1− 1

q )+k)

we may gluing the estimates in zones Z1 and Z3, namely, for 2 ≤ q < nm
(n−m+mk)+

and k ∈ [0, 1), we get

‖F−1(χ1(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖Lq . (1 + t)(`−1)(n(1− 1
q )+k)(1 + s)1+n(1−`)(1− 1

m )‖g2‖Lm ,

whereas for k ≥ 1 and q = 2 we get

‖F−1(χ1(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖L2 . (1 + t)(`−1)(n2 +k)(1 + s)`+(1−`)(n2 +k)‖g2‖Ḣk−1 .

Considerations in Z2: In the zone Z2, by Lemma 4.1 we may estimate

|ξ|k|m1(t, s, ξ)| . |ξ|k−α(1 + s)(1 + t)(`−β)/2,

where α = β−`
2(1−`) . Setting

1

r
= 1− 1

q
,

for q ≥ 2 then thanks to

‖χ2(s, ξ)|ξ|k−α‖rLr(Z2) =

∫
Z2

|ξ|(k−α)rdξ

.


(1 + s)(`−1)(n+r(k−α)) if α < k + n

(
1− 1

q

)
ln
(
e+t
e+s

)
if α = k + n

(
1− 1

q

)
(1 + t)(`−1)(n+r(k−α)) if α > k + n

(
1− 1

q

)
one may estimate

‖F−1(χ2(s, ξ)|ξ|km1(t, s, ξ)) ∗ g2‖Lq . ‖χ2(s, ξ)|ξ|km1(t, s, ξ)ĝ2‖Lq′

. ‖χ2(s, ξ)|ξ|km1(t, s, ξ)‖Lr‖ĝ2‖L∞ . (1 + s)‖g2‖L1

×


(1 + t)(`−β)/2(1 + s)(`−1)(n(1− 1

q )+k)+(β−`)/2 if 1 < β < `+ (1− `)[2n
(

1− 1
q

)
+ 2k]

(1 + t)(`−β)/2
(

ln
(
e+t
e+s

))1− 1
q

if β = `+ (1− `)[2n
(

1− 1
q

)
+ 2k]

(1 + t)(`−1)(n(1− 1
q )+k) if β > `+ (1− `)[2n

(
1− 1

q

)
+ 2k].

�

5. Global existence results

By Duhamel’s principle, a function u ∈ X, where X is a suitable space, is a
solution to (1) if, and only if, it satisfies the equality

(31) u(t, x) = u0(t, x) +

∫ t

0

K(t, s, x) ∗(x) f(u(s, x)) ds , in X,

where u0(t, x) is the solution to the linear Cauchy problem

(32)

 utt(t, x)− (1 + t)−2`∆u(t, x) + β
1+tut(t, x) = 0, t ≥ 0

u(0, x) = 0
ut(0, x) = u1(x)
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and K(t, s, x) ∗(x) f(u(s, x)) is the solution to the linear Cauchy problem (12) with

g1 ≡ 0 and g2 ≡ f(u), being K(t, s, x) = F−1(m1)(t, s, x), i.e.

K(t, s, x) = − πi

4(1− `)
(1 + s)1+(β−1)/2(1 + t)(1−β)/2F−1 (ψ0,ρ,0) (t, s, x).

The proof of our global existence results is based on the following scheme: We
define an appropriate data function space D and an evolution space for solutions
X(T) equipped with a norm relate to the estimates of solutions to the linear Cauchy
problem (32) such that

‖u0‖X ≤ C ‖u1‖D.
For any u ∈ X, we define the operator P by

P : u ∈ X(T )→ Pu(t, x) := u0(t, x) + Fu(t, x),

with

Fu(t, x)
.
=

∫ t

0

K(t, s, x) ∗(x) f(u(s, x)) ds ,

then we prove the estimates

‖Pu‖X ≤ C ‖u1‖D + C1(t)‖u‖pX ,

‖Pu− Pv‖X ≤ C2(t)‖u− v‖X
(
‖u‖p−1

X + ‖v‖p−1
X

)
.

The estimates for the image Pu allow us to apply Banach’s fixed point theorem.
In this way we get simultaneously a unique solution to Pu = u locally in time for
large data and globally in time for small data [11]. To prove the local (in time)
existence we use that C1(t), C2(t) tend to zero as t goes to zero, whereas to prove
the global (in time) existence we use C1(t) ≤ C and C2(t) ≤ C for all t ≥ 0.

5.1. Proof of Theorem 2.4.

Proof. (Theorem 2.4) We define the space

X(T )
.
= C([0,∞), Hk(Rn)), k

.
=
n`

2
+ 1,

equipped with the norm

‖u‖X(T )
.
= sup
t∈[0,T ]

(1 + t)(1−`)n2
(
‖u(t, ·)‖L2 + g(t)(1 + t)(1−`)k‖u(t, ·)‖Ḣk

)
,

with

g(t) =

{
1 k̄ > k

(ln(e+ t))−
1
2 k̄ = k,

where k̄
.
= β−`

2(1−`) −
n
2 . We have to prove the global existence in time of the solution

u assuming that there exists δ > 0 such that

u1 ∈ D
.
= Hk−1(Rn) ∩ L1(Rn), ||u1||D ≤ δ.

Thanks to Proposition 4.1, u0 ∈ X(T ) and it satisfies

‖u0‖X ≤ C ‖u1‖D.
It remains to show the estimates

‖Fu‖X ≤ C‖u‖pX ,(33)

‖Fu− Fv‖X ≤ C‖u− v‖X
(
‖u‖p−1

X + ‖v‖p−1
X

)
.(34)
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Let us begin by prove (33). Taking into account the definition of the norm in the
function space X(T ), we split the proof accordingly to size of β:

Let k̄ > k, i.e., β > `+ n(1− `) + 2k(1− `). Applying Proposition 4.1 we have

‖Fu(t, ·)‖L2 .
∫ t

0

(1+s)(1+t)(`−1)n2

(
‖|u(s, ·)|p‖L1 + (1 + s)(1−`)n(1− 1

m )‖|u(s, ·)|p‖Lm
)
ds ,

where 2n
n+2 < m ≤ 2 and

‖Fu(t, ·)‖Ḣk .
∫ t

0

(1+s)(1+t)(`−1)(n2 +k)
(
‖|u(s, ·)|p‖L1 + (1 + s)(1−`)(n2 +k−1)‖|u(s, ·)|p‖Ḣk−1

)
ds.

