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Abstract 13 
 Water returned to the atmosphere as evapotranspiration (ET) is approximately 1.6x 14 
greater than global river discharge and has wide-reaching impacts on groundwater and 15 
streamflow. In the U.S. Midwest, widespread land conversion from prairie to cropland has 16 
altered spatiotemporal patterns of ET, yet there is no consensus on the direction of change in ET 17 
or the mechanisms controlling changes. We aimed to harmonize findings about how land use 18 
change affects ET in the Midwest. We measured ET at three locations within the Long-Term 19 
Agroecosystem Research (LTAR) network along a latitudinal gradient with paired rainfed 20 
cropland and prairie sites at each location. At the northern locations, the Upper Mississippi River 21 
Basin (UMRB) and Kellogg Biological Station (KBS), the cropland has annual ET that is 84 and 22 
29 mm/year higher, respectively, caused primarily by higher ET, likely from soil evaporation 23 
during springtime when agricultural fields are fallow. At the southern location, the Central 24 
Mississippi River Basin (CMRB), the prairie has 69 mm/year higher ET, primarily due to a 25 
longer growing season. To attribute differences in springtime ET to specific mechanisms, we 26 
examine the energy balance using the Two-Resistance Method (TRM). Results from the TRM 27 
demonstrate that higher surface conductance in croplands is the primary factor leading to higher 28 
springtime ET from croplands, relative to prairies. Results from this study provide critical insight 29 
into the impact of land use change on the hydrology of the U.S. Corn Belt by providing a 30 
mechanistic understanding of how land use change affects the water budget.  31 
Keywords: Eddy covariance, rainfed cropland, prairie, land atmosphere interactions, surface 32 
resistance 33 

Key Points: 34 
1. Differences in evapotranspiration between croplands and prairies was quantified by a 35 

mechanistic Two Resistance Method.  36 
2. Bowen ratio during springtime is higher in prairies than croplands.  37 
3. Surface resistance is the primary factor causing springtime evapotranspiration differences 38 

between croplands and prairies. 39 

1 Introduction 40 
The Central and Upper Mississippi River basins have been subjected to some of the most 41 

extensive land use and land cover changes (LULCC) in the world. Beginning in approximately 42 
1850, one of the most rapid, large-scale land conversions in the history of humankind converted 43 
millions of hectares of prairies to rainfed croplands (K. R. Robertson et al., 1997; Steyaert & 44 
Knox, 2008). Such large-scale transition undoubtedly impacted the water budget, but the 45 
magnitude of the impacts and the underlying mechanisms remain the subject of debate. 46 
Streamflow has been increasing since the 1940s because of both precipitation increases and land 47 
use changes that reduce evapotranspiration (ET) to create more baseflow (Zhang & Schilling, 48 
2006). As LULCC and agricultural intensification has continued in the Mississippi River basin, 49 
precipitation has increased while the evaporative demand, measured by the reference ET, has 50 
decreased (Allen et al., 1998; Villarini et al., 2011). Modeling exercises have attributed the 51 
observed streamflow increases in the Mississippi River basin primarily to climate change, 52 
finding that converting grasslands to croplands resulted in less runoff by increasing ET (Frans et 53 
al., 2013). Because of these confounding factors, the impact of the conversion from prairies to 54 
croplands on the water budget remains challenging to quantify.  55 
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While considerable effort has been made to quantify the impact of land use change on the 56 
water budget in the U.S. Midwest, quantifying the impacts on ET specifically is challenging. 57 
This is due to the requirement of paired study sites and direct measurements of ET. High 58 
interannual variability in meteorological conditions make long-term measurements an additional 59 
requirement. Much of the recent work to examine how land use change impacts ET has been 60 
done through assessing the feasibility of biofuel production (Joo et al., 2017). While single 61 
species biofuel plots are not entirely representative of species-rich prairies, switchgrass (Panicum 62 
virgatum) is a common prairie species that has been proposed as a biofuel crop. For example, 63 
measurements of ET for various biofuel crops, including maize (Zea Mays), mixed perennial 64 
prairie, and monoculture switchgrass (Panicum virgatum), suggested LULCC between maize and 65 
perennial grasses may cause differences in seasonal ET, but the data did not show statistically 66 
significant differences in water use (Abraha et al., 2020; Hamilton et al., 2015). Modeling work 67 
in Iowa suggests that conversion from prairie to cropland decreased ET and that increases in 68 
biofuel switchgrass production would increase ET, reducing streamflow (Schilling et al., 2008). 69 
Several other studies using remote sensing (Baeumler et al., 2019), chamber measurements (Luo 70 
et al., 2018), the energy balance residual (Hickman et al., 2010), or eddy covariance (Schreiner-71 
McGraw et al., 2023) have found that prairie has higher ET than cropland. In contrast, both 72 
models and observations have demonstrated that cropland can have higher ET than prairie (Frans 73 
et al., 2013; Twine et al., 2004). Furthermore, there is evidence that intensified cropland 74 
management has increased ET over most of the U.S. Midwest, resulting in increased humidity 75 
and decreased daily maximum air temperatures, creating the summertime “warming hole” over 76 
the region (Alter et al., 2018). This idea is supported by findings that agricultural intensification 77 
(via planting density, crop type, and fertilization) have increased ET, resulting in a cooling effect 78 
during daytime (Mueller et al., 2016).  79 

