References:
  1. Achenbach, J.E., Gallardo, C., Nieto‐Pelegrín, E., Rivera‐Arroyo, B., Degefa‐Negi, T., Arias, M., Jenberie, S., Mulisa, D. D., Gizaw, D., Gelaye, E. & Chibssa, T. R. (2017). Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transboundary and emerging diseases, 64(5), 1393-1404.doi : 10.1111/tbed.12511
  2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D. & Pyshkin, A.V. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455-477.doi:  10.1089/cmb.2012.0021
  3. Bao, J., Wang, Q., Lin, P., Liu, C., Li, L., Wu, X., Chi, T., Xu, T., Ge, S., Liu, Y. & Wang, Z. (2019). Genome comparison of African swine fever virus China/2018/Anhui XCGQ strain and related European p72 genotype II strains. Transboundary and emerging diseases, 66(3), 1167-1176.doi : 10.1111/tbed.13124
  4. Bishop, R. P., Fleischauer, C., de Villiers, E. P., Okoth, E. A., Arias, M., Gallardo, C., & Upton, C. (2015). Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes, 50, 303–309. https://doi.org/10.1007/s11262-014-1156-7
  5. Bisimwa, P. N., Ishara, L. K., Wasso, D. S., Bantuzeko, F., Tonui, R., &Bwihangane, A. B. (2021). Detection and genetic characterization of African swine fever virus (ASFV) in clinically infected pigs in two districts in South Kivu province, Democratic Republic Congo. Heliyon, 7(3), e06419.doi :10.1016/j.heliyon.2021.e06419
  6. Bolger, A.M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  7. Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., Holinka, L.G., Velazquez-Salinas, L., Zhu, J. & Gladue, D.P. (2020). Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Journal of virology, 94(7), 2017-19.doi : 10.1128/JVI.02017-19
  8. Chapman, D.A., Darby, A.C., Da Silva, M., Upton, C., Radford, A.D. & Dixon, L.K. (2011). Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerging infectious diseases, 17(4), 599.doi : 10.3201/eid1704.101283
  9. CortiñasAbrahantes, J., Gogin, A., Richardson, J., & Gervelmeyer, A. (2017). Epidemiological analyses on African swine fever in the Baltic countries and Poland. European Food Safety Authority (EFSA), EFSA Journal, 15(3), e04732.doi :10.2903/j.efsa.2017.4732
  10. Dixon, L. K., Chapman, D. A., Netherton, C. L., & Upton, C. (2012). African swine fever virus replication and genomics. Virus research, 173(1), 3-14. doi : 10.1016/j.virusres.2012.10.020
  11. Fernández‐Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gómez, C., Bishop, R., Heath, L., Couacy‐Hymann, E., Fasina, F.O., Pelayo, V. & Soler, A. (2013). Molecular diagnosis of African swine fever by a new real‐time PCR using universal probe library. Transboundary and emerging diseases, 60(1), 48-58.doi : 10.1111/j.1865-1682.2012.01317.x
  12. Gilliaux, G., Garigliany, M., Licoppe, A., Paternostre, J., Lesenfants, C., Linden, A., & Desmecht, D. (2019). Newly emerged African swine fever virus strain Belgium/Etalle/wb/2018: complete genomic sequence and comparative analysis with reference p72 genotype II strains. Transboundary and emerging diseases, 66(6), 2566-2591.doi : 10.1111/tbed.13302
  13. Jia, L., Jiang, M., Wu, K., Hu, J., Wang, Y., Quan, W. Hao M, Liu H, Wei H, Fan W, Liu W, Hu R, Wang D, Li J, Chen J & Liu, D. (2020). Nanopore sequencing of African swine fever virus. Science China Life Sciences, 63(1), 160-164. doi : 10.1007/s11427-019-9828-1.