First, we use Gagliardo-Nirenberg inequality

‖u(s, ·)‖Lq . ‖u(s, ·)‖1−θL2 ‖u(s, ·)‖θ
Ḣk
, θ(q) =

n

k

(
1

2
− 1

q

)
,

for q = jp with j = 1,m. We point out that θ(jp) < 1 for all p > 1 provided that
` > 1− 2

n and θ(jp) > 0 for p > pc(n, `) > 2. Since u ∈ X(T ) we may estimate

‖|u(s, ·)|p‖
L
q
p

= ‖u(s, ·)‖pLq . ‖u(s, ·)‖pθ
Ḣk
‖u(s, ·)‖(1−θ)pL2

. (1 + s)(`−1)(n2 +k)θp+(`−1)
n(1−θ)p

2 ‖u‖pX(T ) . (1 + s)n(`−1)(p− pq )‖u‖pX(T ),

q = p and q = mp with 2n
n+2 < m ≤ 2, for p > pc(n, `). Therefore, we obtain

‖Fu(t, ·)‖L2 . (1 + t)(`−1)n2

∫ t

0

(1 + s)1+n(`−1)(p−1)ds‖u‖pX(T )

+ (1 + t)(`−1)n2

∫ t

0

(1 + s)1+(1−`)n(1− 1
m )+n(`−1)(p− 1

m )ds‖u‖pX(T )

. (1 + t)(`−1)n2 ‖u‖pX(T ),

for p > 1 + 2
n(1−`) .

Then, in order to estimate ‖Fu(t, ·)‖Ḣk , we may use that Hk(Rn), with k > n
2 , is

imbedded into L∞(Rn). Indeed, thanks to Corollary 5.2, for p > max{1, k− 1} we
may estimate

‖|u(s, ·)|p‖Ḣk−1 ≤ C‖u(s, ·)‖Ḣk−1‖u(s, ·)‖p−1
L∞ .

Since u ∈ X(T ) we have

‖u(s, ·)‖Ḣk−1 . (1 + s)(`−1)(n2 +k−1)‖u‖X(T ),

and thanks to Lemma 5.1 for k̃ < n
2 < k it follows

‖u(s, ·)‖L∞ . ‖u(s, ·)‖Ḣk̃ + ‖u(s, ·)‖Ḣk . (1 + s)(`−1)(n2 +k̃)‖u‖X(T ).

If we choose k̃ = n
2 − ε0, with ε0 sufficiently small, then

‖|u(s, ·)|p‖Ḣk−1 . (1 + s)(`−1)(n2 +k−1)+(`−1)(n−ε0)(p−1)‖u‖pX(T ),
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hence

‖Fu(t, ·)‖Ḣk . (1 + t)(`−1)(n2 +k)
∫ t

0

(1 + s)1+n(`−1)(p−1)ds‖u‖pX(T )

+ (1 + t)(`−1)(n2 +k)
∫ t

0

(1 + s)1+(n−ε0)(`−1)(p−1)ds‖u‖pX(T )

. (1 + t)(`−1)(n2 +k)‖u‖pX(T ),

for p > 1 + 2
n(1−`) .

The case k̄ = k, i.e., β = `+ n(1− `) + 2k(1− `):
In this case one may conclude that

‖Fu(t, ·)‖L2 . (1 + t)
n
2 (`−1)‖u‖pX(T ),

and

‖Fu(t, ·)‖Ḣk̄ . (1 + t)(`−1)(n2 +k̄)(ln(e+ t))
1
2 ‖u‖pX(T )

for p > 1 + 2
n(1−`) .

Finally, let us discuss the proof of (34) only in the case β > `+n(1−`)+2k(1−`).
Applying Proposition 4.1 we have

‖Fu(t, ·)− Fv(t, ·)‖L2 . (1 + t)(`−1)n2

∫ t

0

(1 + s)‖(f(u)− f(v))(s, ·)‖L1ds

+ (1 + t)(`−1)n2

∫ t

0

(1 + s)1+(1−`)n(1− 1
m )‖(f(u)− f(v))(s, ·)‖Lmds.

Here, we may take m ∈ [1, 2] such that m > 2n
n+2 .

By using (2) and Hölder inequality, we find that

‖(f(u)− f(v))(s, ·)‖Lα

≤ C1 ‖(u− v)(|u|p−1 + |v|p−1)(s, ·)‖Lα

≤ C1 ‖(u− v)(s, ·)‖Lpα
(
‖u(s, ·)‖p−1

Lpα + ‖v(s, ·)‖p−1
Lpα

)
≤ C2 (1 + s)n(`−1)(p− 1

α ) ‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,

(35)

for any 1 ≤ α ≤ m. Therefore

‖Fu(t, ·)− Fv(t, ·)‖L2

. (1 + t)(`−1)n2

∫ t

0

(1 + s)1+n(`−1)(p−1)ds‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
+ (1 + t)(`−1)n2 ‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,

for p > 1 + 2
n(1−`) .

Applying again Proposition 4.1 we have

‖Fu(t, ·)− Fv(t, ·)‖Ḣk

. (1 + t)(`−1)(n2 +k)
∫ t

0

(1 + s)‖(f(u)− f(v))(s, ·)‖L1 ds

+ (1 + t)(`−1)(n2 +k)
∫ t

0

(1 + s)1+(1−`)(n2 +k−1)‖(f(u)− f(v))(s, ·)‖Ḣk−1 ds.
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From now we assume that f(u) = |u|p, without lose of generality. In order to
estimate ‖(f(u)− f(v))(s, ·)‖Ḣk−1 we use

|u(s, x)|p − |v(s, x)|p = p

∫ 1

0

|v + τ(u− v)|p−2(v + τ(u− v))(s, x)dτ(u− v)(s, x).

Hence, applying Proposition 5.3 gives

‖|u(s, x)|p − |v(s, x)|p‖‖Ḣk−1

. ‖(u− v)(s, ·)‖Ḣk−1

∫ 1

0

‖|v + τ(u− v)|p−2(v + τ(u− v))(s, ·)‖∞ dτ

+ ‖(u− v)(s, ·)‖∞
∫ 1

0

‖|v + τ(u− v)|p−2(v + τ(u− v))(s, ·)‖Ḣk−1 dτ.

Now, since u, v ∈ X(T ) we have

‖(u− v)(s, ·)‖Ḣk−1 . (1 + s)(`−1)(n2 +k−1)‖u− v‖X(T ).