As generally the second largest flux term of the water budget (following precipitation), 80 
changes in ET can have important impacts on the remaining terms, such as streamflow. Across 81 
much of the U.S. Midwest groundwater tables are shallow and the impact of storage change is 82 
small over longer time periods, making streamflow approximately equal to precipitation minus 83 
ET (Gupta, 1989). Additionally, the widespread use of tile drains and a warming trend that 84 
results in streamflow being more driven by rainfall than snowmelt, reinforce the streamflow 85 
response to precipitation (Dumanski et al., 2015; Kelly et al., 2017). While long term changes in 86 
climate may have contributed more to the observed trends in streamflow in the Mississippi River 87 
basin, LULCC played a role as well (Gupta et al., 2015; Xu et al., 2013). Land use change 88 
primarily altered streamflow by changing ET, which altered subsurface flow in soil and 89 
groundwater and had larger impacts on baseflow than total streamflow (Scanlon et al., 2007; 90 
Zhang & Schilling, 2006).  Thus, it appears that land cover change can have wide ranging and 91 
contrasting impacts on the water budget by modifying the ET. 92 

Ecosystem ET is affected by LULCC through several mechanisms that modify land surface 93 
characteristics. Land conversion from prairies to croplands resulted in soil compaction, altering 94 
soil properties, such as the water holding capacity and the infiltration rate, leaving less available 95 
water for plants (Veum et al., 2015). Model evidence suggests that conversion from prairies to 96 
croplands can increase net radiation by altering the surface albedo (Twine et al., 2004). Land 97 
conversion can also change the aerodynamic resistance which affects turbulent fluxes between 98 
the land surface and atmosphere, as well as the air temperature (Baldocchi & Ma, 2013). When 99 
considering conversion to croplands specifically, nitrogen fertilizers limit nitrogen stress, 100 
resulting in larger, healthier plants (Chapin et al., 1988; Jones et al., 1986). The plant species 101 
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composition also affects the ET through root distribution, stomatal conductance, and water use 102 
efficiency (Asbjornsen et al., 2008; Caylor et al., 2005; Dold et al., 2017). Through these 103 
combined mechanisms, LULCC alters the land surface energy balance, making it a useful tool to 104 
understand how land use changes impact land surface processes. A recent energy balance 105 
approach to attribute changes in land surface behavior to physical mechanisms, the Two-106 
Resistance Method (TRM) has been shown effective in attributing changes to the Bowen ratio 107 
caused by land use change to physical processes (Liao et al., 2018; Moon et al., 2020; Rigden & 108 
Li, 2017).  109 

There is renewed interest in LULCC and/or management change in agricultural systems in 110 
the Midwest to promote climate smart agriculture and/or nature-based climate solutions (Hemes 111 
et al., 2021). Utilizing prairie in targeted locations to improve agricultural sustainability and 112 
sequester carbon is a promising technique (Schulte et al., 2017). The apparent conclusion from 113 
previous research on LULCC is that conversion from prairies to croplands, and vice versa, can 114 
have large impacts on the water budget, primarily by altering ET, but there is no consensus on 115 
the direction of the change and the specific mechanisms responsible. In this study, we quantified 116 
and compared the differences in ET between croplands and prairies, as well as the underlying 117 
mechanisms for the differences. We use long-term direct measurements of ET to address two 118 
primary research questions. The first question is whether ET is significantly different between 119 
croplands and prairies; and if so, how that difference is distributed throughout the year? The 120 
second research question is what mechanisms are responsible for any observed differences?  121 

