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1 | INTRODUCTION

The discussion of mathematical and stochastic models of infectious diseases, which are widely used in epidemiology, is of
interest to every human community. These models provide an understanding of the underlying mechanisms by which epidemic
outbreaks in a given population are addressed. In this way, decisions can be made to control or prevent the epidemic'?. One of
the most widely used mathematical models to describe this type of problem is a random connection model (RCM)=. The RCM
of continuum percolation is a generalization of random geometric graph with two sources of randomness, the point locations and
their links“S. The probability of existence of an edge between two points decreases as the distance between two points increases.
It seems that the RCM was studied for the first time by Gilbert® as a model of communication networks. Gilbert’s model is the
special case of the RCM when the probability of connection is of the Boolean, zero-one type. This geometrically corresponds
to placing discs of radius r > 0 at points and considering connected components formed by clusters of overlapping discsZ. Such
a model is the simplest Boolean model of continuum percolation in percolation theory and stochastic geometry. The most basic
objects studied in stochastic geometry are point processes, where a point process can be represented as a random collection of
points in space. For example, the location of the nodes in the communication networks can be modeled as random, such as a
Poisson point process. Also in the RCM, points are placed in space based on the Poisson point process. For any two points x
and y of the Poisson point process, an edge is added between them with the connection function g(|x — y|), independently of
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all other pairs of points of the Poisson point process where |.| denotes the usual Euclidean distance®. These edge connections
lead to the formation of clusters of points, also known as a soft random geometric graph®. This model is quite general and has
applications in different branches of science. As mentioned, in epidemiology the probability that an infected herd at location
x infects another herd at location y1%!; in telecommunications the probability that two transmitters are non-shaded and can
exchange messages'?; in biology the probability that two cells can sense each other. Also, this and related models have been
studied in the contexts of geometric probability, statistics and physics 3141310 [n physics, continuum percolation is applied to
study the clustering behavior of particles in continuum systems and is relevant to phenomena like conduction in dispersion,
flow in porous media, elastic behavior of composites, solgel transition in polymers, aggregation in colloids, and the structure of
liquid water, to name a few, see the works ZU8P20 and references therein.

Although Gilbert’s focus was the study of communications networks, he noted that a resulting infinite graph could also model
the spread of a contagious disease. Gilbert discussed percolation theory by defining a critical value when an infinitely connected
cluster is formed. In other words, for values larger than the critical value, there is a non-zero probability that the disease spreads,
or that communication is possible to some arbitrarily distant nodes of the network. So, we say that the model has percolated
that is a phase transition has occurred. According to a connectivity and percolation theory are the most important focus of
much research, this paper studies such certain properties of the RCM. In particular, for the RCM with the connection function
g (x) = I{|5)<1}> We study the thermodynamic properties and probability distribution moments of this model at the point where
the percolation occurs. First, we consider concepts such as free energy, internal energy and entropy in the statistical mechanics
of extensive and non-extensive“/?223_Given the relationship between these quantities, we obtain three probability functions in
which the process is similar to the probability function presented by Penrose?%. Also, a detailed description of the relationship
between these three probability functions provides a suitable approximation for the probability function presented by Penrose.
Finally, we discuss the concept of phase transition and percolation by examining some thermodynamic quantities? and the
moments of the probability distribution, including free energy, magnetization, kurtosis, mean and variance. We observed the
fluctuations of the most of the quantities studied for the RCM with the connection function g (x) = Iy}, or the Poisson
plob model in terms of temperature parameter are similar to the fluctuations in the two-dimensional Ising model“®27, These
fluctuations play a central role in our understanding of phase transition. Their behavior near a critical point provides important
information about the underlying many-particle interactions. Perhaps one of the systems studied in statistical physics that can
show phase transition is the Ising model?®, This model can also be used in the area of epidemiology to study the properties that
are responsible for the spread of diseases.

There is substantial interest in these types of results in one class of applications in wireless communications??*". In our set-
ting, the connected components are of interest because they represent long-range or short-range communication. Our technique
introduces functions that calculate the probability of placing an arbitrary point inside a connected component consisting of k
points, whereby the system is able to communicate, under the condition that k tends to infinity. It is worth noting that this is
the favorite discussion in percolation theory, i.e., the existence of unbounded connected components. These reasons give us a
motivation to organize this paper as follows. In Section 2] we describe the RCM and define the thermodynamic quantities used
throughout this paper. The results are discussed in Section 3] In Subsection [3.1] using a comparison of three functions of free
energy, internal energy and entropy, three probability functions are calculated and their relationship to each other is expressed
in detail. Finally in Subsection[3.2} we propose a mathematical method using the ratio of two consecutive probability values to
determine the critical point and the occurrence of the percolation. Also, some thermodynamic quantities are plotted to determine
the phase transition in this model.