Applying Lemma 5.1, for k̃ < n
2 < k it follows

‖(u−v)(s, ·)‖∞ . ‖(u−v)(s, ·)‖Ḣk̃+‖(u−v)(s, ·)‖Ḣk . (1+s)(`−1)(n2 +k̃)‖u−v‖X(T ),

and

‖|v+τ(u−v)|p−2(v+τ(u−v))(s, ·)‖∞ . (1+s)(`−1)(n2 +k̃)(p−1)
(
‖u‖p−1

X(T )+‖v‖p−1
X(T )

)
,

with k̃ = n
2 − ε0 and ε0 sufficiently small.

For p > k Corollary 5.2 implies

‖|v + τ(u− v)|p−2(v + τ(u− v))(s, ·)‖Ḣk−1

≤ C‖(v + τ(u− v))(s, ·)‖Ḣk−1‖(v + τ(u− v))(s, ·)‖p−2
L∞

. (1 + s)(`−1)(n2 +k−1)(1 + s)(`−1)(n2 +k̃)(p−2)
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
.

Therefore

‖Fu(t, ·)− Fv(t, ·)‖Ḣk

. (1 + t)(`−1)(n2 +k)
∫ t

0

(1 + s)1+n(`−1)(p−1)ds‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
+ (1 + t)(`−1)(n2 +k)

∫ t

0

(1 + s)(`−1)(n−ε0)(p−1)ds‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
≤ (1 + t)(`−1)(n2 +k)‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,

for p > 1 + 2
n(1−`) . �

5.2. Proof of Theorem 2.2.

Proof. (Theorem 2.2) Let n = 2 or n = 3 and k
.
= n`

2 + 1 such that n
2 < k ≤ 2. For

k̄
.
= β−`

2(1−`) −
n
2 satisfying n`

2 ≤ k̄ < k, we define the space

X(T )
.
= C([0,∞), Hk(Rn)),

equipped with the norm

‖u‖X(T )
.
= sup
t∈[0,T ]

(
(1 + t)(1−`)n2 ‖u(t, ·)‖L2 +h(t)‖u(t, ·)‖Ḣk−1 + (1 + t)

β−`
2 ‖u(t, ·)‖Ḣk

)
,
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with

h(t) =

{
(1 + t)(1−`)(n2 +k−1), `+ n(1− `)(1 + `) < β < 2− `+ n(1− `)(1 + `),

(1 + t)
β−`

2 (ln(e+ t))
1
2 , β = `+ n(1− `)(1 + `).

In the following we only prove (33). Let k − 1 < k̄ < k, i.e.,

`+ n(1− `) + 2(k − 1)(1− `) < β < `+ n(1− `) + 2k(1− `).
Applying again Proposition 4.1 we have

‖Fu(t, ·)‖L2 .
∫ t

0

(1+s)(1+t)(`−1)n2

(
‖|u(s, ·)|p‖L1 + (1 + s)(1−`)n(1− 1

m )‖|u(s, ·)|p‖Lm
)
ds,

with 2n
n+2 < m ≤ 2. We will use now the fractional Sobolev embedding (for instance,

see [1])

‖u(s, ·)‖Lq . ‖u(s, ·)‖Ḣκ(q) , κ(q) = n

(
1

2
− 1

q

)
, 2 ≤ q <∞,

by taking q = jp with j = 1,m. We consider three possibilities for κj = κ(jp) = n

(
1

2
− 1

jp

)
,

j = 1,m, which satisfying κ1 < κm < k for ` > 1 − 2
n . In the first one, suppose

that km ≤ k − 1 with κm = κ(mp) = n
(

1
2 −

1
mp

)
we may estimate

‖|u(s, ·)|p‖Lj = ‖u(s, ·)‖pLjp . ‖u(s, ·)‖p
Ḣκj

. (1 + s)n(`−1)(p− 1
j )‖u‖pX(T ), j = 1,m,

hence, as in the proof of Theorem 2.4 we conclude

‖Fu(t, ·)‖L2 . (1 + t)
n
2 (`−1)‖u‖pX(T ),

for p > 1 + 2
n(1−`) . In the second one, suppose that κ1 ≤ k − 1 < km we may

estimate

‖|u(s, ·)|p‖L1 = ‖u(s, ·)‖pLp . ‖u(s, ·)‖p
Ḣκ1

. (1 + s)p(`−1)(n2 +κ1)‖u‖pX(T ),

with κ1 = κ(p) = n
(

1
2 −

1
p

)
, whereas

‖|u(s, ·)|p‖Lm = ‖u(s, ·)‖pLmp . ‖u(s, ·)‖p
Ḣκm

. ‖u(s, ·)‖(1−θ)p
Ḣk−1

‖u(s, ·)‖pθ
Ḣk
. (1 + s)p(`−1)(n2 +k−1)‖u‖pX(T ),

with θ = km − k + 1 since k − 1 < km < k. Therefore, if m > 2n
n+2 is chosen

sufficiently small we conclude that

‖Fu(t, ·)‖L2 . (1 + t)
n
2 (`−1)

∫ t

0

(1 + s)1+n(`−1)(p−1)ds‖u‖pX(T )

+ (1 + t)
n
2 (`−1)

∫ t

0

(1 + s)1+(1−`)n(1− 1
m )+p(`−1)(n2 +k−1)ds‖u‖pX(T )

. (1 + t)
n
2 (`−1)‖u‖pX(T ),

for

p > 1 +
2

n(1− `)
>

1

1 + `
+

2

n(1− `)
.
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In the last one, suppose that k − 1 < κ1 < km < k we may estimate

‖|u(s, ·)|p‖Lj = ‖u(s, ·)‖pLjp . ‖u(s, ·)‖p
Ḣκj
. (1+s)p(`−1)(n2 +k−1)‖u‖pX(T ), j = 1,m

and we can conclude as in the previous one that

‖Fu(t, ·)‖L2 . (1 + t)
n
2 (`−1)‖u‖pX(T )

for p > 1 + 2
n(1−`) .

If ` = 2
n for n = 3, i.e., k = 2, applying again Proposition 4.1, we have

‖Fu(t, ·)‖Ḣ1 .
∫ t

0

(1+s)(1+t)(`−1)(n2 +1)
(
‖|u(s, ·)|p‖L1 + (1 + s)

n(1−`)
2 ‖|u(s, ·)|p‖L2

)
ds.

