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Abstract

We show the existence of global-in-time solutions to an initial-boundary val-
ue problem in one space dimension of a phase-field model on the martensitic
phase transformations, which consists of the equations of degenerate and a non-
degenerate nonlinear parabolic equation of second order.

Keywords: Phase-field model; Coupled parabolic equations; Degenerate; Weak
solution; Banach fixed-point theorem.

1 Introduction

The transformations from austenite to martensite in material are called the Martensitic
phase transformations. And the phase transformations are often accompanied by twinning
via reducing the energy associated with internal elastic stresses [1]. Twinning is a common
mechanism of metal plastic deformation, which is related to stacking faults [23]. In the process
of plastic deformation, an area of the crystal lattice is sheared into a new orientation, and it
is most obvious at low temperatures or high strain rates [3].

Phase-field approach is widely utilized for modeling microstructure evolution processes
in materials. For the common phase field models, they are mainly the mathematical models
used to solve interface problems which incorporate the corresponding features of stress-
strain curves, large strain formulation, surface tension, and they are applied to solidification
dynamics [4], fracture dynamics [5] and vesicle dynamics [6]. On the phase-field model, the
Cahn-Hilliard and/or Allen-Cahn equations are the two well-known models for temporal
evolution of microstructures, which have the conserved order parameter or not conserved
order parameter during the phase separation respectively [7-10]. These two kinds of order
parameter are also presented in numerous articles [9-12], and the properties of solutions to
the parabolic problems are investigated in the phase-field models [13-16].

In this article, we investigate a phase field model of transformations between martensitic
variants and multiple twinning within martensitic variants, which is developed for lattice ro-
tations and large strains [7]. For the model, we just utilize one angular order parameter ¢(t, x)
to describe variant-variant transformation and multiple twinnings within every martensitic
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variant, and use u(t, z) as the radial coordinate of the austenite-martensite transformation-
s. The Helmholtz free energy is given [3]

- /Q Fdv
- /Q (£ &)+ Fiu. Vu, V))av. (1.1)
where
£, 6) = gma(u) + armg(6)a(u) + aomoh(w),
Fitu, T, Vo) = " uf? 4 ") P
Taking the variation of both sides of (1.1) with respect to t, it is easy to obtain
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To satisfy the second law of thermodynamics & < 0 [17], we set

_u . mﬁqﬁ 2 afc
ke afe¢
E(m@ﬁdlv( Vo) — 90 ). (1.3)
Considering the equations (1.2)-(1.3) in one space dimension as
¢ = aa(q(u)ds)  — pg'(d)q(u), (1.4)
/ , Of
U = 0 Uy — 3¢ (U)|ds]” — W (1.5)
for (¢, ) € (0,400) x Q, Q= (a,b).
The boundary and initial conditions are
ou do
o 0, o 0, (t, ) € (0,400) x 01, (1.6)
u(0, x) =up(x), @0, ) = ¢o(x), = €. (1.7)

Notations and function specifications: The positive constants §;, k; (i = u, ¢), aj,n; (j =
0,1), m are the gradient energy coefficients, kinetic coefficients, barriers for variant-variant
transformations, the temperature at the relevant states, the ratio of mass densities respec-
tively. We note oy = Buky, aa = Bpky, a3 = %ﬁqﬂcu, p1 = agMoky, p2 = Z’%, p3 = 3‘;;1’",

p = aikg. _

The function 8% = p1h/(u) + ( )(1+ p3g(¢)) in (1.5) with the double-well potential
with minima at ¢ = 0 and ¢ = 1, and the other double-well potential with minima at
u =0 and v = 1 are given by

g(¢) - ¢2(1 - ¢)27 ;(u) = u2(1 - U)Q,



and the interpolation function
q(u) = u?*(3 — 2u).

