REFERENCES
Abbaspour K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H.
& Kløve, B. (2015). A continental-scale hydrology and water quality
model for Europe: Calibration and uncertainty of a high-resolution
large-scale SWAT model. Journal of Hydrology, 524: 733-752.
Aboelnour, M., Gitau, M.W. & Engel, B.A. (2020). A Comparison of
Streamflow and Baseflow Responses to Land-Use Change and the Variation
in Climate Parameters Using SWAT. Water, 12, 191.
Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use
changes based on Land Change Modeler and attribution of changes in the
water balance of Ganga basin to land use change using the SWAT model.
Science of The Total Environment, 644, 503–519.
doi:10.1016/j.scitotenv.2018.07.017
Ardas, S. & Creutzberg, D. (1995). Soil Reference Profiles of Turkey.
Dept. of Soil Science-Faculty of Agriculture-Çukurova University,
International Soil Reference and Information Centre. Country Report 3.
Arnold, J. G., Srinivasan, R., Muttiah, R.S. & Williams, J.R. (1998).
Large area hydrologic modeling modeling and assessment, Part I: Model
development. J. Am. Water Resour. Assoc., 34, 73–89.
Bouraoui, F., Benabdallah, S., Jrad, A. & Bidoglio, G. (2005).
Application of the SWAT model on the Medjerda river basin (Tunisia).
Physics and Chemistry of the Earth, Parts A/B/C, 30(8–10), 497-507.
Bosch, J.M., Hewlett, J.D., 1982. A review of catchment experiments to
determine the effect of vegetation changes on water yield and
evapotranspiration. J. Hydrol. 55: 3–23.
https://doi.org/10.1016/0022-1694(82)90117-2.
Clerici, N., Cote-Navarro, F., Escobedo, F.J., Rubiano, K., Villegas,
J.C., 2019. Spatio-temporal and cumulative effects of land use-land
cover and climate change on two ecosystem services in the Colombian
Andes. Sci. Total Environ. 685, 1181–1192.
Fontes Júnior, R., & Montenegro, A. (2019). Impact of Land Use Change
on The Water Balance In A Representative Watershed In The Semiarid Of
The State Of Pernambuco Using The Swat Model. Engenharia Agrícola,
39(1), 110–117. doi:10.1590/1809-4430-eng.agric.v39n1p110-117/2019.
Hajihosseini, M., Hajihosseini, H., Morid, S., Delavar,M. & Booij, M.J.
(2019). Impacts of land use changes and climate variability on
transboundary Hirmand River using SWAT. Journal of Water and Climate
Change, jwc2019100. doi: https://doi.org/10.2166/wcc.2019.100.
Gashaw, T., Tulu, T., Argaw, M., Worqlul, A.W., 2018. Modeling the
hydrological impacts of land use/land cover changes in the Andassa
watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ.
619–620:1394–1408. https://doi.org/
10.1016/j.scitotenv.2017.11.191.
Garnier, M. and Holman, I. (2019)
Critical Review of Adaptation Measures to Reduce the Vulnerability of
European Drinking Water Resources to the Pressures of Climate Change.Environmental Management. doi:10.1007/s00267-019-01184-5
Gassman, P.W., Reyes, M.R., Green, C.H. & Arnold, J.G. (2007). The soil
and water assessment tool: historical development, applications, and
future research directions. Trans. ASABE, 50 (4), 1211–1250.
Giri, S., Qiu, Z., 2016. Understanding the relationship of land uses and
water quality in twenty first century: a review. J. Environ.
Manag. 173, 41–48.
Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006).
Guidelines for soil description. 4th ed. Rome: Food and Agriculture
Organization of the United Nations, p. 67–77.
IPCC (2018) Summary for Policymakers. In: Masson-Delmotte, V, Zhai P,
Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W,
Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI,
Lonnoy E, Maycock M, Tignor M, Waterfield T (eds) Global Warming of 1.5
°C. An IPCC Special Report on the impacts of global warming of 1.5 °C
above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the
threat of climate change, sustainable development, and efforts to
eradicate poverty.
Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D. & Setegn, S.G.
(2011). Land use and climate change impacts on the hydrology of the
upper Mara River Basin, Kenya: results of a modeling study to support
better resource management. Hydrol. Earth Syst. Sci., 15, 2245-2258,
https://doi.org/10.5194/hess-15-2245-2011.