2 | THE INTRODUCTION TO A CONTINUUM PERCOLATION MODEL

We consider the RCM of continuum percolation where the points x and y of a homogeneous Poisson point process are connected
with probability g(|x—y|) for a given g. The RCM in Euclidean space R¢ with connection function g can be described as follows:
lety = {x,,X,, ... } be ahomogeneous Poisson point process with parameter p on R? and g : R? — [0, 1] be a measurable and
symmetric function and that 0 < f re §(X)dx < co. The number p is the characteristic parameter of the homogeneous Poisson
point process, which represents the mean number of points in a set of unit volumes. It is called the intensity or density of the
homogeneous Poisson point process=!. Fix x, = 0, the origin, and let # = {x,, x;, ... }. Given two points x; and x ; of n (with
i > j), connect them by an edge with probability g(|x; — x;|) independently of all other pairs of points and the process 7.
This yields the RCM, an undirected random graph G(#) with vertex set #. A component (cluster) of this graph is a maximally
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connected subset of 5. The cluster at the origin, C(0), is the vertex set of the connected component of G which contains the
origin”#, Denote by n[C(0)] the number of points (including 0) in C(0), so that n[C(0)] is a random variable taking values in
{1,2,... }. Let g, (p) denote the probability that C(0) consists of k points, when # has intensity p. That is,

q,(p) = p(n[C(0)] = k); k=1,2,...

For any measurable and bounded set Y on R? and k € {1,2, ... }, Penrose®? proved, in any dimension,

4, (p) = p,(n[C(0)] =k, C(O)CY)
- ,,(k—“/(k—1)!/---/g2 (0,x),....x,_y)
Y Y
X exp{—p/gl (10, %1, ... x }) dyddx, ... dx,_y, (1)

Y

where g, denoted the probability that x, is not isolated in the random graph G and defined by

k

gitxoie)=1- [T (1-stx - x)) @
j=1
and, g,(xy, X, ..., X;), the probability that this random graph is connected, ishs

& (X0, X1, .u s Xy) = 2 H 8&ij H (=g

GeG!,, (i,j)eG (i,))eG

k+1
where the summation is over all connected graphs G|, on points of ¢ and largest cluster of size (k + 1).
Penrose“Z rigorously derived this integral for p,(p) in any dimension d, which this probability can be computed rather hand-
ily in one dimension. But this integral can not be calculated analytically and hence require approximate evaluation in the higher
dimension. Penrose?# then provided an approximation of this probability function in a particular case. He considered the homo-
geneous Poisson process of rate p = y/c, on R? for y > 0, where ¢, = z?/? /T((d /2) + 1) is the volume of the ball of unit
radius in dimension d. In this paper, it is proved that for r = 1 and p = 1, as d — oo with constant y, the following limit relation

is established.

kk—2
(k- 1)!

As mentioned, q,(p) is the cluster distribution. By analogy with the Ising model, we introduce the magnetization function
34135

a(p) = P (») = Yl k=12, 3)

as

M(p, ) =1-Y qpe™;  h20, )
k=0

where h is the external magnetic field. By setting A = 0 in the magnetization function,

M(p,0) = p(n[C(0)] = o).

Using the term by term differentiation, we have

oM (p, h)
e oh = E,[n[CO e 0y<co)] = 2 (0).

1V(p), which is obtained by differentiating the magnetic field M with respect to A, is called the mean cluster size. It is the
analogue of the (isothermal) susceptibility of magnetic systems. Also, the following limit relationship is established for any
N e R.
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. 0NM(p, h)
_1YIN+D - _
=D hg& ohN
More precisely, yV)(p) is the N* moment of the size of the cluster at an arbitrary point of I', discounting infinite clusters. The
free energy F(p, h) is defined by2243¢

E, [n[CON™ I 1e0n<coy] = 2™ (). Q)

Flo.h) = h(1l = o)+ X 240 ™5 h20. ®)
k=1

The second term in the above phrase was first presented by Kasteleyn and Fortuin to regulate a correspondence between values
for percolation and similar values for magnetic systems. If we differentiate the free energy F(p, h) with respect to h, we get

dF(p, h)
oh
The zero-field free energy F(p,0) is a more interesting subject of study. By our definition,

= M(p, h).