Here ¢(u) depends only on the radial coordinate u, so one technical difficulty is that, when ¢(u) =
0, equation (1.4) degenerates, which will lose its parabolic character. Otherwise, for the case
of q(u) > 0, we have the consult of ¢ € L>(0,T; H(2)) N L?(0,T; H*()) in [18].
In this article, we use the notation || - |12y = || - ||, write Q7 := (0, T') x  for any given
constant T > 0, denote < -, - > as the duality pairing between H*(2) and (H'(Q))'.
Before stating our main results, we give the definition of a weak solution to problem (1.4)-
(1.7).
Definition 1.1. Assume that ¢y € L*(Q2), and ug € L*(Q). A function (¢, u) with

¢ € L%(0,T; H'(Q)), (1.8)
¢ € L*(0,T < 1)), (1.9)
we L0, T; H'()) N L*(0,T; H*(Q)) N LY(Qr), (1.10)
u € L*(Qr), (1.11)

is a weak solution to problem (1.4)-(1.7), if for each ¢ € C§°((—00,T) x ),

(0, 0t)ar — 02(q(W)de; Px)ar — pg'(0)a(w), ) + (¢0, £(0))a =0, (1.12)
: of’
(1, 20)ar — 0 @)ar — as(d ()%, P)ar — (- @)y + (o, 9(0))a = 0. (113)
The main result of this article is the following:

Theorem 1.1 For all ¢g € L*(2), and ug € H*(Q), there exists a weak solution (¢, u) to
the problem (1.4)-(1.7) in the sense of Definition 1.1.

Our proof is based on the following modified problem which depend on a small accessory
positive parameter €. And we can utilize the Banach fixed-point theorem to show its existence
of weak solutions by avoiding the above mentioned possibility of degeneracy of parabolicity
in equation (1.4). The modified problem is given

¢; = as(qlen)dy), — pg' (0)q(u) in Qr, (1.14)
ez O
uf — oqul, = —asq (u)|6 > — % in Qr, (1.15)
ou® do°
an = 0, % = 0, (t, .Z') S (0, +OO) X 8Q, (116)
u (0, z) = ug(z), ¢°(0, x) = ¢5(z), x € Q, (1.17)
where we define
1, if u>1,
Ue = < u, if uele, 1], (1.18)
€, if u<e,



and €, = 7. * u, here % is a convolution operation, 1. € C§°(2) is the positive mollifier
function and it converges to the Dirac delta function, € is a positive constant.

The rest of this paper is organized as follows: In Section 2, we study the modified problem
(1.14)-(1.17) depending on a small positive parameter €, and prove the existence of approx-
imate solution by employing the Banach fixed-point theorem. In Section 3, we derive the
bounds, uniform with respect to € for the approximate solution, and utilize the Aubin-Lions
lemma to show that the limit of a subsequence of approximate solution solve the original
problem (1.4)-(1.7).

2 Existence of solutions to the modified problems

We first introduce a Banach space X, that is

X ={(¢, u) | ¢€(LX0,T;H'(Q))NL*0,T; H*(Q)),
u € L0, T; HY(Q) N L*(0,T; H*(Q)), e <u <1 ae. in Qr}.

To simplify the calculation on the constant coefficients, we set py = 3 in equation (1.5), then
it can be rewritten as
P
wp = oty — azq’ (W)[1 4 [0 + p3g(9) + i(l — 2u)].
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Then to ease the notation, we will omit the superscript € of the variables ¢¢ and u¢ for the
problem (1.14)-(1.17) in this section.

2.1 Existence results to the fixed problem

With v € X fixed, we consider the parabolic problem of ¢

¢ — as(glen)ds), = —pd'($)a(u)  in Qr,
(2.1)
60, z) = ¢5(z), x € g—f: =0, (¢t z)€ (0, T)x oK.
We have the following lemma:

Lemma 2.1 If ¢5 € H'(), then (2.1) has a unique solution ¢ € L>=(0,T;H'(Q)) N
L*(0,T; H*(Q)), and

Dl 20,7 12(2)) + |@]| Lo 0,751 (02)) < C. (2.2)

Proof: From Them.7.1 of [19] and Them.6.7 of [20], it is easy to obtain the proof of this
lemma.
Given the function ¢ € X', we consider the quasilinear parabolic problem of u
e — itz = —03 ()1 + 16,2+ psg(@) + £5(0—2)] in Q.
(2.3)
w(0, t) =uf(z), ze€Q SL=0, (t )€ (0, T)x

For the problem (2.3), we also have



Lemma 2.2 Let ¢ < uf <1 ae. v € Q. If uy € H'(Q), then (2.3) has a unique solution
e<u<l1ae inQr, and

1wl Lo 0,01 (2) + [[wll 20,2000 < O w2y < C. (2.4)

To prove the existence of solutions to (2.3), we first consider the problem

Ut — O Upy = —Oég(jl(U) [1 + |¢z|2 + p3g(¢)) + ?5713(1 — 2U)} n QT:

(2.5)
w0,2) =uf(z), ze€Q =0, (¢ z)€ (0, T)x0Q,
where ¢ € X, and
q (e), if u € (—o0, €),
q'(u) =4 q'(u), if u € e, 1], (2.6)
q(1), if u e (1, 00).

