References
1. Li B, Huang Q, Wei G-H. The Role of HOX Transcription Factors in Cancer Predisposition and Progression.Cancers (Basel). 2019;11(4):528.
2. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nature reviews Cancer. 2002;2(10):777-785.
3. Samuel S, Naora H. Homeobox gene expression in cancer: insights from developmental regulation and deregulation. European journal of cancer (Oxford, England : 1990). 2005;41(16):2428-2437.
4. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nature reviews Cancer.2010;10(5):361-371.
5. Lu J, Song G, Tang Q, et al. IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-kappaB signaling. The Journal of clinical investigation. 2015;125(5):1839-1856.
6. Megias-Vericat JE, Montesinos P, Herrero MJ, et al. Impact of novel polymorphisms related to cytotoxicity of cytarabine in the induction treatment of acute myeloid leukemia.Pharmacogenetics and genomics. 2017;27(7):270-274.
7. Wu Y, Davison J, Qu X, et al. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. Epigenetics.2016;11(4):247-258.
8. Mann RS, Lelli KM, Joshi R. Chapter 3 Hox Specificity: Unique Roles for Cofactors and Collaborators. In:Current Topics in Developmental Biology. Vol 88. Academic Press; 2009:63-101.
9. Berger MF, Badis G, Gehrke AR, et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell. 2008;133(7):1266-1276.
10. Pomerantz JL, Sharp PA. Homeodomain Determinants of Major Groove Recognition.Biochemistry. 1994;33(36):10851-10858.
11. Connolly JP, Augustine JG, Francklyn C. Mutational analysis of the engrailed homeodomain recognition helix by phage display. Nucleic Acids Res.1999;27(4):1182-1189.
12. Bürglin TR. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Research. 1997;25(21):4173-4180.
13. Cavodeassi F, Modolell J, Gomez-Skarmeta JL. The Iroquois family of genes: from body building to neural patterning. Development (Cambridge, England).2001;128(15):2847-2855.
14. Cheng CW, Chow RL, Lebel M, et al. The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Developmental biology.2005;287(1):48-60.
15. Feijoo CG, Manzanares M, de la Calle-Mustienes E, Gomez-Skarmeta JL, Allende ML. The Irx gene family in zebrafish: genomic structure, evolution and initial characterization of irx5b. Development genes and evolution. 2004;214(6):277-284.
16. Gomez-Skarmeta JL, Modolell J. Iroquois genes: genomic organization and function in vertebrate neural development. Current opinion in genetics & development.2002;12(4):403-408.
17. Kerner P, Ikmi A, Coen D, Vervoort M. Evolutionary history of the iroquois/Irx genes in metazoans.BMC Evolutionary Biology. 2009;9:74-74.
18. Myrthue A, Rademacher BL, Pittsenbarger J, et al. The iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and regulates apoptosis and the cell cycle in LNCaP prostate cancer cells.Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(11):3562-3570.
19. Werner S, Stamm H, Pandjaitan M, et al. Iroquois homeobox 2 suppresses cellular motility and chemokine expression in breast cancer cells. BMC Cancer. 2015;15(1):896.
20. Xu X, Hussain WM, Vijai J, et al. Variants at IRX4 as prostate cancer expression quantitative trait loci.European journal of human genetics : EJHG. 2014;22(4):558-563.
21. Fernando A, Liyanage C, Moradi A, Janaththani P, Batra J. Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer.Genes. 2021;12(5):615.
22. Chakma K, Gu Z, Motoi F, Unno M, Horii A, Fukushige S. Abstract 821: DNA hypermethylation of <em>IRX4</em> is a frequent event that may confer growth advantage to pancreatic cancer cells. Cancer Research. 2019;79(13 Supplement):821-821.
23. Ha Nguyen H, Takata R, Akamatsu S, et al. IRX4 at 5p15 suppresses prostate cancer growth through the interaction with vitamin D receptor, conferring prostate cancer susceptibility. Human Molecular Genetics. 2012;21(9):2076-2085.
24. Zhang D-L, Qu L-W, Ma L, et al. Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Letters. 2018;434:132-143.
25. Corrêa S, Panis C, Binato R, Herrera AC, Pizzatti L, Abdelhay E. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics. Journal of Proteomics. 2017;151:33-42.
26. Morey SR, Smiraglia DJ, James SR, et al. DNA Methylation Pathway Alterations in an Autochthonous Murine Model of Prostate Cancer. Cancer Research.2006;66(24):11659-11667.
27. Wang P, Zhuang C, Huang D, Xu K. Downregulation of miR-377 contributes to IRX3 deregulation in hepatocellular carcinoma. Oncol Rep. 2016;36(1):247-252.
28. Holmquist Mengelbier L, Lindell-Munther S, Yasui H, et al. The Iroquois homeobox proteins IRX3 and IRX5 have distinct roles in Wilms tumour development and human nephrogenesis. The Journal of Pathology. 2019;247(1):86-98.
29. Chandrasekaran G, Hwang EC, Kang TW, et al. Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep. 2017;7:43830-43830.
30. Bagchi A, Roy D, Roy P. Homology modeling of a transcriptional regulator SoxR of the Lithotrophic sulfur oxidation (Sox) operon in alpha-proteobacteria. J Biomol Struct Dyn. 2005;22(5):571-577.
31. Nayan MY, Jusoh SA, Mutalip SSM, Mohamed R. Homology modeling of the DNA binding and dimerization partner domains of E2F1 transcription factor protein in homo sapiens. Paper presented at: 2012 IEEE Symposium on Business, Engineering and Industrial Applications; 23-26 Sept. 2012, 2012.