F(p.0) = E,InCOT Igopec] = 2 78 9) ™
k=1

= 17V

Grimmett?” discovered that the zero-field free energy or the cluster density coincides with the number of clusters per vertex.
Penrose proved the continuity of the cluster density in p for the case g (x) = I{|y<, 32 Also, he provided upper and lower bounds
the zero-field free energy for this connection function.

3 | RESULTS

As mentioned, the RCM has applications in many sciences that can also be seen as a model for an epidemic spread. Therefore,
the following is investigating the thermodynamic quantities and the phase transition in the critical point of this model and its
similar performance to other mathematical models including the Ising model3%. In this research, case studies run in R-3.1.2.

3.1 | The relationship between free energy, entropy and internal energy

This subsection is devoted to introduce the thermodynamic relations between free energy, entropy and internal energy. We
consider the Helmholtz free energy-? as

F =U-§S, ®)

where U and S are the internal energy and entropy, respectively. Also, § is a positive constant and can be eliminated by the
proper unit. We consider different definitions of these three quantities, i.e., U, S and F in the literature of statistical mechanics
of extensive and non-extensive“’.,

In the first case, we consider

U= Z k pi(p).

k=1
The BG-shannon entropy is

S ==Y, plp) Inp(p). ©)

k=1
We replace the zero-field free energy F(p,0) given in Equation[7)instead of the Helmholtz free energy, F. Thus, Equation[8|can
be written in the following form:

o) [c)

i) = Y kp(p) + B Y pi(p) Inpy(p).
k=1 k

= =1

x| =

©
k=1
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FIGURE 1 The illustration of the functions of p,(y) and p,(y, f).
Putting relationships on one side gives us
< (]
> (3~ k= Plnpo))pilo) = 0.
k=1
Then, under the constraint ) p, = 1, p, is obtained as follows
k=1
1.1 had 1.1
pe=ert ™) Z il (10)

The changes of the function p, in terms of k with the parameter § are shown in Figures[I |and[2 | The interesting point about
the function p, is the existence of the relationship between this function with the approximation function provided by Penrose
in Equation 3] By calculating and evaluating the function p, in Equation[I0} we arrive at the following function, which is very
close to the function presented by Penrose.

1.1 1.1
el-i(; k)/ E k le/_)(; k) y< 1
ﬁk(y9 ﬂ) - l(

eﬁ

L

(kD) .
In Equation for values less than the critical value of the intensity parameter, i.e., y, = 1, we can find f < 2.685 such that the
standard function p, is the good approximation for the function p,(y). On the other hand, the non-standard function p,, for values
greater than this critical value and by removing the first value with very little error, has the same function as the approximation
function provided by Penrose. These behaviors are clearly shown in Figure In this figure, the functions p,(y, f) and p,(y) are
shown with the dashed line and continuous line, respectively. In two cases y = .2, f = .8318 and y = 2, f = .75, the relationship
between these functions is shown in the parts (a) and (b) of this figure. As can be seen in Figure two functions p,(y, f) and
P (p) clearly overlap.

In order to obtain the error rate for this approximation technique, which is actually the difference between the estimated values
and what is estimated, we calculate the mean squares of the error, i.e., M.SE = Zf:l ;) = p;(y, $))?/k. The mean squares
of the error of these two functions are calculated for some values of y and f in Tables[I Jand[2 ] According to Table as the
intensity parameter becomes smaller, the value of the estimation error also becomes smaller so that it eventually tends to zero.
Also in this table, when the value of § decreases, parameter y also decreases in the same direction. But in Table[2 | the value g
that results in the least error, decreases as the intensity parameter increases. That is, for y - oo and f — 0, the mean squared
error tends to zero at infinity.

In the second case, we want to know how the form of the function p, (p) changes if we use the functions given in Equations
and([I2]instead of BG-Shannon entropy and internal energy. Tsallis entropy and g-internal energy or unnormalized g-expectation
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TABLE 1 The MSE for y < 1.

y p MSE
0.9 2.3948 6.7e-05
0.5 1.4334 8.1e-06
0.4 1.22862 2.9¢-06
0.3 1.03066 5.9¢-07
0.2 0.8318 1.3e-08
0.05 0.48878 1.3e-08

TABLE 2 The MSE for y > 1.