Lemma 2.3 Let e < uf <1 a.e. x € Q. If uy € H'(Q), then (2.5) has a solution ¢ < u <
1 a.e inQr, and

|l oo (0,111 (02)) + Ul 220,152 (02)) < O (2.7)

Proof: The existence of solution u in (2.5) can be proved from Them.7.1 of [19] and Them.6.7
of [20], and we get

[l 0 7211 2y + 1l 220 702 (02)) < C-

Next, we prove that if e <uj <1 ae. x €, thene <u<1ae. inQp.
Multiplying the equation in (2.5) by (u — €)~, where (u — €)~ = max(0, ¢ — u), and
integrating over ), we get, for a.e. t € (0,7)

2dt/|u—e 2d:c+a1/|u—e ?dr = —ag/gq(u)(u—e)[3%3(1—2@—1—1—1—]@\2
+psg(¢)lde.

It follows from the definitions of (v — €)™ and ¢'(u) that

2dt/|u_€ |dx—|—oz1/|u—e S|?dr = 0. (2.8)

Due to the fact that the second term in (2.8) is positive, we obtain

2dt/|u_€ “|*dx < 0.

From the data (up — €)™ = 0, it is easy to verify (v — €)™ = 0. Hence, u > € a.e. in Q7.
We next multiply the equation in (2.5) by (u—1)%, integrate over €2, and obtain, for a.e.
€ (0,7)

2dt/| |dx+a1/9|(u—1)i|2dx=—ag/Qq/(u)(u—l) [3’23(1—2u)+1

: + |¢a|* + p3g(9))da.



Making use of the definitions of ¢'(u) and (u — 1)", we get

m/' |d:v+a1/|u—1 dz = 0. (2.9)

Similarly, we deduce u < 1 a.e. in Q7. The proof of Lemma 2.3 is complete.

The proof of Lemma 2.2: From Lemma 2.3 and the hypothesis of e < u < 1, it is easy
to obtain (2.4). For the uniqueness of solution, we consider u; and uy two solutions to the
problem (2.3), and note & = u; — ug, then it satisfies

U — Q1 lge = —p1 (h'(u1) - h'(uz)) — Q3 (q’(ul) - ql(uz)) [1 + ’¢x|2 + psg(éb)]a
(2.10)
a0, ) =0, z€Q; Zw=2%_0 (f2)e (0, T)x .
(2.1

Multiplying the equation in 0) by @, integrating over 2, we obtain

1d .

g g1+ anllul? = = [ (o1 (0 (u) = W) + cale'(wn) = g/ (w1 + 16+ pag(e) i
< C(L+ l1allZoo) + 9(D)|e(e) 1l
< O+ llguall2 18112 + 1113719 N1

From Gronwall’s lemma [21], it is easy to obtain

H/&HQ QCfo (1+\\¢m||2||¢H2+||¢HH1(Q )dSHﬁ(O x)HQ _
)

?

which ensures the uniqueness. The proof of Lemma 2.2 is complete.

2.2 The Banach fixed-point method

Below we introduce the Banach fixed-point theorem [19], that is

Theorem 2.2 (Banach Fixed-Point Theorem) A is a Banach space. Assume T : A —
A is a nonlinear mapping, and suppose that

[ 7(ur) = 7(u2) [<y ([ ur =z ], (u1, uz € A) (2.11)
for some constant 0 <~ < 1. Then T has a unique fized point.

Now, we begin to show the existence of local solution to problem (1.14)-(1.17). First,
from the proofs of Lemma 2.1 and Lemma 2.2, we can define a map A : X — X by setting

A(g, @) = (¢, u), where (¢, u) and (¢, @) satisfy
(01 — (Q(Eﬂ)%)x = —pg'(¢)q(u) in Qr,

Ut — Qe = —aq’ (W)[1+ |¢a]? + p39(9) + 42 (1 — 2u)] in Qr,
(2.12)

(0, z) = ¢§(x), u(0,z) = ui(x), x € Q;

(22=0,2=0, (t, z) € (0, T) ng.



