References
Adams, R.I., Miletto, M., Taylor, J.W., Bruns, T.D., 2013. Dispersal in
microbes: fungi in indoor air are dominated by outdoor air and show
dispersal limitation at short distances. ISME J. 7, 1262–1273.
https://doi.org/10.1038/ismej.2013.28
Amarasinghe, A., Knox, O.G.G., Fyfe, C., Lobry de Bruyn, L.A., Wilson,
B.R., 2021. Response of soil microbial functionality and soil properties
to environmental plantings across a chronosequence in south eastern
Australia. Appl. Soil Ecol. 168, 104100.
https://doi.org/10.1016/j.apsoil.2021.104100
Austin, K.G., Baker, J.S., Sohngen, B.L., Wade, C.M., Daigneault, A.,
Ohrel, S.B., Ragnauth, S., Bean, A., 2020. The economic costs of
planting, preserving, and managing the world’s forests to mitigate
climate change. Nat. Commun. 11, 5946.
https://doi.org/10.1038/s41467-020-19578-z
Bastida, F., Eldridge, D.J., García, C., Kenny Png, G., Bardgett, R.D.,
Delgado-Baquerizo, M., 2021. Soil microbial diversity–biomass
relationships are driven by soil carbon content across global biomes.
ISME J. 15, 2081–2091. https://doi.org/10.1038/s41396-021-00906-0
Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R.,
Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T.,
Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J., Hutchins,
D.A., Jansson, J.K., Karl, D.M., Koskella, B., Mark Welch, D.B.,
Martiny, J.B.H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V.,
Rich, V.I., Singh, B.K., Stein, L.Y., Stewart, F.J., Sullivan, M.B., van
Oppen, M.J.H., Weaver, S.C., Webb, E.A., Webster, N.S., 2019.
Scientists’ warning to humanity: microorganisms and climate change. Nat.
Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5
Chen, L., Xiang, W., Ouyang, S., Wu, H., Xia, Q., Ma, J., Zeng, Y., Lei,
P., Xiao, W., Li, S., Kuzyakov, Y., 2021. Tight coupling of fungal
community composition with soil quality in a Chinese fir plantation
chronosequence. Land Degrad. Dev. 32, 1164–1178.
https://doi.org/10.1002/ldr.3771
Cheng, L., Zhang, N., Yuan, M., Xiao, J., Qin, Y., Deng, Y., Tu, Q.,
Xue, K., Van Nostrand, J.D., Wu, L., He, Z., Zhou, X., Leigh, M.B.,
Konstantinidis, K.T., Schuur, E.A., Luo, Y., Tiedje, J.M., Zhou, J.,
2017. Warming enhances old organic carbon decomposition through altering
functional microbial communities. ISME J. 11, 1825–1835.
https://doi.org/10.1038/ismej.2017.48
Du, X., Deng, Y., Li, S., Escalas, A., Feng, K., He, Q., Wang, Z., Wu,
Y., Wang, D., Peng, X., Wang, S., 2021. Steeper spatial scaling patterns
of subsoil microbiota are shaped by deterministic assembly process. Mol.
Ecol. 30, 1072–1085. https://doi.org/10.1111/mec.15777
Fan, Y., Zhong, X., Lin, T.-C., Lyu, M., Wang, M., Hu, W., Yang, Z.,
Chen, G., Guo, J., Yang, Y., 2020. Effects of nitrogen addition on
DOM-induced soil priming effects in a subtropical plantation forest and
a natural forest. Biol. Fertil. Soils 56, 205–216.
https://doi.org/10.1007/s00374-019-01416-0
Freilich, M.A., Wieters, E., Broitman, B.R., Marquet, P.A., Navarrete,
S.A., 2018. Species co-occurrence networks: Can they reveal trophic and
non-trophic interactions in ecological communities? Ecology 99,
690–699. https://doi.org/10.1002/ecy.2142
Gao, J., Liang, C., Shen, G., Lv, J., Wu, H., 2017. Spectral
characteristics of dissolved organic matter in various agricultural
soils throughout China. Chemosphere 176, 108–116.
https://doi.org/10.1016/j.chemosphere.2017.02.104
Geisen, S., Hu, S., dela Cruz, T.E.E., Veen, G.F. (Ciska), 2021.