y p MSE
1 1.5 2.3e-05
2 0.75 1.3e-06
3 0.5 5.8e-08
4 0.375 2.1e-09
5 0.3 5.7e-11
20 0.075 5.5e-34
value are defined*!, respectively as
1 (o]
Sy = — Qo) = 1), (12)
q k=1
and
U, = ) kp(p). (13)
k=1

U, corresponds to the standard mean value of the quantity k. The value g is an adjustable parameter of non-extensivity namely
entropic index. Tsallis entropy is defined as the measurement of uncertainty and disorder about obtained information in a sys-
tem*2, In other words, the defined entropy is main core of non-extensive statistical mechanics. Tsallis entropy also illustrates
long-memory and long-range interaction of the systems. By setting # = 1 in Equation 8] we have

— — k q _ __— 4_1’
;kpk(m ka Pi(p) q_l(;pk )

or,

Z p®| (2 = @ = Dk (o) 4 (o) )] - 1 =0

o

To find an approximation formula, using the normalized condition ) p, = 1 and the fact that p,(p) > 0, we get
k=1

-1 : 1 (g—1 :
Pk = [1@—_1);(]””/ Z l==m" - (14)

Here, the index q takes values less than 1 because p(l) > 0. This function is plotted in Figure |2 |for the different values of g,
which is shown in the parts (a), (b), (e) and (f) of thls figure. According to these parts, when the value of ¢ decreases, the range
of values adopted by the function p clearly increases. Now, we compare this function with the function p, in Equation
These functions are plotted in parts (a) and (b) of Figure 2 | for some of the values g and . The mean squared error of these
functions in part (a) with parameters ¢ = —.1 and = 5.4 is equal to 9.9¢ — 05. In the case of ¢ — —o0 and g = 1.36, the mean
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squared error of these functions is 3.1e — 05 which its diagram is seen in part (b) of Figure As can be seen in this figure,
when f tends to 1 and g to —oo, the overlap of these functions relative to each other clearly increases.

In the third case, we consider Tsallis entropy in Equation the g-internal energy in Equation [13[and the unnormalized
g-zero-field free energy as follows

(). (15)

x~I=

o0
k=1

By setting # = 1 in Equation 3]

[c)

1 - 1 <
> o) = ; kp(p)" — ﬁ(; P =1,

k=1
and putting relationships on one side of equality,

[(q — Dk + 1] 1=0.

0
Using the condition of ) p, = 1, we can write

k=1
l o0
2) _ <q 1
pq.k_[(q—n_ l /Zl(q D _
k

]“’ b (16)
(g—Dk+1 = —Dk+1

Since p(Z) > 0, the entropic index g can take values less than 1. The function pf])( is shown in the parts (¢), (d), (e) and (f) of

Figure . 2 | for the different values of ¢g. According to this figure, by decreasing the value of ¢, the range of values accepted by
the function p(z) > 0 clearly increases so that it takes almost only two values of 1 and 0. In the following, we will deal with the
relationship between the function pg and the functions p, and pq . The diagram of the functions p ) and Py, is plotted in parts
(c¢) and (d) of Figure The mean squared error of these functions is obtained 0.0001 for g = —11 and B = 1. These functions
overlap well when g tends to —oo and f to 0. That is, their mean squared error is very close to zero, which is clearly seen in part
(d) of Figure In fact, for these two functions, the following limit relation can be written.

l1m 1p = lim p(z) Vk € R. 17)

Finally, we compare the functions of pfi in Equation |14{and p(z) in Equation The diagram of these functions is drawn in

parts (e) and (f) of Figure The mean squared error of these functions in part (e) of this figure is 8.8e — 05. Whereas, as
shown in part (f) of this figure, when the parameter g tends to 1, the value of this error is zero. Hence, we have

hm p(l) = hm pf}(, Vk € R. (18)

3.2 | The fluctuations of the random connection model

Now, we want to discuss a very interesting concept called percolation*3. In the RCM, the percolation probability, i.e., the
probability that there exists an infinite cluster is
w(p) = P(n[C(0)] = ),

and the critical intensity defined as
p. =sup{p : yw(p) =0}

Based on the fundamental theorem presented by Penrose, y.(= pc,;) € (0, 00) and lim,_, , y, = 1 are shown*, Here, we want
to present mathematical and physical analytical methods to find this critical point. Thus, we first obtain this critical point using
the mathematical analytical method. For this purpose, the ratio of two consecutive probabilities p,(y) and p,_ () is

Pk+1(Y)

— o 1k
Ly = e A+ D (19)
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FIGURE 2 The illustration of relationship between the functions of p,, pf;,)( and Py
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The diagram of the function f(y) = lim,_, , p;.,(»)/p,(y) is drawn in Figure As can be seen, the slope of the function varies
around a maximum point. In fact, this maximum point is exactly the same as the critical point y, = 1. We expect that at this
value the model exhibit some kind of critical behavior, but we will not present its more detailed analysis here.