2 Methods 122 
2.1 Study Sites  123 

We used eddy covariance (EC) data spanning >5 years from paired cropland and prairie 124 
systems in three locations across the Midwest U.S. within the Long-Term Agroecosystem 125 
Research (LTAR) network (Figure 1). The LTAR locations included in this work were the Upper 126 
Mississippi River Basin (UMRB), Kellogg Biological Station (KBS), and the Central Mississippi 127 
River Basin (CMRB). 128 
 129 
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winters and hot, humid summers. Data are available from 2010 to 2021. Both the cropland and 157 
restored prairie sites at KBS had been conventionally tilled maize-soybean annual rotations for 158 
decades prior to conversion to no-till soybean in 2009, and to no-till continuous maize and 159 
restored prairie systems from 2010 onward. The AmeriFlux ID for the maize and restored prairie 160 
sites at KBS are US-KL1 and US-KL3, respectively (Abraha et al., 2015). The maize system was 161 
planted in early May and harvested in October annually from 2010 onward. Maize stover was 162 
partially harvested (~27%) from 2015–2021 but left on-site in other years. Restored prairie was 163 
planted as polyculture with 19 species dominated by C3 plants but plant composition shifter over 164 
the years to higher C4 proportion with Sorghastrum nutans and Andropogon gerardii as 165 
dominant species (Abraha et al., 2016). The restored prairie system was harvested for biofuel in 166 
November/December after autumn senescence each year since 2011 except in 2018 when it was 167 
harvested in the spring of the following year. The maize system was fertilized at ~180 kg N ha-1 168 
yr-1 but the restored prairie system was not fertilized. Soils at the sites are well-drained Typic 169 
Hapludalfs loam and sandy loam developed on glacial outwash intermixed with loess (Luehmann 170 
et al., 2016). 171 

The CMRB LTAR fields are located near Centralia, Missouri. The MAP is 981 mm and the 172 
MAT is 12.0 °C, and the Köppen classification is humid subtropical (Cfa). This climate is 173 
characterized by mild winters and hot, humid summers. The CMRB cropland site (US-Mo3) is a 174 
conventionally tilled, maize-soybean-soybean rotation that does not use cover crops and is 175 
managed by a local farmer consistent with the dominant practices in the region (Schreiner-176 
McGraw et al., 2023). The soils are Adco silt loam and are characterized by the presence of a 177 
restrictive claypan layer at approximately 30 cm depth that prevents the installation of tile drains. 178 
The CMRB prairie site (US-Mo2) is located at the Tucker Prairie. This is a native prairie that has 179 
never been plowed or used for agricultural production. Over 100 species of plants are present in 180 
the tallgrass prairie (Kucera, 1956, 1958). The soils have lower bulk density and higher surface 181 
infiltration rates than soil present at the CMRB cropland site (Mudgal et al., 2010). The prairie is 182 
burned in a rotation so that each parcel of land is burned twice in a five-year period.  183 

2.2 Eddy Covariance Systems and Data Acquisition 184 
Observations from EC towers were obtained from the AmeriFlux database that were 185 

processed following the specific protocols (references in section 2.1). In brief, from each site we 186 
acquired gap-filled ET, midday albedo (α), net radiation (Rn), incoming shortwave (Sin) and 187 
longwave radiation (Lin), and air temperature (Ta) at a half-hour time step. Additionally, we 188 
acquired the soil temperature (Ts) at 30-min interval at 5, 2, and 2.5 cm depths at the UMRB, 189 
KBS, and CMRB sites, respectively. We also obtained estimates of the normalized difference 190 
vegetation index (NDVI) from the MODIS Terra satellite (i.e., MOD13Q1) for each site at a 16-191 
day temporal resolution.  192 

We aggregate the 30-minute data to daily and monthly timescales to make the time series 193 
easier to interpret. We present the cumulative daily ET for each site to identify whether cropland 194 
or prairie ET was higher in each year. To examine the average annual cycles of ET, we also 195 
calculate the monthly mean and standard deviation of ET for each site. We calculated the Bowen 196 
ratio for each month as the total monthly sensible heat flux divided by the total monthly latent 197 
heat flux (B = H/LE). Finally, we estimate the monthly streamflow (Q) as: Q = [P – ET].  198 