Protists as catalyzers of microbial litter breakdown and carbon cycling
at different temperature regimes. ISME J. 15, 618–621.
https://doi.org/10.1038/s41396-020-00792-y
Gross, C.D., Harrison, R.B., 2019. The Case for Digging Deeper: Soil
Organic Carbon Storage, Dynamics, and Controls in Our Changing World.
Soil Syst. 3, 28. https://doi.org/10.3390/soilsystems3020028
Hartman, W.H., Ye, R., Horwath, W.R., Tringe, S.G., 2017. A genomic
perspective on stoichiometric regulation of soil carbon cycling. ISME J.
11, 2652–2665. https://doi.org/10.1038/ismej.2017.115
Heijboer, A., de Ruiter, P.C., Bodelier, P.L.E., Kowalchuk, G.A., 2018.
Modulation of Litter Decomposition by the Soil Microbial Food Web Under
Influence of Land Use Change. Front. Microbiol. 9, 2860.
https://doi.org/10.3389/fmicb.2018.02860
Ho, A., Di Lonardo, D.P., Bodelier, P.L.E., 2017. Revisiting life
strategy concepts in environmental microbial ecology. FEMS Microbiol.
Ecol. 93. https://doi.org/10.1093/femsec/fix006
Hoffland, E., Kuyper, T.W., Comans, R.N.J., Creamer, R.E., 2020.
Eco-functionality of organic matter in soils. Plant Soil 455, 1–22.
https://doi.org/10.1007/s11104-020-04651-9
Hou, Y., Chen, Y., Chen, X., He, K., Zhu, B., 2019. Changes in soil
organic matter stability with depth in two alpine ecosystems on the
Tibetan Plateau. Geoderma 351, 153–162.
https://doi.org/10.1016/j.geoderma.2019.05.034
Huang, M., Chai, L., Jiang, D., Zhang, M., Jia, W., Huang, Y., 2021.
Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved
Organic Matter (DOM) Quality in Semi-Arid Regions. Microb. Ecol. 82,
202–214. https://doi.org/10.1007/s00248-020-01509-6
Huang, M., Chai, L., Jiang, D., Zhang, M., Jia, W., Huang, Y., 2020.
Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved
Organic Matter (DOM) Quality in Semi-Arid Regions. Microb. Ecol.
https://doi.org/10.1007/s00248-020-01509-6
Jiang, S., Xing, Y., Liu, G., Hu, C., Wang, X., Yan, G., Wang, Q., 2021.
Changes in soil bacterial and fungal community composition and
functional groups during the succession of boreal forests. Soil Biol.
Biochem. 161, 108393. https://doi.org/10.1016/j.soilbio.2021.108393
Jiang, Y., Zhou, H., Chen, L., Yuan, Y., Fang, H., Luan, L., Chen, Y.,
Wang, X., Liu, M., Li, H., Peng, X., Sun, B., 2018. Nematodes and
Microorganisms Interactively Stimulate Soil Organic Carbon Turnover in
the Macroaggregates. Front. Microbiol. 9.
https://doi.org/10.3389/fmicb.2018.02803
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G., 2018. Soil
microbiomes with distinct assemblies through vertical soil profiles
drive the cycling of multiple nutrients in reforested ecosystems.
Microbiome 6, 146. https://doi.org/10.1186/s40168-018-0526-0
Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between
community assembly processes mediates species coexistence in
agricultural soil microbiomes across eastern China. ISME J. 14,
202–216. https://doi.org/10.1038/s41396-019-0522-9
Jílková, V., Jandová, K., Sim, A., Thornton, B., Paterson, E., 2019.