Using the fractional Sobolev embedding we may estimate

‖|u(s, ·)|p‖L2 = ‖u(s, ·)‖pL2p . ‖u(s, ·)‖p
Ḣκ(2p)

. (1 + s)p(`−1)(n2 +1)‖u‖pX(T ),

where κ(2p) = 3
2

(
1− 1

p

)
> 1 for p > 3, i.e., p > pc

(
3, 2

3

)
. Therefore, if ` = 2

n and

n = 3 we obtain

‖Fu(t, ·)‖Ḣ1 . (1 + t)(`−1)(n2 +1)
∫ t

0

(1 + s)1+max{n(`−1)(p−1) ; p(`−1)(n2 +1)}ds‖u‖pX(T )

+ (1 + t)(`−1)(n2 +1)
∫ t

0

(1 + s)1+
n(1−`)

2 +p(`−1)(n2 +1)ds‖u‖pX(T )

. (1 + t)(`−1)(n2 +1)‖u‖pX(T ),

for p > 3, i.e., p > pc
(
3, 2

3

)
.

However, if ` < 2
n , i.e., k < 2 applying again Proposition 4.1, we obtain

‖Fu(t, ·)‖Ḣk−1 .
∫ t

0

(1 + s)(1 + t)(`−1)(n2 +k−1)‖|u(s, ·)|p‖L1 ds

+

∫ t

0

(1 + t)(`−1)(n2 +k−1)(1 + s)1+n(1−`)(1− 1
m )‖|u(s, ·)|p‖Lm ds,

where m > 2n
n+2(2−k) , i.e., m > 2n

n(1−`)+2 . Using the fractional Sobolev embedding

we may estimate

‖|u(s, ·)|p‖Lj = ‖u(s, ·)‖pLjp . ‖u(s, ·)‖p
Ḣκj

. (1 + s)max{n(`−1)(p− 1
j ) ; p(`−1)(n2 +k−1)}‖u‖pX(T ), j = 1,m

for κj < k, where κj = n
(

1
2 −

1
jp

)
. As we seen we have to consider three possibili-

ties for κj . Suppose that κj > k−1 (otherwise we can prove as before), if m > 2n
n+2

is chosen sufficiently small we conclude that

‖Fu(t, ·)‖Ḣk−1 . (1 + t)(`−1)(n2 +k−1)
∫ t

0

(1 + s)1+p(`−1)(n2 +k−1)ds‖u‖pX(T )

+ (1 + t)(`−1)(n2 +k−1)
∫ t

0

(1 + s)1+n(1−`)(1− 1
m )+p(`−1)(n2 +k−1)ds‖u‖pX(T )

. (1 + t)(`−1)(n2 +k−1)‖u‖pX(T ),
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for p > 1 + 2
n(1−`) .

Moreover, for ` + n(1 − `)(1 + `) < β < ` + n(1 − `) + 2k(1 − `) applying again
Proposition 4.1 we have

‖Fu(t, ·)‖Ḣk .
∫ t

0

(1 + t)
`−β

2 (1 + s)1+ β−`
2 +(`−1)(n2 +k)‖|u(s, ·)|p‖L1 ds

+

∫ t

0

(1 + t)
`−β

2 (1 + s)1+ β−`
2 +(`−1)(n2 +k)+(1−`)(n2 +k−1)‖|u(s, ·)|p‖Ḣk−1 ds.

As before we may estimate

‖|u(s, ·)|p‖L1 = ‖u(s, ·)‖pLp . ‖u(s, ·)‖p
Ḣκ1

. ‖u‖pX(T )

{
(1 + s)(`−1)n(p−1) if κ1 ≤ k − 1

(1 + s)p(`−1)(n2 +k−1) if k − 1 < κ1 < k

with κ1 = n
(

1
2 −

1
p

)
and∫ t

0

(1 + s)1+ β−`
2 +(`−1)(n2 +k)‖|u(s, ·)|p‖L1 ds . ‖u‖pX(T )

for p > 1 + 2
n(1−`) and β < `+ n(1− `) + 2k(1− `).

Using Lemma 5.1 for k − 1 < k̃ < n
2 < k it follows

‖u(s, ·)‖L∞ . ‖u(s, ·)‖Ḣk̃ + ‖u(s, ·)‖Ḣk
. ‖u(s, ·)‖(1−θ)

Ḣk−1
‖u(s, ·)‖θ

Ḣk

. (1 + s)(`−1)(n2 +k−1)+θ[ `−β2 +(1−`)(n2 +k−1)]‖u‖X(T ),

with θ = k̃ − k + 1, and we may estimate

‖|u(s, ·)|p‖Ḣk−1 . ‖u(s, ·)‖Ḣk−1‖u(s, ·)‖p−1
L∞

. (1 + s)(`−1)(n2 +k−1)p+θ[ `−β2 +(1−`)(n2 +k−1)](p−1)‖u‖pX(T ).

If we choose k̃ = n
2 − ε0, with ε0 sufficiently small, then θ = n(1−`)

2 − ε0 and we
obtain ∫ t

0

(1 + s)
β+`

2 ‖|u(s, ·)|p‖Ḣk−1ds . ‖u‖pX(T )

for p > 1 + 2
n(1−`) , hence

‖Fu(t, ·)‖Ḣk . (1 + t)
`−β

2 ‖u‖pX(T ).

Here we remark that k = 1 + n`
2 , θ < 1,

`+
(β − `)

2
(1− θ(p− 1))+(`−1)

(n
2

+ k − 1
)

+(θ−1)(1−`)
(n

2
+ k − 1

)
(p−1) < −1

and θ(p− 1) > 1 for p > 1 + 2
n(1−`) .

The case k̄ = k − 1, i.e., β = `+ n(1− `) + 2(k − 1)(1− `):
In this case one may conclude that

‖Fu(t, ·)‖L2 . (1 + t)
n
2 (`−1)‖u‖pX(T ),

‖Fu(t, ·)‖Ḣk . (1 + t)
`−β

2 ‖u‖pX(T ),



18 MARCELO REMPEL EBERT AND JORGE MARQUES

and

‖Fu(t, ·)‖Ḣk̄ . (1 + t)
`−β

2 (ln(e+ t))
1
2 ‖u‖pX(T )

for p > 1 + 2
n(1−`) .

�

5.3. The proof of Theorem 2.3.

Proof. (Theorem 2.3) Let n = 3 and ` ∈
(

2
3 , 1
)
. We consider r1, r2 satisfying

r1 >
2(3`− 1)

1− `
, 2 < r2 <

6

2κ(r1)− 1

with κ(r1) = 3
(

1
2 −

1
r1

)
. If `+ 6(1− `)

(
1− 1

r1

)
≤ β < 2− `+ 3(1− `)(1 + `) we

define the following space

X(T )
.
= C([0,∞), Hκ(r1)(R3) ∩ Ḣκ(r1)−1,r2(R3)),

equipped with the norm

‖u‖X(T )
.
= sup
t∈[0,T ]

(
(1 + t)(1−`) 3

2

(
‖u(t, ·)‖L2 + (1 + t)(1−`)κ(r1)‖u(t, ·)‖Ḣκ(r1)

))
+ sup
t∈[0,T ]

(
(1 + t)

(1−`)
(

3
(

1− 1
r2

)
+κ(r1)−1

)
‖u(t, ·)‖Ḣκ(r1)−1,r2

)
.