On the other hand, in the physics’ literature, the matter has different states. For instance, gas, liquid, solid, magnetic ordering,
superconducting and superfluid states can exist in different materials. When the matter transits from one state to another state,
the phase transition occurs in the system. In standard statistical physics, the histogram of thermodynamic quantities is often
used to detect the nature of the phase transition and the percolation point. Among these quantities that can be examined are the
magnetization function, the cluster mean, variance, free energy and the kurtosis. The first interesting quantity we consider is the
magnetization function M (y, h) in Equation @] for the approximation function provided by Penrose in the Poisson blob model.
The magnetization versus the intensity parameter, p, is shown in part (a) of Figure | | The magnetization is zero for values
less than the critical value y, = 1, and as the intensity parameter increases, the model magnetization reaches its highest level
of 1 which is shown in this figure. Moreover, as the size of the cluster increases, the magnetization near the critical parameter
suddenly increases. The interesting point about this model is that it shows well the behavior similar to the phase change of
magnetic systems from the paramagnetic phase to the ferromagnetic phase. In fact, these magnetization changes in terms of the
intensity parameter in the Poisson blob model are exactly the same as temperature changes of magnetization in the Ising model.
Also, Figure |4 |shows the changes of spontaneous magnetization against temperature for the two-dimensional Ising model of
different sizes?*. Of course, as mentioned, the zero of the magnetization function is equivalent to the fact that for y < y, there is
no possibility of percolation, and this means that an infinite cluster is not formed“%. In part (b) of Figure|4 | the zero-field free
energy versus intensity parameter is plotted for the Poisson blob model of different sizes. It is observed that the zero-field free
energy for values greater than the intensity parameter approaches zero while at the critical point it is 1/2.

Figure[5_|shows the mean and variance of the cluster size versus intensity parameter for different sizes. As shown in this figure,
peaks in both of these quantities appear in the critical parameter. Also, the peak of these quantities decreases with decreasing
cluster size and gets closer to the intensity parameter axis on the coordinate axis. As shown in Figure |5 | the trend of changes
in the mean and variance quantities is almost the same. According to these explanations, it can be concluded that the intensity
parameter changes, y, are similar to the temperature changes, T, in classical systems. More specifically, we observed that the
mean and variance of the cluster size versus the intensity parameter are equivalent to specific heat and magnetic sensitivity
versus temperature in the 2D classical Ising model with different sizes**

Finally, we plot entropy in Equation [0 and a quantity called kurtosis versus intensity parameter for the Poisson blob model
of different sizes in Figure The kurtosis is defined in statistical physics by B = <S—“ where < s, > and < s, > denote
the second and fourth moments of the cluster size. Due to the sensitivity of kurt051s and entropy quantities, these quantities
change significantly when the intensity parameter and the cluster size change. Therefore, the kurtosis and entropy can be used
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FIGURE 4 The magnetization (a) and zero-field free energy (b) versus the intensity parameter in Poisson blob model with
different sizes.
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FIGURE S The mean (a) and variance (b) of the cluster size versus the intensity parameter in Poisson blob model with different
sizes.

to accurately determine the critical intensity value. It also seems that the kurtosis coefficient has a similar role to the Binder
ratio in statistical physics to accurately determine the phase transition points in the numerical simulation of different models*>.
Here, the minimum value of the kurtosis coefficient occurs at the critical point.

4 | CONCLUSIONS

We study the connected components of RCM on the Poisson point process, which is obtained by connecting points with prob-
abilities that depend on their relative position. In this paper, we use the relationships between free energy, internal energy, and
entropy to obtain the probability functions that are closely related to the probability function provided by Penrose. The relation-
ship between these calculated probability functions is shown precisely in the figure (2 ). Moreover, in the second part of the
results, we present mathematical and physical analytical methods to show the phase transition at the critical point. That is, by
providing a limit function, the critical point occurs exactly at the root of the first-order derivative. Finally, using the approxima-
tion function provided by Penrose in the Poisson blob model, we calculated and investigated the statistical and thermodynamic
quantities such as the magnetization function, zero-field free energy and etc.
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FIGURE 6 The entropy and kurtosis versus the intensity parameter in Poisson blob model with different sizes.
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