Soil organic matter decomposition and carbon sequestration in temperate
coniferous forest soils affected by soluble and insoluble spruce needle
fractions. Soil Biol. Biochem. 138, 107595.
https://doi.org/10.1016/j.soilbio.2019.107595
Kaiser, K., Kalbitz, K., 2012. Cycling downwards – dissolved organic
matter in soils. Soil Biol. Biochem. 52, 29–32.
https://doi.org/10.1016/j.soilbio.2012.04.002
Kang, H., Gao, H., Yu, W., Yi, Y., Wang, Y., Ning, M., 2018. Changes in
soil microbial community structure and function after afforestation
depend on species and age: Case study in a subtropical alluvial island.
Sci. Total Environ. 625, 1423–1432.
https://doi.org/10.1016/j.scitotenv.2017.12.180
Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.C.B.,
Nunan, N., 2021. Dynamic interactions at the mineral–organic matter
interface. Nat. Rev. Earth Environ. 2, 402–421.
https://doi.org/10.1038/s43017-021-00162-y
Kramer, C., Gleixner, G., 2008. Soil organic matter in soil depth
profiles: Distinct carbon preferences of microbial groups during carbon
transformation. Soil Biol. Biochem. 40, 425–433.
https://doi.org/10.1016/j.soilbio.2007.09.016
Li, D., Yu, S., Zeng, M., Liu, X., Yang, J., Li, C., 2020. Selection and
Validation of Appropriate Reference Genes for Real-Time Quantitative PCR
Analysis in Needles of Larix olgensis under Abiotic Stresses. Forests
11, 193. https://doi.org/10.3390/f11020193
Li, H., Yang, S., Semenov, M.V., Yao, F., Ye, J., Bu, R., Ma, R., Lin,
J., Kurganova, I., Wang, X., Deng, Y., Kravchenko, I., Jiang, Y.,
Kuzyakov, Y., 2021. Temperature sensitivity of SOM decomposition is
linked with a K‐selected microbial community. Glob. Change Biol. 27,
2763–2779. https://doi.org/10.1111/gcb.15593
Liu, H., Xu, H., Wu, Y., Ai, Z., Zhang, J., Liu, G., Xue, S., 2021.
Effects of natural vegetation restoration on dissolved organic matter
(DOM) biodegradability and its temperature sensitivity. Water Res. 191,
116792. https://doi.org/10.1016/j.watres.2020.116792
Liu, T., Wang, X., Zhu, E., Liu, Z., Zhang, X., Guo, J., Liu, X., He,
C., Hou, S., Fu, P., Shi, Q., Feng, X., 2021. Evolution of the Dissolved
Organic Matter Composition along the Upper Mekong (Lancang) River. ACS
Earth Space Chem. 5, 319–330.
https://doi.org/10.1021/acsearthspacechem.0c00292
Liu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., Chen, X.,
Kuzyakov, Y., Yan, W., 2020. Soil organic matter, nitrogen and pH driven
change in bacterial community following forest conversion. For. Ecol.
Manag. 477, 118473. https://doi.org/10.1016/j.foreco.2020.118473
Liu, Y., Zhang, J., Yang, W., Wu, F., Xu, Z., Tan, B., Zhang, L., He,
X., Guo, L., 2018. Canopy gaps accelerate soil organic carbon retention
by soil microbial biomass in the organic horizon in a subalpine fir
forest. Appl. Soil Ecol. 125, 169–176.
https://doi.org/10.1016/j.apsoil.2018.01.002
Lorenz, K., Lal, R., 2005. The Depth Distribution of Soil Organic Carbon
in Relation to Land Use and Management and the Potential of Carbon
Sequestration in Subsoil Horizons, in: Advances in Agronomy. Academic
Press, pp. 35–66. https://doi.org/10.1016/S0065-2113(05)88002-2
Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and
taxonomy in the global ocean microbiome. Science 353, 1272–1277.