  14. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4), 1160-1166. https://doi.org/10.1093/bib/bbx108
  15. Kim, D., Langmead, B. & Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature methods, 12(4), 357-360.doi : 10.1038/nmeth.3317
  16. Kim, S.H., Kim, J., Son, K., Choi, Y., Jeong, H.S., Kim, Y.K., Park, J.E., Hong, Y.J., Lee, S.I., Wang, S.J. & Lee, H.S., (2020). Wild boar harbouring African swine fever virus in the demilitarized zone in South Korea, 2019. Emerging microbes & infections, 9(1), 628-630. https://doi.org/10.1080/22221751.2020.1738904
  17. Kovalenko, G., Ducluzeau, A. L., Ishchenko, L., Sushko, M., Sapachova, M., Rudova, N., Solodiankin, O., Gerilovych, A., Dagdag, R., Redlinger, M. & Drown, D. M. (2019). Complete genome sequence of a virulent african swine fever virus from a domestic pig in Ukraine. Microbiology resource announcements, 8(42), e00883-19.doi : 10.1128/MRA.00883-19
  18. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21), 4453-4455.doi : 10.1093/bioinformatics/btz305
  19. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547.doi : 10.1093/molbev/msy096
  20. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic acids research, 49(W1), 293-296.  doi : 10.1093/nar/gkab301
  21. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.doi : 10.1093/bioinformatics/btp352
  22. Mazloum, A., van Schalkwyk, A., Shotin, A., Igolkin, A., Shevchenko, I., Gruzdev, K. N., & Vlasova, N. (2021). Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens, 10(5), 521.  https://doi.org/10.3390/pathogens10050521
  23. Mazur-Panasiuk, N., Walczak, M., Juszkiewicz, M. & Woźniakowski, G. (2020). The spillover of African swine fever in Western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L genomic sequences. Viruses, 12(10), 1094.doi : 10.3390/v12101094
  24. Mazur-Panasiuk, N., Woźniakowski, G. & Niemczuk, K. (2019). The first complete genomic sequences of African swine fever virus isolated in Poland. Scientific reports, 9(1), 1-9.https://doi.org/10.1038/s41598-018-36823-0
  25. Montgomery, R. E. (1921). On a form of swine fever occurring in British East Africa (Kenya Colony). Journal of comparative pathology and therapeutics, 34, 159-191.
  26. OIE report, 2021, retrieved from https://rr-asia.oie.int/en/projects/asf/situational-updates-of-asf/
  27. Olasz, F., Mészáros, I., Marton, S., Kaján, G. L., Tamás, V., Locsmándi, G., Magyar, T., Bálint, Á.,Bányai, K. & Zádori, Z. (2019). A simple method for sample preparation to facilitate efficient whole-genome sequencing of African swine fever virus. Viruses, 11(12), 1129.doi : 10.3390/v11121129
  28. Rajukumar, K., Senthilkumar, D., Venkatesh, G., Singh, F., Patil, V.P., Kombiah, S., Tosh, C., Dubey, C.K., Sen, A., Barman, N.N. & Chakravarty, A. (2021). Genetic characterization of African swine fever virus from domestic pigs in India. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.13986
  29. Sambrook, J., & Russell, D. W. (2006). Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols, 2006(1), pdb-prot4455.doi :10.1101/pdb.prot4455
  30. Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of comparative pathology, 152(1), 9-21.doi : 10.1016/j.jcpa.2014.09.003
  31. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution, 10(3), 512-526.doi : 10.1093/oxfordjournals.molbev.a040023
  32. Tcherepanov, V., Ehlers, A. & Upton, C. (2006). Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.https://doi.org/10.1186/1471-2164-7-150
  33. Tran, H.T.T., Truong, A.D., Dang, A.K., Ly, D.V., Nguyen, C.T., Chu, N.T., Hoang, T.V., Nguyen, H.T. & Dang, H.V. (2021). Circulation of two different variants of intergenic region (IGR) located between the I73R and I329L genes of African swine fever virus strains in Vietnam. Transboundary and Emerging Diseases.doi : 10.1111/tbed.13996
  34. Wen, X., He, X., Zhang, X., Zhang, X., Liu, L., Guan, Y., Zhang, Y. & Bu, Z. (2019). Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerging microbes & infections, 8(1), 303-306.doi : 10.1080/22221751.2019.1565915
  35. Yanez, R. J., Rodrı́guez, J. M., Nogal, M. L., Yuste, L., Enrı́quez, C., Rodriguez, J. F., & Vinuela, E. (1995). Analysis of the complete nucleotide sequence of African swine fever virus. Virology, 208(1), 249-278.doi : 10.1006/viro.1995.1149
  36. Zsak, L.A.S.Z.L.O., Borca, M.V., Risatti, G.R., Zsak, A., French, R.A., Lu, Z., Kutish, G.F., Neilan, J.G., Callahan, J.D., Nelson, W.M. & Rock, D.L., (2005). Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. Journal of Clinical Microbiology, 43, 112–119.doi : 10.1128/JCM.43.1.112-119.2005