Next we need to claim that A is a compressed mapping if 7" > 0 is small enough. To
prove this, we choose (¢;, ;) € X so that A(¢;, ;) = (¢, u;) with the norm

||(<5u W)y = ||§gi||L°°(O,T;H1(Q)) + ||Q3i||L2(o,T;H2(Q)) + ||'ai||L°°(O,T;H1(Q)) + ||ﬂi||L2(o,T;H2(Q))

where (¢;, w;), i = 1,2 are the solutions to the syestem (2.12).

Lemma 2.4 Assume u§ € H*(Q), ¢5 € HY(Q), and ||(¢, u)||x < C. Suppose A: X —
X is a nonlinear mapping, if the mapping satisfies

[A(61, W) — A(ge, ta)llx < AII(D1 — da, W — 1a)|
for some constant 0 < ~v < 1. Then A is a contraction.
Proof: We set ¢ = ¢y — ¢po, U = u3 — us, then (¢, U) satisty
(¢ — az(q(eq, ) 1o — q(€ay) baz) . = —pg (01)q(tn) + pg' (92)q(z) in Qr,

Uy — arUpy = —asq'(w1) (14 |912]* + p39(61)) + asq (u2) (1 + [d20|* + p3g(¢2))

— p1 (W (u1) — 1/ (us)) in Qr. (2.13)

[ ¢(0,2) =0, U(0,2) =0, =ze€Q 22=09%=0, (¢ 2)e(0,T)x0N.

Multiplying the first equation in (2.13) by ¢, integrating over 2, we have

;jtnqsn%amn@nz
< a [ Jatea) — alen) a6 + plla(@) o [ 1560 - (Ga)lolds

+ [ 1d(@llat@m) = alwa)lolds
< 2124 S0Pl + [y + 19/ (B2) i) + sl + 181 + )
< 6 2+ U1 ey + 1ol + 19205 ay) + oMy + 191 + 1),

(2.14)

where we set 0 < m < g(u;) < M, i =1, 2.
We get from Gronwall’s lemma and Holder inequality that

t t
1612 0ron20cy < 1L+ / Jal%ds + / 161210 ds)

t
< (a2~ o220 + 1912 0 210 / s)
< CT(all7e o ;22002 + 10700 (0151 52)))- (2.15)

The estimates (2.14)-(2.15) together yield

||¢||%°°(O,T;L2(Q)) + H(bH%Q(O,T;Hl(Q)) < C%TOWH%OO(O,T;L?(Q)) + ||¢_5||%°°(0,T;H1(Q))>‘



We multiply the first equation in (2.13) by —¢,,, integrate over €2, and get

1d
2 dt

042/ |q,<al)a1$¢1x - q,(a2>ﬂ2a¢¢2m||¢mw|d~r + p/ |q(ﬂ1)||g’(g51) - g,<§52>||¢mm|d5€
Q Q

H¢CL‘H2 +a2m”¢mc|’2

IN

o / 16(82) (@) — q(@2)) | bualda
= [1—|—IQ—|—]3, (216)

where we set b = max(|¢'(u1)|, |¢'(u2)]), and
I = 042/ |¢' (W) @10 — ¢ (t2) Uoy Poy| | Paa | d
Q
< awm [ fiullons[Gaakde + by [ [ia 60l ds

Oégm _
10 1® + C (lltal*|¢12 70 ) + 120l 7oe (@) | 2]17) (2.17)

IN

L= / 9@)llg'(B1) — ¢ (B2)]|baslda
el + () [yl (31) = 9'(60)1?

am - _
< —= 5 0eal® + CUI1 2= 0) + 102l 2 @) 1017, (2.18)

| /\

I=p / 16/(B2)(a(@) — q(@2))|daolda

agm

<My P rC / 1§/ (8o)Plaf2da

agm
62zl + Cllall7 o) 821171 ). (2.19)

<
It follows from (2.16)—(2.19) that

agm _ — - _
£l + 2 al” < Ot e 61+ Cr (1 Pl ey + 161+ Bl 191°).
(2.20)

