References
Adams ES, Atkinson L (2008) Queen fecundity and reproductive skew in the termite Nasutitermes corniger. Insectes Soc 55:28–36. https://doi.org/10.1007/s00040-007-0970-5
Adams HA, Southey BR, Robinson GE, Rodriguez-zas SL (2008) Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees. 15:1–15. https://doi.org/10.1186/1471-2164-9-503
Adeoye O, Olawumi J, Opeyemi A, Christiania O (2018) Review on the role of glutathione on oxidative stress and infertility. J Bras Reprod Assist 22:61–66. https://doi.org/10.5935/1518-0557.20180003
Ahmed S, Passos JF, Birket MJ, et al (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053. https://doi.org/10.1242/jcs.019372
Allainé D, Pontier D, Gaillard JM, et al (1987) The relationship between fecundity and adult body weight in Homeotherms. Oecologia 73:478–480. https://doi.org/10.1007/BF00385268
Alonso-Alvarez C, Bertrand S, Devevey G, et al (2004) Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett 7:363–368. https://doi.org/10.1111/j.1461-0248.2004.00594.x
Anchelin M, Murcia L, Alcaraz-Pérez F, et al (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One 6:. https://doi.org/10.1371/journal.pone.0016955
Athena Aktipis C, Boddy AM, Jansen G, et al (2015) Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc B Biol Sci 370:. https://doi.org/10.1098/rstb.2014.0219
Bauch C, Becker PH, Verhulst S (2013) Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proc R Soc B Biol Sci 280:. https://doi.org/10.1098/rspb.2012.2540
Beaulieu M, Reichert S, Maho Y Le, et al (2011) Oxidative status and telomere length in a long facing a costly reproductive event. Funct Ecol 25:577–585. https://doi.org/10.1111/j.l365-2435.2010.01825.x
Begna D, Han B, Feng M, et al (2012) Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: A deep insight into caste pathway decisions. J Proteome Res 11:1317–1329. https://doi.org/10.1021/pr200974a
Bize P, Devevey G, Monaghan P, et al (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593. https://doi.org/10.1890/07-1135.1
Blackburn EH (1991) Structure and function of telomeres. Nature
Blackburn EH (2005) Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862. https://doi.org/10.1016/j.febslet.2004.11.036
Blackburn EH (1990) Minireview Telomeres : Structure and synthesis. J Biol Chem 265:5919–5921
Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649. https://doi.org/10.1038/nchembio.2007.38
Bodenheimer FS, Nerya AB (1937) One year studies on the biology of the honeybee in Palestine. Annu Appl Biol 24:385–403
Boswell GP, Britton RF, Franks NF (1998) Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc R Soc B Biol Sci 265:
Brueland H (1995) Florida book of insect records. Lowest lifetime fecundity. In: Book of insect records. pp 41–43
Capkova Frydrychova R, Mason JM, Biessmann H (2009) Regulation of telomere length in Drosophila. Cytogenet Genome Res 122:356–364
Caulin AF, Maley CC (2011) Peto’s Paradox: Evolution’s prescription for cancer prevention. Trends Ecol Evol 26:175–182. https://doi.org/10.1016/j.tree.2011.01.002
Chapuisat M, Keller L (2002) Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc B Biol Sci 269:909–913. https://doi.org/10.1098/rspb.2002.1962
Choudhary B, Karande AK, Raghavan SC (2012) Telomere and telomerase in stem cells: relevance in ageing and disease. Front Biosci 16–30