2.3 Hypothesis testing and statistical analyses 199 
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Our first hypothesis is that annual ET is different between cropland and prairie sites. We use 200 
repeated measures t-tests to test this hypothesis at each location (e.g., UMRB cropland vs. 201 
UMRB prairie) and define the hypothesis substantiated if the mean annual ET is different with a 202 
p-value < 0.05. We repeat the t-tests in mean monthly ET to determine when during the year ET 203 
is different between cropland and prairie sites. Additionally, to examine the differences in ET 204 
limitation among the locations, we use a two-factor repeated measures ANOVA test with a post-205 
hoc Tukey HSD test to check if the annual ET is different between the three locations (e.g., 206 
UMRB vs. CMRB). The ANOVA test is performed using the annual ET from both cropland and 207 
prairie sites at each location.  208 

Our second hypothesis is that the vegetation structure controls the surface resistance, which 209 
in turn controls the springtime ET and the differences. We focus on springtime (March to May) 210 
because it is when streamflow is higher and when the differences in the Bowen ratio between 211 
prairie and cropland are most pronounced. We test this hypothesis using the Two-Resistance 212 
Method for attribution of Bowen ratio changes (section 2.4). We accept this hypothesis if the 213 
attribution exercise shows that the surface resistance is the most important factor creating 214 
differences in ET from cropland and prairie. This bulk surface resistance represents the resistance 215 
to ET through the vegetation and the soil surface. It contains information about plant water stress 216 
via stomatal conductance, resistance from the soil surface, and the leaf area index and canopy 217 
development. Expanding upon this test, we determine if vegetation or soil properties are most 218 
related to the surface conductance. 219 

The vegetation portion of the surface resistance is dependent on the stomatal resistance and 220 
the leaf area index (LAI). There are likely to be differences between ecosystem stomatal 221 
conductance of cropland and prairie, but because prairie contains more than 100 species, we do 222 
not attempt to measure the stomatal conductance. We approximate the role of vegetation in the 223 
surface resistance by examining seasonal patterns of NDVI. If one of the paired sites has a higher 224 
NDVI in a particular month than the other, we assume that vegetation is better able to transpire 225 
water during that month. Thus, we use NDVI to quantify the relative length of the growing 226 
seasons between cropland and prairie sites. 227 

2.4 Attributing differences in the Bowen ratio 228 
We attribute differences in the Bowen ratio (β) between cropland and prairie sites using a 229 

modified version of TRM based on the energy balance (Moon et al., 2020). This allows 230 
attribution of changes in the β to changes in land surface or atmospheric properties that 231 
accompany land use change. The TRM method begins from the surface radiation and energy 232 
budget equations (Rigden & Li, 2017): 233 𝑅௡ = 𝑆௜௡ሺ1 − 𝛼ሻ + 𝜀𝐿௜௡ − 𝜀𝜎𝑇௦ସ = 𝐻 + 𝐿𝐸 + 𝐺    (1) 234 
where Rn is the net radiation (W/m2), Sin is the incoming shortwave radiation (W/m2), α is the 235 
surface albedo, ε is the emissivity, Lin is the incoming longwave radiation (W/m2), σ is the 236 
Stefan-Boltzmann constant (W/m2·K), Ts is the surface temperature (K), H is the sensible heat 237 
flux (W/m2), LE is the latent heat flux (W/m2), and G is the ground heat flux (W/m2). The 238 
gradient relationships governing H and LE are  239 𝐻 = ఘ∙஼೛௥ೌ ∙ ሺ𝑇௦ − 𝑇௔ሻ      (2) 240 𝐿𝐸 = ఘ∙௅ೡ௥ೌ ା௥ೞ ∙ ሺ𝑞௦∗ሺ𝑇௔ሻ − 𝑞௔ሻ     (3) 241 
where ρ is the air density (kg/m3), Cp is the specific heat of air at constant pressure (J/kg·K), ra is 242 
the bulk aerodynamic resistance (s/m), Ta is the air temperature (K), Lv is the latent heat of 243 
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vaporization (J/kg), qs
* is the saturated specific humidity at Ta (kg/kg), qa is the atmosphere 244 