Applying Gronwall’s lemma, the estimates (2.16) and (2.20) imply
162l 2o0 01220y + N0ael T2 mir2()) < CTURN o0 (011 () F Nl Zoo0.1:22¢00))- (2-21)

We multiply the second equation in (2.13) by U, and integrate over {2 to obtain

10+ ullUal? < ColL + oalimiey + Wnalm U1+ C [ o) = gl
8



Applying Gronwall’s lemma, we get

Uz 012200 + 10200y < CTUN 00 1m1@)) + 182000 ir2(y)- (2:22)
Similarly, we multiply the second equation in (2.13) by —U,, and integrate over € to get

HUxH%w(o,T;m(Q)) + HUxx’|%2(o,T;L2(Q)) < CT(WH%w(o,T;Hl(Q)) + HaH%oo(o,T;m(Q)))- (2.23)
Finally, the estimates (2.14)-(2.23) yield

(¢, U)|lx < (CT)Z(|($, @) (2.24)

Thus, A is a contractive operator if (CT)2 < 1 holds. Then we can utilize the Banach
fixed-point theorem to get a solution (¢¢, u) to problem (1.14)-(1.17) on a small interval
[0, T}], where 0 < T} < T satisfies (CT})2 < 1.

3 Existence of weak solutions

In section 2, we proved the problem (1.14)-(1.17) has a solution (¢¢, u¢). Thus, our goal in
this section is to choose a subsequence of (¢, u€) and send the parameter € to zero to obtain

a weak solution of the original problem (1.4)-(1.7).

First a general version of the Aubin-Lions lemma under the weak assumption %fj

LY0,T; By) is given [22], [23]:

S

Theorem 3.3 Let By be a normed linear space imbedded compactly into another normed
linear space B, which is continuously imbedded into a Hausdorff locally convex space By, and
1 <p<+oo. Ifv, v; € LP(0,T; By), i € N, the sequence {v;};en converges weakly to v
in L?(0,T; By), and {%}ZEN is bounded in L'(0,T; By), then v; converges to v strongly in
LP(0,T; B).

The other two convergence arguments are as follows:

Lemma 3.5 Let By, B and B; be three Banach spaces with

By CC B C By,

where By, By are reflexive spaces. Suppose that By is compactly embedded in B and B is
continuously embedded in By. For 1 < pg, p1 < +o0, let

W= {f‘f € L(0,T; By), f' = % e P (0, T; Bl)}.

Then the embedding of W into LP°(0,T; B) is compact.

Lemma 3.6 Let Qr = (0,T) x Q be a bounded open set in R, x R?. Assume that u,,, u are
functions which belong to LY(Qr) for any given 1 < q¢ < +00, and which satisfy

Uy = u a.e. in Qr, ||um|Ligm < C. (3.1)
Then u,, converges weakly to u in LU(Qr).

The proof of the above lemmas can be found in [24], [25], [26].
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3.1 Existence of local solutions
Lemma 3.7 There exists a constant C' independent of €, such that
19 oo (0,11 () + [l a(€u) D5l L2 0,711 (02)) < C,
1(q(ew) D)l 2o,y < Co [0 20, @)y < C,
[l oo o, @) + Nl L2020y < C w12 @r) < €.
Proof: We multiply equation (1.14) by ¢¢ and integrate over {2 to obtain

1d

510+ [ a2 dn+p [ o(0)0rauis =0

Using the Hélder inequality and the boundedness of g(u€), we arrive at
1d

sl 17+ an [ ate)eid +p [ atulo'de <l (35)

Applying Gronwall’s lemma, the estimate (3.5) implies

1617 022062y + (€ @511 T20 720 < CllPhllz) < C. (3.6)

Then multiplying equation (1.14) by —¢¢, and integrating over 2, we have

1d
——||¢§||2+az/Q(€u)( o) < C/ (Ig' (eu) ()25 050| + 19/ (6°)D5pa(u)|)da
2dt 0 Q
a2 € € €
<5 QQ(Eu)( 2a)de + O ([l (ew)e | 2o (e 105117 + 19" (6)]1%)
a2 € € € €
<5 QQ(Eu)(ébm)Qdfc + Clullzn @051 + eI,
(3.7)
where
H(GU)IH%W(Q) = [Jug * UEH%C’O(Q)
< NuallZz@o) 17120
< Ol (35)
Combination Gronwall’s lemma and the estimate (3.7) yield
16517 0 1200y + N0(€) D5l T2 0,02 002)) < C- (3.9)

