REFERENCES

Abbaspour K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524: 733-752.
Aboelnour, M., Gitau, M.W. & Engel, B.A. (2020). A Comparison of Streamflow and Baseflow Responses to Land-Use Change and the Variation in Climate Parameters Using SWAT. Water, 12, 191.
Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of The Total Environment, 644, 503–519. doi:10.1016/j.scitotenv.2018.07.017
Ardas, S. & Creutzberg, D. (1995). Soil Reference Profiles of Turkey. Dept. of Soil Science-Faculty of Agriculture-Çukurova University, International Soil Reference and Information Centre. Country Report 3.
Arnold, J. G., Srinivasan, R., Muttiah, R.S. & Williams, J.R. (1998). Large area hydrologic modeling modeling and assessment, Part I: Model development. J. Am. Water Resour. Assoc., 34, 73–89.
Bouraoui, F., Benabdallah, S., Jrad, A. & Bidoglio, G. (2005). Application of the SWAT model on the Medjerda river basin (Tunisia). Physics and Chemistry of the Earth, Parts A/B/C, 30(8–10), 497-507.
Bosch, J.M., Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55: 3–23. https://doi.org/10.1016/0022-1694(82)90117-2.
Clerici, N., Cote-Navarro, F., Escobedo, F.J., Rubiano, K., Villegas, J.C., 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 685, 1181–1192.
Fontes Júnior, R., & Montenegro, A. (2019). Impact of Land Use Change on The Water Balance In A Representative Watershed In The Semiarid Of The State Of Pernambuco Using The Swat Model. Engenharia Agrícola, 39(1), 110–117. doi:10.1590/1809-4430-eng.agric.v39n1p110-117/2019.
Hajihosseini, M., Hajihosseini, H., Morid, S., Delavar,M. & Booij, M.J. (2019). Impacts of land use changes and climate variability on transboundary Hirmand River using SWAT. Journal of Water and Climate Change, jwc2019100. doi: https://doi.org/10.2166/wcc.2019.100.
Gashaw, T., Tulu, T., Argaw, M., Worqlul, A.W., 2018. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 619–620:1394–1408. https://doi.org/ 10.1016/j.scitotenv.2017.11.191.
Garnier, M. and Holman, I. (2019) Critical Review of Adaptation Measures to Reduce the Vulnerability of European Drinking Water Resources to the Pressures of Climate Change.Environmental Management. doi:10.1007/s00267-019-01184-5
Gassman, P.W., Reyes, M.R., Green, C.H. & Arnold, J.G. (2007). The soil and water assessment tool: historical development, applications, and future research directions. Trans. ASABE, 50 (4), 1211–1250.
Giri, S., Qiu, Z., 2016. Understanding the relationship of land uses and water quality in twenty first century: a review. J. Environ. Manag. 173, 41–48.
Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for soil description. 4th ed. Rome: Food and Agriculture Organization of the United Nations, p. 67–77.
IPCC (2018) Summary for Policymakers. In: Masson-Delmotte, V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock M, Tignor M, Waterfield T (eds) Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D. & Setegn, S.G. (2011). Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci., 15, 2245-2258, https://doi.org/10.5194/hess-15-2245-2011.
Mello, K., Costa, D.R., Valente, R.A., Vettorazzi, C.A., 2018a. Multicriteria evaluation for protected area definition aiming at water quality improvement. Brazilian Journal of Forestry and Environment 25 (3), e20160134. https://doi.org/10.1590/2179- 8087.013416. Mello, K., Randhir, T.O., 2018. Diagnosis.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L., 2007. Model Evaluation Guıdelines for Systematic Quantifıcation of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885−900.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R. & Williams, J.R. (2005). Soil and water assessment tool theoretical documentation, Version 2005, USDA.ARS Grassland, Soil and Water Research Laboratory, Temple, TX. Available at: <www.brc.tamus.edu/swat/ doc.html>
Osei, M. A., Amekudzi, L. K., Wemegah, D. D., Preko, K., Gyawu, E. S., & Obiri-Danso, K. (2019). The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis. Journal of Hydrology: Regional Studies, 25, 100620. doi:10.1016/j.ejrh.2019.100620
Shen, Z., Zhong, Y., Huang, Q. & Chen, L. (2015). Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Research, 68, 563-571.
Su, W., Ahern, J.F., Chang, C., 2016. Why should we pay attention to “inconsistent” land uses? A viewpoint on water quality. Landsc. Ecol. Eng . 12 (2), 247–254.
Tamm, O., Maasikamäe, S., Padari, A., & Tamm, T. (2018). Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. CATENA, 167, 78–89. doi:10.1016/j.catena.2018.04.029
Trolle, D., Nielsen, A., Andersen, H.E., Thodsen, H., Olesen, J.E., Børgesen, C.D., et al., 2019. Effects of changes in land use and climate on aquatic ecosystems: coupling of models and decomposition of uncertainties. Sci. Total Environ . 657, 627–633.
UNESCO, 2019. The United Nations World Water Development Report 2019: Leaving No One behind. UNESCO, Paris. Available in: https://www.unwater.org/publication s/world-water-development-report-2019/.
Qi, J., Li, S., Bourque, C. P.-A., Xing, Z., & Meng, F.-R. (2018). Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation. Hydrol. Earth Syst. Sci.,, 22(7), 3789–3806. doi:10.5194/hess-22-3789-2018
Qiu J, Shen Z, Leng G, Xie H, Hou X and Guoyuan, W. (2019) Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. Hydrol. , 573 , 123–135.https://doi.org/10.1016/j.jhydrol.2019.03.074
Wang, Q., Liu, R., Men, C., Guo, L., & Miao, Y. (2018). Effects of dynamic land use inputs on improvement of SWAT model performance and uncertainty analysis of outputs. Journal of Hydrology, 563, 874–886. doi:10.1016/j.jhydrol.2018.06.063.
Wagner, P.D., Bhallamudi, S.M., Narasimhan, B., Kumar, S., Fohrer, N., Fiener, P., 2017. Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environ. Model. Softw. https://doi.org/10.1016/j. envsoft.2017.06.023.
Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288.
Zhang, H., Wang, B., Li Liu, D., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: a case study of a catchment in tropical Australia. Journal of Hydrology, 124822. doi:10.1016/j.jhydrol.2020.124822
Table 1. Calibration parameters for hydrological processes