specific humidity (kg/kg), and rs is the bulk surface or canopy resistance (s/m). The full 245 
derivation is presented in Moon et al. (2020), but when eqns. 2 and 3 are substituted into eqn. 1 246 
and the first order derivative is taken, the following equation is obtained: 247 ∆𝛽 = ௗఉௗௌ೔೙ ∆𝑆௜௡ + ௗఉௗ௅೔೙ ∆𝐿௜௡ + ௗఉௗ௤ೌ ∆𝑞௔ + ௗఉௗ்ೌ ∆𝑇௔ + ௗఉௗீ ∆𝐺 + ௗఉௗ௥ೌ ∆𝑟௔ + ௗఉௗ௥ೞ ∆𝑟௦ + ௗఉௗఈ ∆𝛼 (4) 248 
In this equation, Δ refers to changes in each variable with differing land cover (e.g., ΔG = 249 
Gcropland - Gprairie) and the partial derivatives (e.g., dβ/dG) quantify the sensitivity of β to changes 250 
in each variable. Partial derivatives are calculated numerically following Moon et al. (2020).  251 

We apply the TRM to EC measurements from each of the three locations to attribute 252 
differences in the β caused by the land cover difference in the paired sites. Previous research has 253 
found that the TRM method should be applied at the daily scale because at shorter time periods 254 
Rn may be very low, which can lead to high uncertainty in the parameterization of ra and rs (Liao 255 
et al., 2018). Thus, we aggregated the daytime (Sin > 10 W/m2) data to daily averages to perform 256 
the calculations. We measured H and LE at EC sites and used eqns. 2 and 3 to estimate the ra and 257 
rs for each day. Days when either of the estimated resistances were negative were removed. The 258 
analysis is performed for springtime (March-May). This leaves us with 360, 772, and 424 days 259 
for analysis at the UMRB, KBS, and CMRB sites, respectively. After determining the ra and rs 260 
values for each day, we model the β using the analytical equation from Moon et al. (2020):  261 𝛽 = ஼೛∙ሺ ೞ்ି்ೌ ሻቀ ೝೌೝೌశೝೞቁ∙௅ೡ∙ሺ௤ೞ∗ሺ்ೌ ሻି௤ೌሻ      (5). 262 

We use eqn. 5 to calculate the partial derivatives that define the sensitivity of the β to changes in 263 
surface and atmospheric conditions defined in eqn. 4. Finally, the ‘attribution’ of changes in the 264 
β (Δβ) to the various properties included in eqn. 4 as the partial derivative (i.e., sensitivity) 265 
multiplied by the observed change from the reference state (cropland) to the altered state 266 
(prairie). Thus, Δβ = [βcropland – βprairie].  267 

3 Results 268 
3.1 ET differences 269 
 Cropland ET was different than prairie ET in their annual sums and the intra-annual 270 
variations (Fig. 2). At the UMRB location, the cropland site had a higher total annual ET than the 271 
prairie site for each of the 9 years in the record (mean difference of 84 ± 44 mm/yr). At the KBS 272 
location, the cropland site had higher ET than the prairie site for 8 of the 12 years. Similar to the 273 
UMRB location, the prairie site at KBS was restored just before our study period begins (in 2009 274 
at KBS) and the prairie is not in a stable state initially. During the first three years of 275 
observations, the cropland had 71 mm/yr greater ET than the prairie, which may be due to the 276 
establishment of vegetation at the prairie site. There was not a clear trend, however, in the 277 
difference in ET from cropland and prairie sites at the KBS location over time. In contrast, at 278 
CMRB, the cropland had higher ET than the prairie in only 1 out of the 5 years with 279 
observations. At the UMRB and CMRB locations the energy budget closure from the EC 280 
measurements (LE + H / Rn + G) is 6% higher at the prairie site than the cropland site while at 281 
the KBS location the closure at the two sites is within 1%. The difference in energy budget 282 
closure between croplands and prairies in individual years had no relationship with the difference 283 
in annual ET. Interestingly, upon closer inspection, we observed that croplands generally had 284 
higher ET during spring versus the prairies. 285 
 286 
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springtime Bowen ratio at the UMRB location (Fig. 7). At the CMRB location, the warmer 424 
temperatures allow the prairie to green up sooner and increase T relative to the fallow or recently 425 
seeded cropland, particularly in May and June. The ET also is not as limited by soil temperature, 426 
evidenced by the lack of importance of albedo and G in the attribution of Bowen ratio 427 
differences (Fig. 7). Thus, the prairie has higher total ET than the cropland at the CMRB. 428 