Colominas-Ciuró R, Santos M, Coria N, Barbosa A (2017) Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study. PLoS One 12:1–15. https://doi.org/10.1371/journal.pone.0177124
Coluzzi E, Leone S, Sgura A (2019) Oxidative stress induces telomere dysfunction and senescence by replication fork arrest. Cells 8:19. https://doi.org/10.3390/cells8010019
Cong Y, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425. https://doi.org/10.1128/MMBR.66.3.407
Corona M, Branchiccela B, Madella S, et al (2019) Decoupling the effects of nutrition, age and behavioral caste on honey bee physiology and immunity. bioRxiv. https://doi.org/10.1101/667931
Costantini D (2018) Meta-analysis reveals that reproductive strategies are associated with sexual differences in oxidative balance across vertebrates. Curr Zool 64:1–11. https://doi.org/10.1093/cz/zox002
Criscuolo F, Pillay N, Zahn S, Schradin C (2020) Seasonal variation in telomere dynamics in African striped mice. Oecologia 194:609–620. https://doi.org/10.1007/s00442-020-04801-x
Davidovic M, Sevo G, Svorcan P, et al (2010) Old age as a privilege of the “selfish ones”. Aging Dis 1:139–46
Dixon L, Kuster R, Rueppell O (2014) Reproduction, social behavior, and aging trajectories in honeybee workers. Age (Omaha) 36:89–101. https://doi.org/10.1007/s11357-013-9546-7
Duffy JE, Morrison CL, Rios R (2000) Multiple Origins of Eusociality among Sponge-Dwelling Shrimps (Synalpheus). Evolution (N Y) 54:503–516
Effron M, Griner L, Benirschke K (1977) Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. J Natl Cancer Inst 59:185–198
Engels W (1990) Social Insects: An evolutionary approach to castes and reproduction. Springer-Verlag, New York
Entringer S, Epel ES, Kumsta R, et al (2011) Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A 108: E513-8. https://doi.org/10.1073/pnas.1107759108
Epel ES, Blackburn EH, Lin J, et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–5. https://doi.org/10.1073/pnas.0407162101
Fabian D, Flatt T (2014) Life History Evolution. Nat Educ Knowl 3:1–13
Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R (2019) Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig 6:. https://doi.org/10.21037/sci.2019.02.04
Flatt T, Partridge L (2018) Horizons in the evolution of aging. BMC Biology 16(1): 1-13. 1–13
Forsyth NR, Elder FFB, Shay JW, Wright WE (2005) Lagomorphs (rabbits, pikas and hares) do not use telomere-directed replicative aging in vitro. Mech Ageing Dev 126:685–691. https://doi.org/10.1016/j.mad.2005.01.003
Francis N, Gregg T, Owen R, et al (2006) Lack of age-associated telomere shortening in long- and short-lived species of sea urchins. FEBS Lett 580:4713–4717. https://doi.org/10.1016/j.febslet.2006.07.049
Geserick C, Tejera A, González-Suárez E, et al (2006) Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-β signaling. Oncogene 25:4310–4319. https://doi.org/10.1038/sj.onc.1209465
Gomes NMV, Ryder OA, Houck ML, et al (2011) Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10:761–768. https://doi.org/10.1111/j.1474-9726.2011.00718.x
Gomes NM V, Shay JW, Wright WE (2010) Telomere Biology in Metazoa. Fed Eur Biochem Soc 584:3741–3751. https://doi.org/10.1016/j.febslet.2010.07.031.