Mello, K., Costa, D.R., Valente, R.A., Vettorazzi, C.A., 2018a.
Multicriteria evaluation for protected area definition aiming at water
quality improvement. Brazilian Journal of Forestry and
Environment 25 (3), e20160134. https://doi.org/10.1590/2179-
8087.013416. Mello, K., Randhir, T.O., 2018. Diagnosis.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel,
R. D., Veith, T. L., 2007. Model Evaluation Guıdelines for Systematic
Quantifıcation of Accuracy in Watershed Simulations. American Society of
Agricultural and Biological Engineers, 50(3), 885−900.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R. & Williams, J.R. (2005). Soil
and water assessment tool theoretical documentation, Version 2005,
USDA.ARS Grassland, Soil and Water Research Laboratory, Temple, TX.
Available at: <www.brc.tamus.edu/swat/ doc.html>
Osei, M. A., Amekudzi, L. K., Wemegah, D. D., Preko, K., Gyawu, E. S.,
& Obiri-Danso, K. (2019). The impact of climate and land-use changes on
the hydrological processes of Owabi catchment from SWAT analysis.
Journal of Hydrology: Regional Studies, 25, 100620.
doi:10.1016/j.ejrh.2019.100620
Shen, Z., Zhong, Y., Huang, Q. & Chen, L. (2015). Identifying non-point
source priority management areas in watersheds with multiple functional
zones. Water Research, 68, 563-571.
Su, W., Ahern, J.F., Chang, C., 2016. Why should we pay attention to
“inconsistent” land uses? A viewpoint on water quality. Landsc.
Ecol. Eng . 12 (2), 247–254.
Tamm, O., Maasikamäe, S., Padari, A., & Tamm, T. (2018). Modelling the
effects of land use and climate change on the water resources in the
eastern Baltic Sea region using the SWAT model. CATENA, 167, 78–89.
doi:10.1016/j.catena.2018.04.029
Trolle, D., Nielsen, A., Andersen, H.E., Thodsen, H., Olesen, J.E.,
Børgesen, C.D., et al., 2019. Effects of changes in land use and climate
on aquatic ecosystems: coupling of models and decomposition of
uncertainties. Sci. Total Environ . 657, 627–633.
UNESCO, 2019. The United Nations World Water Development Report 2019:
Leaving No One behind. UNESCO, Paris. Available in:
https://www.unwater.org/publication
s/world-water-development-report-2019/.
Qi, J., Li, S., Bourque, C. P.-A., Xing, Z., & Meng, F.-R. (2018).
Developing a decision support tool for assessing land use change and
BMPs in ungauged watersheds based on decision rules provided by SWAT
simulation. Hydrol. Earth Syst. Sci.,, 22(7), 3789–3806.
doi:10.5194/hess-22-3789-2018
Qiu J, Shen Z, Leng G, Xie H, Hou X and Guoyuan, W. (2019) Impacts of
climate change on watershed systems and potential adaptation through
BMPs in a drinking water source area. Hydrol. , 573 ,
123–135.https://doi.org/10.1016/j.jhydrol.2019.03.074
Wang, Q., Liu, R., Men, C., Guo, L., & Miao, Y. (2018). Effects of
dynamic land use inputs on improvement of SWAT model performance and
uncertainty analysis of outputs. Journal of Hydrology, 563, 874–886.
doi:10.1016/j.jhydrol.2018.06.063.
Wagner, P.D., Bhallamudi, S.M., Narasimhan, B., Kumar, S., Fohrer, N.,
Fiener, P., 2017. Comparing the effects of dynamic versus static
representations of land use change in hydrologic impact assessments.
Environ. Model. Softw. https://doi.org/10.1016/j.
envsoft.2017.06.023.
Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global
water resources: vulnerability from climate change and population
growth. Science 289, 284–288.
Zhang, H., Wang, B., Li Liu, D., Zhang, M., Leslie, L. M., & Yu, Q.
(2020). Using an improved SWAT model to simulate hydrological responses
to land use change: a case study of a catchment in tropical Australia.
Journal of Hydrology, 124822. doi:10.1016/j.jhydrol.2020.124822
Table 1. Calibration parameters for hydrological processes