32. Gao M, Zhou H, Skolnick J. Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural Analysis. Structure. 2015;23(7):1362-1369.
33. Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol. 2005;353(2):459-473.
34. Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated? J Mol Biol. 2019;431(11):2197-2212.
35. Siddiqui MQ, Badmalia MD, Patel TR. Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. Int J Mol Sci. 2021;22(5):2647.
36. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold.Nature. 2021;596(7873):583-589.
37. Samaras P, Schmidt T, Frejno M, et al. ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Research.2019;48(D1):D1153-D1163.
38. Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines.Proteomics. 2015;15(18):3163-3168.
39. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
40. Forbes SA, Bhamra G, Bamford S, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. 2008;Chapter 10:Unit-10.11.
41. Buchan DWA, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research.2019;47(W1):W402-W407.
42. Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic acids research. 2016;44(W1):W344-W350.
43. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-w303.
44. Bilioni A, Craig G, Hill C, McNeill H. Iroquois transcription factors recognize a unique motif to mediate transcriptional repression &lt;em&gt;in vivo&lt;/em&gt.Proceedings of the National Academy of Sciences of the United States of America. 2005;102(41):14671.
45. Sagendorf JM, Berman HM, Rohs R. DNAproDB: an interactive tool for structural analysis of DNA-protein complexes. Nucleic acids research. 2017;45(W1):W89-W97.
46. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein Science : A Publication of the Protein Society.2018;27(1):129-134.
47. Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531-552.
48. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic acids research.2005;33(Web Server issue):W306-W310.
49. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nature methods. 2010;7(4):248-249.
50. Case D, Betz R, Cerutti DS, et al. Amber 16, University of California, San Francisco. 2016.
51. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics.1983;79(2):926-935.
52. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation. 2015;11(8):3696-3713.
53. Pérez A, Marchán I, Svozil D, et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J.2007;92(11):3817-3829.
54. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.Journal of Computational Physics. 1977;23(3):327-341.
55. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation.2013;9(7):3084-3095.
56. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612.
57. Kollman PA, Massova I, Reyes C, et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research. 2000;33(12):889-897.
58. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery. 2015;10(5):449-461.
59. Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics. 2004;55(2):383-394.
60. Agrawal P, Bhalla S, Usmani SS, et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res.2016;44(D1):D1098-1103.
61. Wei L, Tang J, Zou Q. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics.2017;18(7):742.
62. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet.2013;45(6):580-585.
63. Hruz T, Laule O, Szabo G, et al. Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Advances in Bioinformatics. 2008;2008:420747.
64. Craig R, Cortens JP, Beavis RC. Open Source System for Analyzing, Validating, and Storing Protein Identification Data. Journal of Proteome Research.2004;3(6):1234-1242.
65. Simard A, Di Giorgio L, Amen M, Westwood A, Amendt BA, Ryan AK. The Pitx2c N-terminal domain is a critical interaction domain required for asymmetric morphogenesis.Dev Dyn. 2009;238(10):2459-2470.
66. Di Rocco G, Mavilio F, Zappavigna V. Functional dissection of a transcriptionally active, target-specific Hox–Pbx complex. 1997;16(12):3644-3654.
67. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010;1(3-4):271-283.
68. Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Current opinion in genetics & development.2017;43:1-8.
69. Guca E, Suñol D, Ruiz L, et al. TGIF1 homeodomain interacts with Smad MH1 domain and represses TGF-β signaling. Nucleic Acids Res. 2018;46(17):9220-9235.
70. Sagendorf JM, Markarian N, Berman HM, Rohs R. DNAproDB: an expanded database and web-based tool for structural analysis of DNA–protein complexes. Nucleic Acids Research. 2019;48(D1):D277-D287.
71. Saldaño TE, Monzon AM, Parisi G, Fernandez-Alberti S. Evolutionary Conserved Positions Define Protein Conformational Diversity. PLOS Computational Biology.2016;12(3):e1004775.
72. Friedberg I, Margalit H. Persistently conserved positions in structurally similar, sequence dissimilar proteins: roles in preserving protein fold and function.Protein science : a publication of the Protein Society.2002;11(2):350-360.
73. Petrosino M, Novak L, Pasquo A, et al. Analysis and Interpretation of the Impact of Missense Variants in Cancer. Int J Mol Sci. 2021;22(11):5416.
74. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105-132.
75. Chang KY, Yang J-R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One. 2013;8(8):e70166-e70166.
76. Kanei-Ishii C, Sarai A, Sawazaki T, et al. The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product. The Journal of biological chemistry. 1990;265(32):19990-19995.
77. Yuan L, Wu H, Zhao Y, Qin X, Li Y. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Frontiers of Chemical Science and Engineering. 2019;13(1):133-139.
78. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-2637.
79. Ginter T, Fahrer J, Kröhnert U, et al. Arginine residues within the DNA binding domain of STAT3 promote intracellular shuttling and phosphorylation of STAT3. Cellular signalling. 2014;26(8):1698-1706.
80. Bushweller JH. Targeting transcription factors in cancer — from undruggable to reality.Nature Reviews Cancer. 2019;19(11):611-624.
81. Kolchina N, Khavinson V, Linkova N, et al. Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Research.2019;47(20):10553-10563.
82. Sorolla A, Wang E, Golden E, et al. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene.2020;39(6):1167-1184.
83. Patel SG, Sayers EJ, He L, et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep. 2019;9(1):6298.
84. Gautam A, Singh H, Tyagi A, et al. CPPsite: a curated database of cell penetrating peptides.Database (Oxford). 2012;2012:bas015.
85. Oh D, Nasrolahi Shirazi A, Northup K, et al. Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization. Mol Pharm.2014;11(8):2845-2854.