Gotwald W (1995) Army Ants: The Biology of social predation. Cornell University Press, Ithica, NY
Gräff J, Jemielity S, Parker JD, et al (2007) Differential gene expression between adult queens and workers in the ant Lasius niger . Mol Ecol 16:675–683. https://doi.org/10.1111/j.1365-294X.2007.03162.x
Greenberg RA (2005) Telomeres, crisis and cancer. Curr Mol Med 5:213–218. https://doi.org/10.2174/1566524053586590
Gruber H, Schaible R, Ridgway ID, et al (2014) Telomere-independent ageing in the longest-lived non-colonial animal, arctica islandica. Exp Gerontol 51:38–45. https://doi.org/10.1016/j.exger.2013.12.014
Guidi J, Lucente M, Sonino N, Fava GA (2021) Allostatic load and its impact on health: A systematic review. Psychother Psychosom 90:11–27. https://doi.org/10.1159/000510696
Guo N, Parry EM, Li LS, et al (2011) Short telomeres compromise β-cell signaling and survival. PLoS One 6:. https://doi.org/10.1371/journal.pone.0017858
Haendeler J, Dröse S, Büchner N, et al (2009) Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 29:929–935. https://doi.org/10.1161/ATVBAHA.109.185546
Haldane JBS (1941) New Paths in Genetics. London
Hall KY, Hart RW, Benirschke AK, Walford RL (1984) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievalbe life span. Mech Ageing Dev 13:576
Hariharan IK, Wake DB, Wake MH (2016) Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harb Perspect Biol 8:1–17. https://doi.org/10.1101/cshperspect.a019174
Harshman LG, Zera AJ (2006) The cost of reproduction: the devil in the details. Trends Ecol Evol 22:80–86. https://doi.org/10.1016/j.tree.2006.10.008
Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision repair and life span in a number of mammalian species. Proc Natl Acad Sci U S A 71:2169–2173. https://doi.org/10.1073/pnas.71.6.2169
Hartmann A, Heinze J (2003) Lay eggs, live longer: Division of labor and life span in a clonal ant species. Evolution (N Y) 57:2424–2429. https://doi.org/10.1111/j.0014-3820.2003.tb00254.x
Hartmann N, Reichwald K, Lechel A, et al (2009) Telomeres shorten while Tert expression increases during ageing of the short-lived fishNothobranchius furzeri . Mech Ageing Dev 130:290–296. https://doi.org/10.1016/j.mad.2009.01.003
Harvell CD (1994) Biology of invertebrates and social insects. Q Rev Biol 69:155–185
Hatakeyama H, Yamazaki H, Nakamura KI, et al (2016) Telomere attrition and restoration in the normal teleost Oryzias latipes are linked to growth rate and telomerase activity at each life stage. Aging (Albany NY) 8:62–76. https://doi.org/10.18632/aging.100873
Haussmann MF, Winkler DW, Huntington CE, et al (2007) Telomerase activity is maintained throughout the lifespan of long-lived birds. 42:610–618. https://doi.org/10.1016/j.exger.2007.03.004
Heidinger BJ, Blount JD, Boner W, et al (2011) Telomere length in early life predicts lifespan. PNAS 109:1–6. https://doi.org/10.1073/pnas.1113306109
Heinze J, Schrempf A (2012) Terminal investment: Individual reproduction of ant queens increases with age. PLoS One 7:1–4. https://doi.org/10.1371/journal.pone.0035201
Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024. https://doi.org/10.1038/sj.bjc.6603671
Hoekstra LA, S., Schwartz T, Sparkman AM, et al (2020) The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 34:38–54. https://doi.org/10.1111/1365-2435.13450.
Hoelzl F, Smith S, Cornils JS, et al (2016) Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis ). Sci Rep 6:1–9. https://doi.org/10.1038/srep36856
Holt SE, Aisner DL, Shay JW, Wright WE (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci U S A 94:10687–10692. https://doi.org/10.1073/pnas.94.20.10687
Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ (2007) Chronic oxidative stress and telomere shortening. Chemico-biological interactions 169: 136
Hrdličková R, Nehyba J, Bose HR (2012) Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 32:4283–4296. https://doi.org/10.1128/mcb.00550-12
Inward D, Beccaloni G, Eggleton P (2007) Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335. https://doi.org/10.1098/rsbl.2007.0102