https://doi.org/10.1126/science.aaf4507
Ma, J., Liu, H., Zhang, C., Ding, K., Chen, R., Liu, S., 2020. Joint
response of chemistry and functional microbial community to oxygenation
of the reductive confined aquifer. Sci. Total Environ. 720, 137587.
https://doi.org/10.1016/j.scitotenv.2020.137587
Maron, P.-A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O.,
Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi,
A., Ranjard, L., 2018. High Microbial Diversity Promotes Soil Ecosystem
Functioning. Appl. Environ. Microbiol. 84.
https://doi.org/10.1128/AEM.02738-17
Mayer, M., Prescott, C.E., Abaker, W.E.A., Augusto, L., Cécillon, L.,
Ferreira, G.W.D., James, J., Jandl, R., Katzensteiner, K., Laclau,
J.-P., Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J.A.,
Vanguelova, E.I., Vesterdal, L., 2020. Tamm Review: Influence of forest
management activities on soil organic carbon stocks: A knowledge
synthesis. For. Ecol. Manag. 466, 118127.
https://doi.org/10.1016/j.foreco.2020.118127
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T.,
Andersen, D.T., 2001. Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and
aromaticity. Limnol. Oceanogr. 46, 38–48.
https://doi.org/10.4319/lo.2001.46.1.0038
Mori H., Maruyama F., Kato H., Toyoda A., Dozono A., Ohtsubo Y., Nagata
Y., Fujiyama A., Tsuda M., Kurokawa K., 2014. Design and Experimental
Application of a Novel Non-Degenerate Universal Primer Set that
Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify
Eukaryotic rRNA Genes. DNA Res. 21, 217–227.
https://doi.org/10.1093/dnares/dst052
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke,
J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: An open annotation
tool for parsing fungal community datasets by ecological guild. Fungal
Ecol. 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Ohno, T., 2002. Fluorescence Inner-Filtering Correction for Determining
the Humification Index of Dissolved Organic Matter. Environ. Sci.
Technol. 36, 742–746. https://doi.org/10.1021/es0155276
Parikh, S.J., Goyne, K.W., Margenot, A.J., Mukome, F.N.D., Calderón,
F.J., 2014. Chapter One - Soil Chemical Insights Provided through
Vibrational Spectroscopy, in: Sparks, D.L. (Ed.), Advances in Agronomy.
Academic Press, pp. 1–148.
https://doi.org/10.1016/B978-0-12-800132-5.00001-8
Qin, S., Kou, D., Mao, C., Chen, Y., Chen, L., Yang, Y., 2021.
Temperature sensitivity of permafrost carbon release mediated by mineral
and microbial properties. Sci. Adv. 7, eabe3596.
https://doi.org/10.1126/sciadv.abe3596
Ramírez, P.B., Calderón, F.J., Fonte, S.J., Santibáñez, F., Bonilla,
C.A., 2020a. Spectral responses to labile organic carbon fractions as
useful soil quality indicators across a climatic gradient. Ecol. Indic.
111, 106042. https://doi.org/10.1016/j.ecolind.2019.106042
Ramírez, P.B., Fuentes-Alburquenque, S., Díez, B., Vargas, I., Bonilla,
C.A., 2020b. Soil microbial community responses to labile organic carbon
fractions in relation to soil type and land use along a climate
gradient. Soil Biol. Biochem. 141, 107692.
https://doi.org/10.1016/j.soilbio.2019.107692
Roth, V.-N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall,
T., Griffiths, R.I., Mellado-Vázquez, P.G., Mommer, L., Oram, N.J.,
Weigelt, A., Dittmar, T., Gleixner, G., 2019. Persistence of dissolved
organic matter explained by molecular changes during its passage through
soil. Nat. Geosci. 12, 755–761.
https://doi.org/10.1038/s41561-019-0417-4
Shao, P., Liang, C., Rubert-Nason, K., Li, X., Xie, H., Bao, X., 2019.