Taking into account the proof of Theorem 2.2, we can prove that

‖Fu(t, ·)‖L2 . (1 + t)
3
2 (`−1)‖u‖pX(T ).

For

β > `+ 6(1− `)
(

1− 1

r2

)
+ 2(κ(r1)− 1)(1− `)

applying Proposition 4.1 we obtain

‖Fu(t, ·)‖Ḣκ(r1)−1,r2 .
∫ t

0

(1 + s)(1 + t)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

)
‖|u(s, ·)|p‖L1 ds

+

∫ t

0

(1 + t)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

)
(1 + s)1+

3(1−`)
2 ‖|u(s, ·)|p‖L2 ds.

We have

1 +
r1(2− κ(r1))

3
≤ r1

2
⇐⇒ r1 ≥ 6.

But r1 >
2(3`−1)

1−` > 6 for ` > 2
3 . Hence, the assumption that p < 1 + r1(2−κ(r1))

3

implies κ(2p) ≤ κ(r1) and using the fractional Sobolev embedding we get

‖|u(s, ·)|p‖Lj = ‖u(s, ·)‖pLjp . ‖u(s, ·)‖p
Ḣκ(jp)

. (1 + s)3(`−1)(p− 1
j )‖u‖pX(T ), j = 1, 2.
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Hence

‖Fu(t, ·)‖Ḣκ(r1)−1,r2

. (1 + t)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

) ∫ t

0

(1 + s)1+3(`−1)(p−1)ds‖u‖pX(T )

+ (1 + t)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

) ∫ t

0

(1 + s)1+
3(1−`)

2 +3(`−1)(p− 1
2 )ds‖u‖pX(T )

. (1 + t)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

)
‖u‖pX(T ),

for p > 1 + 2
3(1−`) . Then applying again Proposition 4.1,

‖Fu(t, ·)‖Ḣκ(r1) .
∫ t

0

(1 + s)(1 + t)(`−1)( 3
2 +κ(r1))‖|u(s, ·)|p‖L1 ds

+

∫ t

0

(1 + t)(`−1)( 3
2 +κ(r1))(1 + s)1+(1−`)( 3

2 +κ(r1)−1)‖|u(s, ·)|p‖Ḣκ(r1)−1 ds.

Using Proposition 5.2 we may estimate

(36) ‖|u(s, ·)|p‖Ḣκ(r1)−1 . ‖u(s, ·)‖Ḣκ(r1)−1,r2 ‖u(s, ·)‖p−1
Lr1

with r1 e r2 satisfying
p− 1

r1
+

1

r2
=

1

2
. In the admissible range of r2 we claim that

p is bounded above, i.e.,

p = 1 + r1

(
1

2
− 1

r2

)
< 1 +

r1(2− κ(r1))

3
.

Using the fractional Sobolev embedding and the definition of u ∈ X(T ) we obtain

(37) ‖u(s, ·)‖Lr1 . ‖u(s, ·)‖Ḣκ(r1) . (1 + s)(`−1)( 3
2 +κ(r1))‖u‖X(T );

(38) ‖u(s, ·)‖Ḣκ(r1)−1,r2 . (1 + s)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

)
‖u‖X(T ).

Therefore from (36), (37) and (38) it follows that

‖|u(s, ·)|p‖Ḣκ(r1)−1 . (1 + s)
(`−1)

(
3
(

1− 1
r2

)
+κ(r1)−1

)
+(`−1)( 3

2 +κ(r1))(p−1)‖u‖pX(T ),

so that

(1 + s)1+(1−`)( 3
2 +κ(r1)−1)‖|u(s, ·)|p‖Ḣκ(r1)−1 .

. (1 + s)
1+(`−1)3

(
1
2−

1
r2

)
+(`−1)( 3

2 +κ(r1))(p−1)‖u‖pX(T )

. (1 + s)
1+(`−1)

3(p−1)
r1

+3(`−1)
(

1− 1
r1

)
(p−1)‖u‖pX(T ).

Finally, we conclude that

‖Fu(t, ·)‖Ḣκ(r1) .
∫ t

0

(1 + t)(`−1)( 3
2 +κ(r1))(1 + s)1+3(`−1)(p−1) ds‖u‖pX(T )

. (1 + t)(`−1)( 3
2 +κ(r1))‖u‖pX(T )

for 1 + 2
3(1−`) < p < 1 + r1(2−κ(r1))

3 .

�
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5.4. The proof of Theorem 2.1.

Proof. (Theorem 2.1) By applying the change of variable

v(τ, x) = u(t, x), 1 + τ =
(1 + t)1−`

1− `
,

the Cauchy problem (1) takes the form

(39)


vττ −∆v + µ

1+τ vτ = g(v), τ ≥ s, x ∈ Rn,

v(s, x) = 0, x ∈ Rn,

vτ (s, x) = u1(x), x ∈ Rn,

with s = `
1−` , g(v) = [(1− `)(1 + τ)]

2`
1−` |v|p and

µ =
β − `
1− `

.

We enunciate Corollary 2 from [5], which will be useful in the proof of the
Theorem 2.1. There was introduced the following notation: For any 1 ≤ r ≤ q ≤ ∞,
let be

d(r, q) =

{ n
r −

n−1
2 −

1
q , if r ≤ q′

1
r + n−1

2 −
n
q , if r ≥ q′.

Corollary 5.1. (see [5]) Let µ ≥ 2. Let n = 2 and 2 < q ≤ q], or n = 3 and

q ∈ (1, q]] or n ≥ 4 and 2(n−1)
n+1 ≤ q ≤ q]. Then there exists r2 ∈ (1,min{q, q′}] such

that d(r2, q) = 1 and the solution to (39), with an arbitrary parameter s and g ≡ 0,
verifies the following (L1 ∩ Lr2)− Lq decay estimate

||v(τ, ·)||Lq . (1 + s)(1 + τ)−n(1− 1
q )
(
||u1||L1 + (1 + s)

n−1
2 −

1
q ||u1||Lr2

)
if µ > n+ 1− 2

q
, and for any ε > 0 verifies the (L1 ∩ Lr2)− Lq estimate

||v(τ, ·)||Lq . (1 + s)
µ
2−ε(1 + τ)ε−(n−1)( 1

2−
1
q )−µ2

(
(1 + s)

1
q−

n−1
2 ||u1||L1 + ||u1||Lr2

)
if µ ≤ n+ 1− 2

q
.