Jemielity S, Chapuisat M, Parker JD, Keller L (2005) Long live the queen: studying aging in social insects. Age (Omaha) 27:241–248. https://doi.org/10.1007/s11357-005-2916-z
Jemielity S, Kimura M, Parker KM, et al (2007) Short telomeres in short-lived males: what are the molecular and evolutionary causes? Aging Cell 6: 225–233. https://doi.org/10.1111/j.1474-9726.2007.00279.x
Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Gerontol Geriatr 40: 314–324. https://doi.org/10.1007/s00391-007-0480-0
Jin K (2010) Modern biological theories of aging. Aging Dis 1: 72–74. https://doi.org/10.1016/j.bbi.2008.05.010
Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insectes soc 45:235–246
Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Lett to Nat 389:3–5
Kesäniemi J, Lavrinienko A, Tukalenko E, et al (2019) Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-018-37164-8
Khan Z, Khan MS, Bawazeer S, et al (2022) A comprehensive review on the documented characteristics of four Reticulitermes termites(Rhinotermitidae, Blattodea) of China. Brazilian J Biol 84:e256354. https://doi.org/10.1590/1519-6984.256354
Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–4
Kitsoulis C V., Baxevanis AD, Abatzopoulos TJ (2020) The occurrence of cancer in vertebrates: A mini review. J Biol Res 27:1–12. https://doi.org/10.1186/s40709-020-00119-0
Klapper W, Heidorn K, Kühne K, et al (1998a) Telomerase activity in “immortal” fish. FEBS Lett 434:409–12
Klapper W, Kühne K, Singh KK, et al (1998b) Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 439:143–6
Kocher S, Paxton R (2014) Comparative methods offer powerful insights into social evolution in bees. Apidologie 45:289–305. https://doi.org/10.1007/s13592-014-0268-3
Kohlmeier P, Alleman AR, Libbrecht R, et al (2019) Gene expression is more strongly associated with behavioural specialization than with age or fertility in ant workers. Mol Ecol 28:658–670. https://doi.org/10.1111/mec.14971
Kohlmeier P, Negroni MA, Kever M, et al (2017) Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect. Sci Nat 104:. https://doi.org/10.1007/s00114-017-1452-x
Kong D, Jin Y, Yin Y, et al (2007) Real-time PCR detection of telomerase activity using specific molecular beacon probes. Anal Bioanal Chem 388:699–709. https://doi.org/10.1007/s00216-007-1247-6
Korandová M, Frydrychová RČ (2016) Activity of telomerase and telomeric length in Apis mellifera . Chromosoma 125:405–411. https://doi.org/10.1007/s00412-015-0547-4
Korandová M, Krůček T, Szakosová K, et al (2018) Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila. J Insect Physiol 104:1–8. https://doi.org/10.1016/j.jinsphys.2017.11.002
Korandová M, Krůček T, Vrbová K, Frydrychová RC (2014) Distribution of TTAGG-specific telomerase activity in insects. Chromosome Res 22:495–503
Kotrschal A, Ilmonen P, Penn DJ (2007) Stress impacts telomere dynamics. Biol Lett 3:128–130. https://doi.org/10.1098/rsbl.2006.0594
Koubová J, Čapková Frydrychová R (2021) Telomerase-positive somatic tissues of honeybee queens (Apis mellifera ) display no DNA replication. Cytogenet Genome Res Oct 14:1–6
Koubová J, Jehlík T, Kodrik D, et al (2019) Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris ). Insect Biochem Mol Biol 115:103241
Koubová J, Pangrácová M, Jankásek M, et al (2021a) Long-lived termite kings and queens activate telomerase in somatic organs. Proc R Soc B 288:20210511
Koubová J, Sábová M, Brejcha M, et al (2021b) Seasonality in telomerase activity in relation to cell size , DNA replication , and nutrients in the fat body of Apis mellifera . Sci Rep 11:1–11
Kramer BH, Schaible R (2013) Life span evolution in eusocial workers-A theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system. PLoS One 8:. https://doi.org/10.1371/journal.pone.0061813
Kreider JJ, Pen I, Kramer BH (2021) Antagonistic pleiotropy and the evolution of extraordinary lifespans in eusocial organisms. Evol Lett 5:178–186. https://doi.org/10.1002/evl3.230
Krůček T, Korandová M, Šerý M, et al (2015) Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila. Arch Insect Biochem Physiol 88:235–48. https://doi.org/10.1002/arch.21222