An important difference observed is that the ra played a big role in narrowing the difference 429 
in the springtime Bowen ratio between the cropland and prairie at the KBS location (Fig. 7). This 430 
is likely a result of the prairie being harvested just like the cropland. The result is that the prairie 431 
vegetation does not insulate the soil from air temperature. As both the UMRB and CMRB 432 
locations do not harvest prairie, this is an important difference between the locations. The 433 
climate (i.e., P) and soil were the same between the two land covers at all locations, suggesting 434 
that vegetation and associated characteristics (e.g., transpiration, Bowen ratio, etc.) should be the 435 
key to differences in ET and Bowen ratio.  436 

We believe that this mechanistic understanding of how ET responds to altered vegetation and 437 
soil due to land cover change in the U.S. Midwest is consistent with previous research amid 438 
some small contradictions. Previous studies investigating the effects of climate and land use 439 
change on streamflow in the Upper Mississippi River Basin (the larger basin, not the LTAR 440 
location presented in this study) had differing results. Work in Iowa, the southern portion of the 441 
basin, suggested that prairie has lower ET, which functions to increase streamflow, primarily 442 
baseflow (Schilling, 2016; Zhang & Schilling, 2006). In contrast, work on the river basin focused 443 
on the northern sites found that land use change from prairie to cropland did not play a major 444 
role in increasing streamflow (Frans et al., 2013). These findings are consistent with what we 445 
observed. At the southernmost location in our study (CMRB), prairie has higher ET than 446 
cropland, and therefore less streamflow. Whereas at the northernmost location (UMRB) cropland 447 
has more ET than prairie, meaning large scale conversion from prairie to cropland would lead to 448 
a decrease in streamflow. Additionally, the discussion about the water budget impacts of land 449 
cover conversion between cropland and prairie has been muddled by focus on the comparison of 450 
ET during growing seasons (e.g., Baeumler et al., 2019; Hamilton et al., 2015). The differences 451 
in the water budget between cropland and prairie is primarily found outside of the growing 452 
season (Fig. 4), suggesting that future research should examine the full year to draw more 453 
accurate conclusions.  454 

There are, however, several potential limitations to the comparisons made in this study. First, 455 
ET at the CMRB location had an opposite response to land cover than the other two locations 456 
(i.e., prairie had higher ET than cropland). An important feature of the CMRB location is the 457 
shallow claypan soil, which prevents infiltration  (Hofmeister et al., 2022). The prairie site has 458 
deeper topsoil that improves water holding capacity, which facilitates higher ET (Mudgal et al., 459 
2010). Additionally, the CMRB prairie is a remnant prairie that has never been cultivated, so the 460 
soils and plant communities are fully developed with more than 100 plant species present 461 
(Kucera, 1956, 1958). The UMRB and KBS prairie sites, however, are restored prairie and the 462 
plant and soil communities may be underdeveloped, which may affect the ET rates 463 
(Chandrasoma et al., 2016). Additionally, croplands are not homogeneous and can be managed 464 
in many ways that affect ET. For example, planting density of crops can affect the ET (Jiang et 465 
al., 2014) and increases in cropland ET due to agricultural intensification has been documented 466 
(Mueller et al., 2016). Nitrogen management of croplands also affects ET and the lack of 467 
nitrogen stress in croplands has been shown to increase ET (Jones et al., 1986). The three 468 
cropland sites in this study have ‘conventional’ nitrogen management, but there are a variety of 469 
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nitrogen management strategies in practice, which may alter the transferability of our results. 470 
Finally, although there are no tile drains in the studied fields, they are used non-uniformly across 471 
the U.S. Midwest and may alter subsurface hydrology (Kelly et al., 2017). There are many 472 
factors that influence ET from both prairie and cropland, while our study aims to illuminate 473 
several of the mechanisms causing different ET, this is by no means an exhaustive account. 474 