Then from (3.6)-(3.9) and the boundedness of ¢,, we infer
t
1(a(eu) 95zl 720,7:22(00) :/ g’ (ew)(ew)a® + ql€u) S ||*ds
0

< o / (e 2oy e 65 s + / laea) bl Pds)

<C, (3.10)
10



and for all ¢p € L>(0,T; H3(Q)), we have

A«amﬁmwa=/<w%ww¢¢+«m;wme
=/‘W@u@mmw—d@M@n@w—w@wwamw

T

t
C/O ol oo lla’ () 5 el + [ ] zoo oy H€w)a [11BE I + (|05 140a ) s

< Ol oo 0,038 (02))- (3.11)

Therefore (3.11) implies (q(e,)¢S): € L'(0,T; H~1(Q)). From Theorem 3.3 and (3.10), it is

easy to claim that q(e, )¢S converges strongly in L?(Q7) to a limit function G € L*(Qr).
For the estimate of ¢¢, we multiply equation (1.14) by n € L*(0,T; H'(Q)) to get

t
I/ (05, mds| < C(llale)dell 2@ Il 2. @) + 19 (6) 2@ 17l L2
0
< Clnllzzo.r:m @)

which verifies (3.3).
Now we estimate (3.2). Multiplying equation (1.15) by —u¢, and integrating over 2, we
get
1d

gl aulluso P = oo [ W ude +aq [ (@O 6 + paglo9us,da
Q Q

< —||um||2 +C (IR @) + g ()DL @ 195117 + 119(6) 70 ()

< 7||um||2 +C(1+ llg(u) el @l i@ + 165 @) (3.12)
It follows from Gronwall’s lemma and (3.12) that

[ug 1 2oo 02200 + sl T2(0p) < C,

hence (3.5) follows.
Since equations (1.4) and (1.5) are nonlinear, we must prove that ¢¢ and u converge
pointwise almost everywhere.

Lemma 3.8 For any ¢ — 0, we have

€

ut —=u, ¢°— ¢, ae. in Qr, (3.13)
aled) = (), K(uS) = K(u), g(6%) = g(@), ae. in Qr, (3.14)
a(ew) = (), '(u) = K (u)strongly in LX(Qr), g(¢°) — g(¢)weakly in L*(Qr),(3.15)
a(u)g (6 = a()g'(9), ¢(u)g(6") = ¢'(w)gl@) weakly in L'(Qr), (3.16)
a(e)ds = q()dar €65 = ¢()¢? weakly in L'(Qr). (3.17)

—
€u) —
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proof: 1. We deduce from Lemma 3.7 that u¢ and ¢ are bounded respectively in
Wi = {v e L*(0,T; H*(Q)); v € L*(Qr)},
and in
Wy = {v e L*0,T; H(Q)); v, € L*(0,T; (H'(R)))}.
Using Lemma 3.5, we conclude that there exist
w € L*0,T; HY(Q)) N C([0, T L*()), ¢ € L*(0,T;5 L*(Q)),

and a subsequence, that to ease the nation we still denote u¢ and ¢¢, satisfying as e — 0 that

u® — u strongly in L*(0,T; H'(Q)), ¢ — ¢ strongly in L*(0,T; L*(Q)), (3.18)

which mean u¢ — u, ¢¢ — ¢, a.e. in Q.
2. Recalling g(¢¢) = () —2(¢°)3+(¢)?, combining (3.13) and the properties of strongly
convergence, we arrive at

9(¢°) = g(¢) a.e. in Qr.

Then ¢(e,) and h'(u€) can be obtained the properties of the pointwise convergence by utilizing
the similar method.

3. The convergence of ¢(¢€,) and h/(u) are obtained using the embedding of Sobolev space
HY(Q) — L*°(Q) and u¢ — u in L*(Qr) strongly. For the convergence of g(¢¢), it is proved
from (3.14), the boundedness of ||g(¢°)||r2(g,) and Lemma 3.5.