Kuszewska K, Miler K, Rojek W, Woyciechowski M (2017) Honeybee workers with higher reproductive potential live longer lives. Exp Gerontol 98:8–12. https://doi.org/10.1016/j.exger.2017.08.022
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, et al (2017) The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol Biol 17:1–21. https://doi.org/10.1186/s12862-017-0949-4
Lau BWM, Wong AOL, Tsao GSW, et al (2008) Molecular cloning and characterization of the zebrafish (Danio rerio ) telomerase catalytic subunit (telomerase reverse transcriptase, TERT). J Mol Neurosci 34:63–75. https://doi.org/10.1007/s12031-007-0072-x
Law E, Girgis A, Sylvie L, et al (2016) Telomeres and stress: Promising avenues for research in psycho-oncology. Asia-Pacific J Oncol Nurs 3:137–147. https://doi.org/10.4103/2347-5625.182931
Lin J, Epel E, Blackburn E (2012) Telomeres and lifestyle factors: roles in cellular aging. Mutat Res 730:85–9. https://doi.org/10.1016/j.mrfmmm.2011.08.003
Listerman I, Sun J, Gazzaniga S, et al (2013) The major reverse-transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 73:2817–2828. https://doi.org/10.1158/0008-5472.CAN-12-3082.The
Liu L, Trimarchi JR, Smith PJS, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–46. https://doi.org/10.1046/j.1474-9728.2002.00004.x
Lopez-Vaamonde C, Raine NE, Koning JW, et al (2009) Lifetime reproductive success and longevity of queens in an annual social insect. J Evol Biol 22:983–996. https://doi.org/10.1111/j.1420-9101.2009.01706.x
Lucas ER, Keller L (2014) Ageing and somatic maintenance in social insects. Curr Opin Insect Sci 5:31–36. https://doi.org/10.1016/j.cois.2014.09.009
Lucas ER, Keller L (2018) Elevated expression of ageing and immunity genes in queens of the black garden ant. Exp Gerontol 108:92–98. https://doi.org/10.1016/j.exger.2018.03.020
Lucas ER, Romiguier J, Keller L (2017) Gene expression is more strongly influenced by age than caste in the ant Lasius niger . Mol Ecol 26:5058–5073. https://doi.org/10.1111/mec.14256
Ma HM, Liu W, Zhang P, Yuan XY (2012) Human skin fibroblast telomeres are shortened after ultraviolet irradiation. J Int Med Res 40:1871–1877. https://doi.org/10.1177/030006051204000526
Majoe M, Libbrecht R, Foitzik S, Nehring V (2021) Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philos Trans R Soc B Biol Sci 376:. https://doi.org/10.1098/rstb.2019.0735
Mason JM, Randall TA, Frydrychova RC (2016) Telomerase lost ? Chromosoma 125:65–73. https://doi.org/10.1007/s00412-015-0528-7
Mason JM, Reddy HM, Capkova Frydrychova R (2011) Telomere maintenance in organisms without telomerase. In: Seligman H (ed) DNA Replication-Current Advances. InTech, pp 323–346
Medawar PB (1952) An unsolved problem in biology. H.K. Lewis, London
Monaghan P (2014) Organismal stress, telomeres and life histories. J Exp Biol 217:57–66. https://doi.org/10.1242/jeb.090043
Mu M, Ren L, Hu X, et al (2015) Season-specific changes in telomere length and telomerase activity in Chinese pine (Pinus tabulaeformis Carr.). Russ J Plant Physiol Vol 62:487–493
Mukherjee S, Firpo EJ, Wang Y, Roberts JM (2011) Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci U S A 108:1363–1371. https://doi.org/10.1073/pnas.1112414108
Negroni MA, Foitzik S, Feldmeyer B (2019) Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-43796-1
Nozaki T, Matsuura K (2019) Evolutionary relationship of fat body endoreduplication and queen fecundity in termites. Ecol Evol 9:11684–11694. https://doi.org/10.1002/ece3.5664
Olsson M, Wapstra E, Friesen C (2018) Ectothermic telomeres: It’s time they came in from the cold. Philos Trans R Soc B Biol Sci 373: 20160449. https://doi.org/10.1098/rstb.2016.0449
Parker JD (2010) What are social insects telling us about aging? Myrmecological News 13:103–110
Passos F, Saretzki G, Ahmed S, et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. Plos Biol 5:1138–1151. https://doi.org/10.1371/journal.pbio.0050110
Penev A, Bazley A, Shen M, et al (2022) Alternative splicing is a developmental switch for hTERT expression Alex. Mol Cell 81:2349–2360. https://doi.org/10.1016/j.molcel.2021.03.033.