Secondary successional forests undergo tightly-coupled changes in soil
microbial community structure and soil organic matter. Soil Biol.
Biochem. 128, 56–65. https://doi.org/10.1016/j.soilbio.2018.10.004
Shen, C., Wang, L., Li, M., 2016. The altitudinal variability and
temporal instability of the climate–tree-ring growth relationships for
Changbai larch (Larix olgensis Henry) in the Changbai mountains area,
Jilin, Northeastern China. Trees 30, 901–912.
https://doi.org/10.1007/s00468-015-1330-0
Shen, F., Wu, J., Fan, H., Liu, W., Guo, X., Duan, H., Hu, L., Lei, X.,
Wei, X., 2019. Soil N/P and C/P ratio regulate the responses of soil
microbial community composition and enzyme activities in a long-term
nitrogen loaded Chinese fir forest. Plant Soil 436, 91–107.
https://doi.org/10.1007/s11104-018-03912-y
Shi, X., Zhao, X., Ren, J., Dong, J., Zhang, H., Dong, Q., Jiang, C.,
Zhong, C., Zhou, Y., Yu, H., 2021. Influence of Peanut, Sorghum, and
Soil Salinity on Microbial Community Composition in Interspecific
Interaction Zone. Front. Microbiol. 12, 1306.
https://doi.org/10.3389/fmicb.2021.678250
Shi, Y., Delgado-Baquerizo, M., Li, Y., Yang, Y., Zhu, Y.-G., Peñuelas,
J., Chu, H., 2020. Abundance of kinless hubs within soil microbial
networks are associated with high functional potential in agricultural
ecosystems. Environ. Int. 142, 105869.
https://doi.org/10.1016/j.envint.2020.105869
Sun, T., Wang, Y., Hui, D., Jing, X., Feng, W., 2020. Soil properties
rather than climate and ecosystem type control the vertical variations
of soil organic carbon, microbial carbon, and microbial quotient. Soil
Biol. Biochem. 148, 107905.
https://doi.org/10.1016/j.soilbio.2020.107905
Tong, X., Brandt, M., Yue, Y., Ciais, P., Rudbeck Jepsen, M., Penuelas,
J., Wigneron, J.-P., Xiao, X., Song, X.-P., Horion, S., Rasmussen, K.,
Saatchi, S., Fan, L., Wang, K., Zhang, B., Chen, Z., Wang, Y., Li, X.,
Fensholt, R., 2020. Forest management in southern China generates short
term extensive carbon sequestration. Nat. Commun. 11, 129.
https://doi.org/10.1038/s41467-019-13798-8
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden,
M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity
predict ecosystem functioning. Nat. Commun. 10, 4841.
https://doi.org/10.1038/s41467-019-12798-y
Wang, K., Bi, Y., Cao, Y., Peng, S., Christie, P., Ma, S., Zhang, J.,
Xie, L., 2021. Shifts in composition and function of soil fungal
communities and edaphic properties during the reclamation chronosequence
of an open-cast coal mining dump. Sci. Total Environ. 767, 144465.
https://doi.org/10.1016/j.scitotenv.2020.144465
Wu, Y., Chen, W., Entemake, W., Wang, J., Liu, H., Zhao, Z., Li, Y.,
Qiao, L., Yang, B., Liu, G., Xue, S., 2021. Long-term vegetation
restoration promotes the stability of the soil micro-food web in the
Loess Plateau in North-west China. CATENA 202, 105293.
https://doi.org/10.1016/j.catena.2021.105293
Xue, D., Chen, H., Zhan, W., Huang, X., He, Y., Zhao, C., Zhu, D., Liu,
J., 2021. How do water table drawdown, duration of drainage, and warming
influence greenhouse gas emissions from drained peatlands of the Zoige
Plateau? Land Degrad. Dev. 32, 3351–3364.
https://doi.org/10.1002/ldr.4013
Yang K., Zhu J., Zhang M., Yan Q., Sun O.J., 2010. Soil microbial
biomass carbon and nitrogen in forest ecosystems of Northeast China: a
comparison between natural secondary forest and larch plantation. J.