Remark 5.1. The condition q ≤ q] is equivalent to d(q′, q) = n
q′ −

n−1
2 −

1
q ≤ 1.

It is enough to prove the global existence of small data solutions to (39). We
define the space

X(T )
.
= C([0,∞), Lpc(Rn) ∩ Lq](Rn)),

equipped with the norm

‖v‖X(T )
.
= sup
τ∈[0,T ]

{
(1 + τ)n(1− 1

pc
)‖v(τ, ·)‖Lpc + (1 + τ)

n
(

1− 1
q]

)
‖v(τ, ·)‖Lq]

}
if µ > n+ 1− 2

q]
and,

‖v‖X(T )
.
= sup

τ∈[0,T ]

{
(1 + τ)n(1− 1

pc
)‖v(τ, ·)‖Lpc + (1 + τ)n(1− 1

q̄ )‖v(τ, ·)‖Lq̄

+ (1 + τ)
(n−1)

(
1
2−

1
q]

)
+µ

2−ε‖v(τ, ·)‖Lq]
}
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if n+ 1− 2
q̄ < µ ≤ n+ 1− 2

q]
and,

‖v‖X(T )
.
= sup

τ∈[0,T ]

{
(1 + τ)n(1− 1

pc
)‖v(τ, ·)‖Lpc + (1 + τ)(n−1)( 1

2−
1
q̄ )+µ

2−ε‖v(τ, ·)‖Lq̄

+ (1 + τ)
(n−1)

(
1
2−

1
q]

)
+µ

2−ε‖v(τ, ·)‖Lq]
}

if µ = n+ 1− 2
q̄ .

For any v ∈ X, we define the operator P by

P : v ∈ X(T )→ Pv(τ, x) := v0(τ, x) + Fv(τ, x),

where v0(τ, x) is the solution to (39) with g ≡ 0 and

Fv(τ, x) =

∫ τ

0

K(τ, s, x) ∗(x) [(1− `)(1 + s)]
2`

1−` |v|p ds,

with K(τ, s, x)∗(x)h(v) is the solution to (39) with g ≡ 0 and vτ (s, x) ≡ h(v). Then
we prove the estimates

‖Pv‖X ≤ C ‖u1‖D + C1(t)‖v‖pX ,

‖Pu− Pv‖X ≤ C2(t)‖u− v‖X
(
‖u‖p−1

X + ‖v‖p−1
X

)
.

By Corollary 5.1, if µ ≥ 2, then v0 ∈ X(T ) and it satisfies

‖v0‖X ≤ C ‖u1‖D.

Let us prove the desire estimate for ‖Fv(τ, ·)‖X . One may follow the steps of the
proof of ‖Fv(τ, ·)‖X to conclude the Lipschitz property.
First, if µ > n+ 1− 2

q]
applying Corollary 5.1 we have

‖Fv(τ, ·)‖Lq .
∫ τ

0

(1+s)1+ 2`
1−` (1+τ)−n(1− 1

q )
(
‖|v(s, ·)|p‖L1 + (1 + s)

n−1
2 −

1
q ‖|v(s, ·)|p‖Lr(q)

)
ds

with r(q) ∈ [1, 2[ given by n
r(q) = 1

2 + n
2 + 1

q , for all pc ≤ q ≤ q]. Taking into account

that v ∈ X(T ), thanks to r(q])pc < q] we may estimate

‖|v(s, ·)|p‖Lr(q) = ‖v(s, ·)‖p
Lr(q)p

. (1 + s)−n(1− 1
pr(q) )p‖v‖pX(T )

. (1 + s)−n(p− 1
r(q) )‖v‖pX(T )

for pc ≤ q ≤ q] and pc < p ≤ q]
r(q])

. Therefore, if µ > n+ 1− 2
q]

we have

‖Fv(τ, ·)‖Lq . (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`−n(p−1)ds‖v‖pX(T )

+ (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`−n(p− 1

r(q) )(1 + s)
n−1

2 −
1
q ds‖v‖pX(T )

. (1 + τ)−n(1− 1
q )‖v‖pX(T )

for pc ≤ q ≤ q] and p > 1 + 2
n(1−`) .

Then, if n+ 1− 2
q̄ < µ ≤ n+ 1− 2

q]
, applying again Corollary 5.1 we may estimate

‖Fv(τ, ·)‖Lq . (1+τ)−n(1− 1
q )
∫ τ

0

(1+s)1+ 2`
1−`

(
‖|v(s, ·)|p‖L1 + (1 + s)

n−1
2 −

1
q ‖|v(s, ·)|p‖Lr(q)

)
ds
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with n
r(q) = 1

2 + n
2 + 1

q , for pc ≤ q < q̄. We may estimate

‖|v(s, ·)|p‖Lp = ‖v(s, ·)‖pLp . ‖v(s, ·)‖(1−θ)pLpc ‖v(s, ·)‖θp
Lq]

. (1 + s)
−n(1− 1

pc
)(1−θ)p+

(
ε−(n−1)

(
1
2−

1
q]

)
−µ2

)
pθ‖v‖pX(T )

. (1 + s)−n(1− 1
pc

)p‖v‖pX(T ),

thanks to[
ε− (n− 1)

(
1

2
− 1

q]

)
− µ

2
+ n

(
1− 1

pc

)]
θp ≤

[
εθ + (1− n)

(
1

pc
− 1

p

)]
p ≤ 0

for ε > 0 sufficiently small and θ =
(

1
pc
− 1

p

)
/
(

1
pc
− 1

q]

)
. Moreover, thanks to

r(q)pc < r(q̄)pc = q̄ we may estimate

‖|v(s, ·)|p‖Lr(q) = ‖v(s, ·)‖p
Lr(q)p

. ‖v(s, ·)‖(1−θ)p
Lr(q)pc

‖v(s, ·)‖θp
Lr(q̄)p

. (1 + s)−n(1− 1
r(q)pc

)(1−θ)p+(ε−(n−1)( 1
2−

1
r(q̄)p )−µ2 )pθ‖v‖pX(T ),

for all pc ≤ q < q̄, with θ =
(

1
r(q)pc

− 1
r(q)p

)
/
(

1
r(q)pc

− 1
r(q̄)p

)
. Let

γ = −n
(

1− 1

r(q)pc

)
p+

(
ε− (n− 1)

(
1

2
− 1

r(q̄)p

)
− µ

2
+ n

(
1− 1

r(q)pc

))
pθ

≤ −np+
n

r(q)
+

(
ε− (n− 1)

2
− 1

r(q̄)p
− n+ 1

2
+

1

q̄
+ n

)
pθ

≤ −np+
n

r(q)
+

(
1

r(q̄)pc
− 1

r(q̄)p

)
pθ + εpθ

≤ −np+
n

r(q)
+

(
1

r(q̄)

(
1

pc
− 1

p

))
p+ εpθ

≤ −np
(

1− 1

pc

)
− np

pc
+

n

r(q)
+

p

pc
− 1 + εpθ.