Razgonova MP, Zakharenko AM, Golokhvast KS, et al (2020) Telomerase and telomeres in aging theory and chronographic aging theory (Review). Mol Med Rep 22:1679–1694. https://doi.org/10.3892/mmr.2020.11274
Reznick D (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos 44:257–267
Robinson GE, Strambi C, Strambi A, Feldlaufer MF (1991) Comparison of juvenile hormone and ecdysteroid haemolymph titres in adult worker and queen honey bees (Apis mellifera ). J Insect Physiol 37:929–935. https://doi.org/10.1016/0022-1910(91)90008-N
Rollings N, Miller E, Olsson M (2014) Telomeric attrition with age and temperature in Eastern mosquitofish (Gambusia holbrooki ). Naturwissenschaften Vol 101:241–244
Sahin E, Colla S, Liesa M, et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365. https://doi.org/10.1038/nature09787.
Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15:1757–1768. https://doi.org/10.1093/hmg/ddl098
Saretzki G (2009) Telomerase, mitochondria and oxidative stress. Exp Gerontol 44:485–92. https://doi.org/10.1016/j.exger.2009.05.004
Sauer DJ, Heidinger BJ, Kittilson JD, et al (2021) No evidence of physiological declines with age in an extremely long-lived fish. Sci Rep 11:9065. https://doi.org/10.1038/s41598-021-88626-5
Schneider SA, Schrader C, Wagner AE, et al (2011) Stress resistance and longevity are not directly linked to levels of enzymatic antioxidants in the ponerine ant Harpegnathos saltator . PLoS One 6: e14601. https://doi.org/10.1371/journal.pone.0014601
Schrempf A, Cremer S, Heinze J (2011) Social influence on age and reproduction: Reduced lifespan and fecundity in multi-queen ant colonies. J Evol Biol 24:1455–1461. https://doi.org/10.1111/j.1420-9101.2011.02278.x
Schrempf, Heinze J, Cremer S (2005) Sexual Cooperation: Mating increases longevity in ant queens. Curr Biol 15:267–270
Schwartz TS., Bronikowski A (2011) Molecular stress pathways and the evolution of life histories in reptiles. Molecular mechanisms of life history evolution: The genetics and physiology of life history traits and trade-off. In: Flatt T, Heyland A (eds) The Genetics and Physiology of Life History Traits and Trade-Offs. pp 193–209
Seeley TD (2014) Honeybee ecology: a study of adaptation in social life. Princeton University Press
Ségal-Bendirdjian E, Geli V, Cayuela ML (2019) Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front Cell Dev Biol 7:1–12. https://doi.org/10.3389/fcell.2019.00332
Seluanov A, Chen Z, Hine C, et al (2007) Telomerase activity coevolves with body mass, not lifespan. Aging Cell 6:45–52. https://doi.org/10.1111/j.1474-9726.2006.00262.x.