4.2 Implications for agricultural management 475 
The increased perennialization of croplands in the U.S. Midwest has been proposed as an 476 

effective strategy to promote native species, reduce stream pollution, and increase soil water 477 
holding capacity, reducing runoff and soil erosion (Ross & McKenna, 2023; Schulte et al., 478 
2017). Of particular interest are strips of native prairie vegetation inserted into cropland that 479 
allow farming operations to continue. Previous research in Iowa has suggested that prairie strips 480 
in cropland can reduce runoff by increasing the water holding capacity in soils, but that the 481 
efficacy of prairie strips in reducing runoff is diminished when antecedent soil moisture is high 482 
(Gutierrez-Lopez et al., 2014; Hernandez-Santana et al., 2013). Thus, in the northern Corn Belt 483 
where cropland has higher ET than prairie, prairie strips may not reduce runoff as prairie soil 484 
water content is not depleted as rapidly by ET, leading to more frequently saturated soils. Model 485 
experiments in the northern Corn Belt suggested that prairie strips may reduce nitrogen inputs to 486 
streams by increasing ET, but our results suggest that this approach may not be successful due to 487 
reduced ET at the UMRB prairie site (Dalzell & Mulla, 2018). That being said, as the climate 488 
warms, the impact of frozen soils on ET will be lessened as sub-zero temperatures become less 489 
frequent. The results from the CMRB location may be representative of the northern locations in 490 
a future, warmer climate.  491 

In addition to water quantity changes, the conversion to croplands typically is associated with 492 
increased nitrogen exports in the streamflow -- an effect that is primarily observed during the 493 
springtime (Gorski & Zimmer, 2021). Model simulations have suggested that nitrogen pollution 494 
can be reduced by increased perennial vegetation, which increases ET, especially during the 495 
spring, and reduces runoff (Dalzell & Mulla, 2018). Our estimates of Q demonstrate that this 496 
may not always be the case as the UMRB and KBS locations saw increased Q during the spring. 497 
Our approach is limited, however, because Q is not simply generated as the residual of [P – ET]. 498 
Regardless, this simple approach has proved useful, particularly when baseflow is predominant 499 
(Bales et al., 2018). At the UMRB location, conversion from cropland to prairie would likely 500 
result in increased Q during the spring (March-May). At the CMRB location, however, the 501 
cropland would have higher runoff than the prairie, particularly during June, a month in which 502 
observations indicate an increasing trend in precipitation. The increased runoff from croplands 503 
likely worsens soil erosion during this period (Baffaut et al., 2020). 504 

 505 

5 Conclusions 506 
We examined the magnitude and dynamics of ET at three locations with paired cropland and 507 

prairie sites across an approximately north-south gradient in the U.S. Midwest to harmonize 508 
understandings of the effects of land cover change. At the two northern locations, the UMRB and 509 
KBS LTAR sites, cropland had higher annual ET than prairie by 84 and 29 mm/yr, respectively. 510 
As expected, at all three locations the cropland ET was higher by an average of 8 mm/mon 511 
during the growing season months of July and August when extensive fertilization creates an 512 
extremely productive agro-ecosystem. The ET was also higher by an average of 7 mm/mon at the 513 
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fallow cropland sites during the spring (March-May) period. At the southernmost location, the 514 
CMRB LTAR site, ET was higher at the prairie site than at the cropland by an average of 69 515 
mm/yr. We used the two-resistance method to attribute the difference in ET between cropland 516 
and prairie primarily to differences in the surface resistance. Additionally, at the northern UMRB 517 
location, albedo and ground heat flux played a key role in increasing cropland ET during spring. 518 
The lower springtime albedo at the cropland site resulted in more energy being absorbed by the 519 
bare soil and higher soil temperature, causing increased ET relative to the prairie, even though 520 
the cropland field was fallow. At the CMRB location, the prairie site has a longer growing 521 
season, likely due to the warmer temperatures, and this overshadows any effect from the albedo 522 
and ground heat flux differences allowing the prairie site to have higher ET. Finally, at the KBS 523 
location where the prairie is harvested annually, the aerodynamic resistance between cropland 524 
and prairie was similar, which counteracts effects from surface resistance and leads to similar 525 
values of springtime ET. These results demonstrate that when assessing the impacts of large 526 
scale LULCC on the water budget, a mechanistic, process-based understanding is necessary. 527 
Because of the significant relationship between LULCC and the water budget, future efforts to 528 
plow or restore tallgrass prairie should consider impacts on surface resistance and therefore the 529 
hydrologic behavior of the system. 530 
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