Plant Ecol. 3, 175–182. https://doi.org/10.1093/jpe/rtq022
Yang, M., Wang, S., Zhao, X., Gao, X., Liu, S., 2020. Soil properties of
apple orchards on China’s Loess Plateau. Sci. Total Environ. 723,
138041. https://doi.org/10.1016/j.scitotenv.2020.138041
Ye, Q., Wang, Y.-H., Zhang, Z.-T., Huang, W.-L., Li, L.-P., Li, J., Liu,
J., Zheng, Y., Mo, J.-M., Zhang, W., Wang, J.-J., 2020. Dissolved
organic matter characteristics in soils of tropical legume and
non-legume tree plantations. Soil Biol. Biochem. 148, 107880.
https://doi.org/10.1016/j.soilbio.2020.107880
Yu, J., Liu, Q., 2020. Larix olgensis growth–climate response between
lower and upper elevation limits: an intensive study along the eastern
slope of the Changbai Mountains, northeastern China. J. For. Res. 31,
231–244. https://doi.org/10.1007/s11676-018-0788-1
Zhang, J., Zhang, N., Liu, Y.-X., Zhang, X., Hu, B., Qin, Y., Xu, H.,
Wang, H., Guo, X., Qian, J., Wang, W., Zhang, P., Jin, T., Chu, C., Bai,
Y., 2018. Root microbiota shift in rice correlates with resident time in
the field and developmental stage. Sci. China Life Sci. 61, 613–621.
https://doi.org/10.1007/s11427-018-9284-4
Zhang, S., Wang, Y., Sun, L., Qiu, C., Ding, Y., Gu, H., Wang, L., Wang,
Z., Ding, Z., 2020. Organic mulching positively regulates the soil
microbial communities and ecosystem functions in tea plantation. BMC
Microbiol. 20, 103. https://doi.org/10.1186/s12866-020-01794-8
Zheng, H., Yang, T., Bao, Y., He, P., Yang, K., Mei, X., Wei, Z., Xu,
Y., Shen, Q., Banerjee, S., 2021. Network analysis and subsequent
culturing reveal keystone taxa involved in microbial litter
decomposition dynamics. Soil Biol. Biochem. 157, 108230.
https://doi.org/10.1016/j.soilbio.2021.108230
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M.,
Herbold, C.W., Eichorst, S.A., Woebken, D., Richter, A., Wanek, W.,
2019. Soil multifunctionality is affected by the soil environment and by
microbial community composition and diversity. Soil Biol. Biochem. 136,
107521. https://doi.org/10.1016/j.soilbio.2019.107521
Zhong, Y., Yan, W., Wang, R., Wang, W., Shangguan, Z., 2018. Decreased
occurrence of carbon cycle functions in microbial communities along with
long-term secondary succession. Soil Biol. Biochem. 123, 207–217.
https://doi.org/10.1016/j.soilbio.2018.05.017
Zhou, J., Bai, X., Zhao, R., 2017. Microbial communities in the native
habitats of Agaricus sinodeliciosus from Xinjiang Province revealed by
amplicon sequencing. Sci. Rep. 7, 15719.
https://doi.org/10.1038/s41598-017-16082-1
Zhu, J., Zhou, X., Fang, W., Xiong, X., Zhu, B., Ji, C., Fang, J., 2017.
Plant Debris and Its Contribution to Ecosystem Carbon Storage in
Successional Larix gmelinii Forests in Northeastern China. Forests 8,
191. https://doi.org/10.3390/f8060191