Sharick JT, Vazquez-Medina JP, Ortiz RM, Crocker DE (2015) Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Funct Ecol 29:367–376. https://doi.org/10.1111/1365-2435.12330
Sherman PW, Lacey EA, Reeve HK, Keller L (1994) The eusociality continuum. Behav Ecol 6:102–108
Sköld HN, Asplund ME, Wood CA, Bishop JDD (2011) Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. J Exp Zool Part B Mol Dev Evol 316 B:276–283. https://doi.org/10.1002/jez.b.21399
Slater GP, Yocum GD, Bowsher JH (2020) Diet quantity influences caste determination in honeybees (Apis mellifera): Caste determination in honey bees. Proc R Soc B Biol Sci 287: 20200614.. https://doi.org/10.1098/rspb.2020.0614
Slusher AL, Kim JJJ, Ludlow AT (2020) The role of alternative rna splicing in the regulation of htert, telomerase, and telomeres: Implications for cancer therapeutics. Cancers (Basel) 12:1–16. https://doi.org/10.3390/cancers12061514
Smith CR, Suarez A V., Tsutsui ND, et al (2011) Nutritional asymmetries are related to division of labor in a queenless ant. PLoS One 6:4–8. https://doi.org/10.1371/journal.pone.0024011
Smith S, Hoelzl F, Zahn S, Criscuolo F (2021) Telomerase activity in ecological studies: what are its consequences for individual physiology and is there evidence for effects and trade‐offs in wild populations. Mol Ecol 1–13. https://doi.org/10.1111/mec.16233
Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268
Tan TCJ, Rahman R, Jaber-Hijazi F, et al (2012) Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proc Natl Acad Sci U S A 109:4209–14. https://doi.org/10.1073/pnas.1118885109
Tian X, Doerig K, Park R, et al (2018) Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos Trans R Soc B Biol Sci 373:. https://doi.org/10.1098/rstb.2016.0443
Tindale NB (1932) Revision of the Australian ghost moths (Lepidoptera Homoneura, family Hepialidae) Part I. Rec South Aust Museum 4:497–536
Tomiyama AJ, O’Donovan A, Lin J, et al (2012) Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav 106:40–45. https://doi.org/10.1016/j.physbeh.2011.11.016
Ulaner GA, Giudice LC (1997) Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol Hum Reprod 3:769–773
von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–44
Werner J, Griebeler EM (2011) Reproductive biology and its impact on body size: Comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS One 6: e28442. https://doi.org/10.1371/journal.pone.0028442
Wheeler WM (1907) The polymorphism of ants. Ann Entomol Soc Am XXIII:39–69
Whittemore K, Vera E, Martínez-Nevado E, et al (2019) Telomere shortening rate predicts species life span. Proc Natl Acad Sci U S A 116:15122–15127. https://doi.org/10.1073/pnas.1902452116
Wiersma P, Selman C, Speakman JR, Verhulst S (2004) Birds sacrifice oxidative protection for reproduction. Proc R Soc B Biol Sci 271:360–363. https://doi.org/10.1098/rsbl.2004.0171
Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution (N Y) 11:398. https://doi.org/10.2307/2406060
Wilson EO (1971) The Insect Societies. Cambridge, MA: Harvard University Press.
Wright WE, Piatyszek MA, Rainey WE, et al (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179
Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29:4818–4825. https://doi.org/10.1093/nar/29.23.4818
Young AJ (2018) The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos Trans R Soc B Biol Sci 373: 20160452. https://doi.org/10.1098/rstb.2016.0452
Young RC, Kitaysky AS, Haussmann MF, et al (2013) Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0074931
Zheng Q, Huang J, Wang G, et al (2019) Mitochondria , Telomeres and Telomerase Subunits. Front Cell Dev Biol 7:1–10. https://doi.org/10.3389/fcell.2019.00274
Zhu X, Kumar R, Mandal M, et al (1996) Cell cycle-dependent modulation of telomerase activity in tumor cells. PNAS 93:6091–6095
Figure 1. Comparing reproductive strategy to telomerase activity and telomere length in mammalian species. Data on telomerase activity were got from Gomes et al. 2011, except for the data on pig that were got from Fradiani et al. 2004. Data on gestation period, litters per year, and litter sizes were obtained from the ANAGE data-base (The Animal Ageing & Longevity Database. http://genomics. senescence.info/species/). The data on telomeres and telomerase were obtained from cultured cells derived from fibroblasts from skin, kidney, lung or cornea of the species (Gomes et al. 2011), or from spleen, lymph node, lung, and kidney (Fradiani et al. 2004). For more details on telomerase activities see Gomes et al. 2011. * The gestation periods in tiger and steppe polecat are 36 and 105 days, respectively, in contrast to the other Carnivora species with the gestation period ranging from 110 – 259 days. Accordingly, steppe polecat and tiger have the largest litter sizes (9.4 and 2.5, respectively), in contrast to the other Carnivora species where litter sizes ranging from 2 to 1.5. Discontinuous telomeres are abbreviated as “d”.