≤ −np
(

1− 1

pc

)
− n

(
1− 1

r(q)

)
+ (n− 1)

(
1− p

pc

)
+ εpθ.

Therefore, if n+ 1− 2
q̄ < µ ≤ n+ 1− 2

q]
we conclude that

‖Fv(t, ·)‖Lq . (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`−n(1− 1

pc
)pds‖v‖pX(T )

+ (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`+n−1

2 −
1
q+γds‖v‖pX(T )

. (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`−n(1− 1

pc
)pds‖v‖pX(T )

+ (1 + τ)−n(1− 1
q )
∫ τ

0

(1 + s)1+ 2`
1−`−n(1− 1

pc
)p+εpθds‖v‖pX(T )

. (1 + τ)−n(1− 1
q )‖v‖pX(T ),

for pc ≤ q < q̄ and

p >
2

n(1− `)
pc

pc − 1
= 1 +

2

n(1− `)
.
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Now, if µ = n+ 1− 2
q̄ , applying again Corollary 5.1, we may estimate ‖Fv(τ, ·)‖Lpc

as before, whereas for q = q̄ or q = q]

‖Fv(τ, ·)‖Lq . (1 + τ)ε−(n−1)( 1
2−

1
q )−µ2

×
∫ τ

0

(1 + s)
2`

1−`+µ
2−ε

(
(1 + s)−

n−1
2 + 1

q ‖|v(s, ·)|p‖L1 + ‖|v(s, ·)|p‖Lr(q)
)
ds

. (1 + τ)ε−(n−1)( 1
2−

1
q )−µ2

×
∫ τ

0

(1 + s)
2`

1−`+1−ε‖|v(s, ·)|p‖L1 + (1 + s)
2`

1−`+µ
2−ε‖|v(s, ·)|p‖Lr(q)ds,

for any ε > 0, with n
r(q) = 1

2 + n
2 + 1

q .

Taking into account that u ∈ X(T ), as before, we may estimate

‖|v(s, ·)|p‖L1 . (1 + s)−n(1− 1
pc

)p‖v‖pX(T )

and thanks to r(q̄)pc ≤ r(q])pc < q](see Remark 2.1), we may estimate

‖|v(s, ·)|p‖Lr(q) = ‖v(s, ·)‖p
Lpr(q)

. (1 + s)(ε−(n−1)( 1
2−

1
pr(q) )−

µ
2 )p‖v‖pX(T )

for any ε > 0 and pc < p ≤ q]
r(q])

.

We may write

2`

1− `
+
µ

2
− ε+

(
ε− (n− 1)

(
1

2
− 1

r(q)p

)
− µ

2

)
p

= 1 +
2`

1− `
+ ε(p− 1) + n− 1

r(q̄)
− (n− 1 + µ)

p

2
+ γ,

with

γ =
µ

2
− 1 + n

(
1

r(q)
− 1

)
+

1

r(q̄)
− 1

r(q)
.

For µ = n+ 1− 2
q̄ and q = q̄ we have that γ = 0, whereas for q = q] we have

γ =
µ

2
− 1 + n

(
1

r(q])
− 1

)
+

1

r(q̄)
− 1

r(q])

=
(n+ 1)

2
− 1

q̄
− 1 +

(1− n)

2
+

1

q]
+

1

n

(
1

q̄
− 1

q]

)
=

(
1

n
− 1

)(
1

q̄
− 1

q]

)
< 0.

We conclude that for µ = n+ 1− 2
q̄ and q = q̄ or q = q]

‖Fv(τ, ·)‖Lq . (1 + τ)ε−(n−1)( 1
2−

1
q )−µ2 ‖v‖pX(T )

×
∫ τ

0

(1 + s)1+ 2`
1−`+ε(p−1)+n− 1

r(q̄)
−(n−1+µ) p2 +γds

. (1 + τ)ε−(n−1)( 1
2−

1
q )−µ2 ‖v‖pX(T ),

for any ε > 0, p > pc = 1 + 2
n(1−`) and

1 +
2`

1− `
+ ε(p− 1) + n− 1

r(q̄)
− (n− 1 + µ)

p

2
< −1
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i.e.

(n− 1 + µ)
pc
2
≥ 2

1− `
+ n− 1

r(q̄)

is equivalent to

µ ≥ n+ 1− 2

pcr(q̄)
= n+ 1− 2

q̄
.

Moreover, for n+ 1− 2
q̄ < µ ≤ n+ 1− 2

q]
, we have

‖Fv(τ, ·)‖Lq] . (1 + τ)
ε−(n−1)

(
1
2
− 1
q]

)
−µ

2

×
∫ τ

0

(1 + s)
2`

1−`+
µ
2
−ε
(
(1 + s)

−n−1
2

+ 1
q] ‖|v(s, ·)|p‖L1 + ‖|v(s, ·)|p‖

L
r(q])

)
ds

. (1 + τ)
ε−(n−1)

(
1
2
− 1
q]

)
−µ

2

×
∫ τ

0

(1 + s)
2`

1−`+1−ε‖|v(s, ·)|p‖L1 + (1 + s)
2`

1−`+
µ
2
−ε‖|v(s, ·)|p‖

L
r(q])ds

for any ε > 0, with n
r(q])

= 1
2 + n

2 + 1
q]

.

If n+ 1− 2
pcr(q])

< µ ≤ n+ 1− 2
q]

we may estimate

‖|v(s, ·)|p‖
Lr(q])

. (1 + s)

(
ε−(n−1)

(
1
2−

1
pr(q])

)
−µ2

)
p‖v‖pX(T ),

hence

(1 + s)
2`

1−`+µ
2−ε‖|v(s, ·)|p‖

Lr(q])
≤ (1 + s)

2`
1−`+ε(p−1)−µ(p−1)

2 −(n−1)
(

1
2−

1
pr(q])

)
p

≤ (1 + s)
2`

1−`−n(p−1)+1+ε(p−1)+γ ≤ (1 + s)−1

for ε > 0 sufficiently small and

pc < p ≤ 1 +

(
1

r(q])
− 1

q]

)
pcr(q]) = 1 + pc −

pcr(q])

q]

thanks to

γ =
p− 1

pcr(q])
+

1

q]
− 1

r(q])
≤ 0.