4. The convergences in (3.16) and (3.17) required the strongly convergence of ¢(e,) and
the boundedness of |||l (07,11 (), here we only give a detailed proof of the second term
in (3.17). Let n € L*(Qr), we consider

Q= [ (d(e)(93)” = (w)p3)n duds.
Qr
We write Q in the following form:
Qr
Denote Q1 and Qs as the first term and second term in the expression of Q, then we have

Q, = / ((¢/(e) — G) (@5 — du)y + G- (65 — 60)n) dads

T

IN

¢, ((g(ew)ds — G)(@5 — du)n+ G - (&5, — b)) duds

< O (late0)ds = Glhan 0 = oJnlan + [ (050G dads),
12 !



and

Qy =: / (' (ew) = @' (W) (D5 — Ga)Pan + ¢ (W) (G5 — o) Pan) dds

T

< C(lld'(e) = ¢ @l z2an I (@5 = 62)0anll20r) + /Q (6% — 62)d/ ()67 duds ).
T

From the boundedness of [|¢¢||r(0r:2(0)), the weakly convergence of ¢S in L*(Qr), the
strongly convergence of ¢(e,)¢S in L*(Qr) and ¢'(e,) in L*(Qr), it is easy to obtain Q; and
Q5 tend to 0 as € — 0 respectively. Otherwise we observe that the last term in (3.19), it also
tends to 0 as € — 0 owing to (3.15) and to the fact that ¢2n € L*(Qr). Thus (3.17) follows.

Proof of Theorem 1.1: Now we show that (¢, u) is a weak solution to the prob-
lem (1.4)-(1.7). By Definition 1.1, the equations (1.4) and (1.5) are satisfied weakly if the
relations (1.12) and (1.13) hold. Thus we multiply (1.14) and (1.15) by a test function
p € C°((—00,T) x ) integrate over Q7 to obtain

(QSE, Sot)QT - QQ(q<€u)¢§c> QO:L‘)QT - p(g/((be)(J(uE)’ SO)QT + (¢87 90(0»9 =0, (320)
(0 )ar = oo @)y — as(d MG, Py — (P L o), + (w5, 0(0))a =0,
(3.21)

where %ujf = p1 I/ (u€) + pag’ (u®) (1 + p3g(¢°)). We infer from lemma 3.7 and lemma 3.8 that

fore =0

(0%, ¢)ar = (9, ¢1)ar
(s e)or = (U, e1)or,
(Ugs Px)Qr = (Ua; P2)Qr;
(66, £(0))a = (¢0, ¥(0))a,

(ug, #(0))a = (uo, #(0))a-

Otherwise, the nonlinear terms are also obtained from lemma 3.8 that

(Q(eu)¢§:7 pr)QT — <Q(u)¢x7 @z)QT
(g,(¢€)Q(ue)7 SD)QT - (g/(¢)Q(u)7 @)QT7
(h/<u€)v QO)QT - (h/(u)7 (10>QT7

(q,(ue)|¢;|27<ﬁ)Qf3_> (' (W)l6:]*, ),



(d'(u), 0)or — (d'(u), ¥)or

(q' (u)g(6), ¥)ar — (¢ (w)g(®), ¥)qy-

Thus equation (1.4) and (1.5) follow from the relations (3.20) and (3.21) as € — 0. The proof
of Theorem 1.1 is completed.

3.2 Existence of global solutions

In this subsection, we prove the solution (¢, u) obtained is global.

Theorem 3.4 Let (¢, u) is a weak local solution to problem (1.4)-(1.7) in the sense of
Definition 1.1. If for any T', there is a constant C' = C(||¢o||r2(q), ||uollmr(), T) satisfies

1wl oo 0.1 @)y + Jull 2oz + lullzaor < €5 9lleeorme) < C, (3.22)
then the solution (¢, u) is global.

Proof: We multiply (1.5) by u and integrate over €2 to obtain

1d

§EHU||2 + alugl|* + pullull sy + 6as / w?(1 = w)[L+ [duf” + p39(9)]da < piJull*.
Q

Using Gronwall’s lemma, we get

[llZoe 0 722062y + NUallT2 02020 + NullZagry < C(T, lluollr2@))- (3.23)

From (3.6), (3.9) and (3.12), it is easy to calculate

16117 0.r:m1 () < Cs Nallioe o200 + Ntael 20, < C. (3.24)

These relations (3.23) and (3.24) verify the estimate (3.22).
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