Finally, if n+ 1− 2
q̄ < µ ≤ n+ 1− 2

pcr(q])
we may estimate for pc < p ≤ q]

r(q])

‖|v(s, ·)|p‖
Lr(q])

= ‖v(s, ·)‖p
Lpr(q])

. (1 + s)

(
ε−(n−1)

(
1
2−

1
pr(q])

)
−µ2

)
p‖v‖pX(T )

for any ε > 0.
Now we may write

2`

1− `
+
µ

2
− ε+

(
ε− (n− 1)

(
1

2
− 1

r(q])p

)
− µ

2

)
p

= 1 +
2`

1− `
+ ε(p− 1) + n− 1

r(q̄)
− (n− 1 + µ)

p

2
+ γ,

with

γ =
µ

2
− 1 + n

(
1

r(q])
− 1

)
+

1

r(q̄)
− 1

r(q])
.
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It remains to prove that γ ≤ 0. Indeed, for µ ≤ n+ 1− 2
pcr(q])

and

1
q]
≤ 1

n−1

(
n

pcr(q])
− 1

q̄

)
(see Remark 2.4) we have

γ =
µ

2
− 1 + n

(
1

r(q])
− 1

)
+

1

r(q̄)
− 1

r(q])

=
µ

2
− 1 +

1− n
2

+
1

q]
+

1

n

(
1

q̄
− 1

q]

)
≤ µ

2
− 1 + n

2
+

1

pcr(q])
≤ 0.

Therefore, if n+ 1− 2
q̄ < µ ≤ n+ 1− 2

q]
we have proved that

‖Fv(s, ·)‖Lq] . (1 + τ)
ε−(n−1)

(
1
2−

1
q]

)
−µ2 ‖v‖pX(T ),

for any ε > 0 sufficiently small and p > pc = 1 + 2
n(1−`) . �

Appendix

In the Appendix we list some notations used through the paper and results
of Harmonic Analysis which are important tools for proving results on the global
existence of small data solutions for semi-linear models with power non-linearities.
Through this paper, we use the following.

For s ≥ 0, we denote by |D|sf = F−1(|ξ|sf̂) and 〈D〉sf = F−1(〈ξ〉sf̂), with
〈ξ〉s = (1 + |ξ|2)

s
2 .

For any q ∈ [1,∞], we denote by Lq(Rn) the usual Lebesgue space over Rn. Let
s ∈ R and 1 < p <∞. Then

Hs,p(Rn) = {u ∈ S ′(Rn) : ‖〈D〉su‖Lp(Rn) = ‖u‖Hsp(Rn) <∞},

Ḣs,p(Rn) = {u ∈ Z ′(Rn) : ‖|D|su‖Lp(Rn) = ‖u‖Ḣsp(Rn) <∞}

are called Bessel and Riesz potential spaces, respectively. If p = 2, then we use the
notations Hs(Rn) and Ḣs(Rn), respectively. In the definition of the Riesz potential
spaces we use the space of distributions Z ′(Rn). This space of distributions can be
identified with the factor space S ′/P, where S ′ denotes the dual of Schwartz space
and P denotes the set of all polynomials.
We recall that Hs,q(Rn) = W s,q(Rn), the usual Sobolev space, for any q ∈ (1,∞)
and s ∈ N.
The following inequality can be found in [13], Part 1, Theorem 9.3.

Proposition 5.1 (Fractional Gagliardo-Nirenberg inequality). Let 1 < p, p0, p1 <
∞, σ > 0 and s ∈ [0, σ). Then it holds the following fractional Gagliardo-Nirenberg

inequality for all u ∈ Lp0(Rn) ∩ Ḣσ,p1(Rn):

‖u‖Ḣs,p . ‖u‖
1−θ
Lp0 ‖u‖θḢσ,p1

,

where θ = θs,σ(p, p0, p1) =
1
p0
− 1
p+ s

n
1
p0
− 1
p1

+ σ
n

and s
σ ≤ θ ≤ 1 .

In the following the symbol dse denotes the smallest integer greater than or equal
to s. We present here two results for fractional powers (for instance, see [22] and
[23]):
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Proposition 5.2. Let f(u) = |u|p or f(u) = |u|p−1u, with p > max{1, dse} and
1 < r, r1, r2 <∞ satisfying

1

r
=
p− 1

r1
+

1

r2
.

Then the following estimate holds:

‖|D|sf(u)‖Lr ≤ C‖u‖p−1
Lr1 ‖|D|

su‖Lr2 ,

for any u ∈ Lr1 ∩ Ḣs,r2 .

Corollary 5.2. Let f(u) = |u|p or f(u) = |u|p−1u, with p > max{1, s} and u ∈
Hs,m ∩ L∞, 1 < m <∞. Then the following estimate holds:

‖f(u)‖Ḣs,m ≤ C‖u‖Ḣs,m‖u‖
p−1
L∞ .

We refer to [6] for the nex result:

Lemma 5.1. Let 0 < 2s1 < n < 2s2. Then for any function f ∈ Ḣs1 ∩ Ḣs2 one
has

‖f‖∞ . ‖f‖Ḣs1 + ‖f‖Ḣs2 .

The next result combine in some sense some familiar results as Leibniz rule for
the product of two function and Hölder’s inequality for derivatives of fractional
order (Theorem 7.6.1 in [19]):

Proposition 5.3. Let us assume s > 0 and 1 ≤ r ≤ ∞, 1 < p1, p2, q1, q2 ≤ ∞
satisfying the relation

1

r
=

1

p1
+

1

p2
=

1

q1
+

1

q2
.

Then the following fractional Leibniz rules hold:

‖ |D|s(u v)‖Lr . ‖ |D|su‖Lp1‖v‖Lp2 + ‖u‖Lq1‖ |D|sv‖Lq2
for any u ∈ Ḣs,p1(Rn) ∩ Lq1(Rn) and v ∈ Ḣs,q2(Rn) ∩ Lp2(Rn),

‖〈D〉s(u v)‖Lr . ‖〈D〉su‖Lp1‖v‖Lp2 + ‖u‖Lq1 ‖〈D〉sv‖Lq2
for any u ∈ Hs,p1(Rn) ∩ Lq1(Rn) and v ∈ Hs,q2(Rn) ∩ Lp2(Rn).
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