References:
- Achenbach, J.E., Gallardo, C., Nieto‐Pelegrín, E., Rivera‐Arroyo, B.,
Degefa‐Negi, T., Arias, M., Jenberie, S., Mulisa, D. D., Gizaw, D.,
Gelaye, E. & Chibssa, T. R. (2017). Identification of a new genotype
of African swine fever virus in domestic pigs from Ethiopia.
Transboundary and emerging diseases, 64(5), 1393-1404.doi : 10.1111/tbed.12511
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M.,
Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski,
A.D. & Pyshkin, A.V. (2012). SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. Journal of
computational biology, 19(5), 455-477.doi: 10.1089/cmb.2012.0021
- Bao, J., Wang, Q., Lin, P., Liu, C., Li, L., Wu, X., Chi, T., Xu, T.,
Ge, S., Liu, Y. & Wang, Z. (2019). Genome comparison of African swine
fever virus China/2018/Anhui XCGQ strain and related European p72
genotype II strains. Transboundary and emerging diseases, 66(3),
1167-1176.doi : 10.1111/tbed.13124
- Bishop, R. P., Fleischauer, C., de Villiers, E. P., Okoth, E. A.,
Arias, M., Gallardo, C., & Upton, C. (2015). Comparative analysis of
the complete genome sequences of Kenyan African swine fever virus
isolates within p72 genotypes IX and X. Virus Genes, 50, 303–309.
https://doi.org/10.1007/s11262-014-1156-7
- Bisimwa, P. N., Ishara, L. K., Wasso, D. S., Bantuzeko, F., Tonui, R.,
&Bwihangane, A. B. (2021). Detection and genetic characterization of
African swine fever virus (ASFV) in clinically infected pigs in two
districts in South Kivu province, Democratic Republic
Congo. Heliyon, 7(3), e06419.doi :10.1016/j.heliyon.2021.e06419
- Bolger, A.M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
https://doi.org/10.1093/bioinformatics/btu170
- Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A.,
Pruitt, S., Holinka, L.G., Velazquez-Salinas, L., Zhu, J. & Gladue,
D.P. (2020). Development of a highly effective African swine fever
virus vaccine by deletion of the I177L gene results in sterile
immunity against the current epidemic Eurasia strain. Journal of
virology, 94(7), 2017-19.doi : 10.1128/JVI.02017-19
- Chapman, D.A., Darby, A.C., Da Silva, M., Upton, C., Radford, A.D. &
Dixon, L.K. (2011). Genomic analysis of highly virulent Georgia 2007/1
isolate of African swine fever virus. Emerging infectious diseases,
17(4), 599.doi : 10.3201/eid1704.101283
- CortiñasAbrahantes, J., Gogin, A., Richardson, J., & Gervelmeyer, A.
(2017). Epidemiological analyses on African swine fever in the Baltic
countries and Poland. European Food Safety Authority (EFSA), EFSA
Journal, 15(3), e04732.doi :10.2903/j.efsa.2017.4732
- Dixon, L. K., Chapman, D. A., Netherton, C. L., & Upton, C. (2012).
African swine fever virus replication and genomics. Virus research,
173(1), 3-14. doi : 10.1016/j.virusres.2012.10.020
- Fernández‐Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gómez,
C., Bishop, R., Heath, L., Couacy‐Hymann, E., Fasina, F.O., Pelayo, V.
& Soler, A. (2013). Molecular diagnosis of African swine fever by a
new real‐time PCR using universal probe library. Transboundary and
emerging diseases, 60(1), 48-58.doi : 10.1111/j.1865-1682.2012.01317.x
- Gilliaux, G., Garigliany, M., Licoppe, A., Paternostre, J.,
Lesenfants, C., Linden, A., & Desmecht, D. (2019). Newly emerged
African swine fever virus strain Belgium/Etalle/wb/2018: complete
genomic sequence and comparative analysis with reference p72 genotype
II strains. Transboundary and emerging diseases, 66(6), 2566-2591.doi : 10.1111/tbed.13302
- Jia, L., Jiang, M., Wu, K., Hu, J., Wang, Y., Quan, W. Hao M, Liu H,
Wei H, Fan W, Liu W, Hu R, Wang D, Li J, Chen J & Liu, D. (2020).
Nanopore sequencing of African swine fever virus. Science China Life
Sciences, 63(1), 160-164. doi : 10.1007/s11427-019-9828-1.
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019). MAFFT online service:
multiple sequence alignment, interactive sequence choice and
visualization. Briefings in bioinformatics, 20(4), 1160-1166.
https://doi.org/10.1093/bib/bbx108
- Kim, D., Langmead, B. & Salzberg, S.L. (2015). HISAT: a fast spliced
aligner with low memory requirements. Nature methods, 12(4), 357-360.doi : 10.1038/nmeth.3317
- Kim, S.H., Kim, J., Son, K., Choi, Y., Jeong, H.S., Kim, Y.K., Park,
J.E., Hong, Y.J., Lee, S.I., Wang, S.J. & Lee, H.S., (2020). Wild
boar harbouring African swine fever virus in the demilitarized zone in
South Korea, 2019. Emerging microbes & infections, 9(1), 628-630.
https://doi.org/10.1080/22221751.2020.1738904
- Kovalenko, G., Ducluzeau, A. L., Ishchenko, L., Sushko, M., Sapachova,
M., Rudova, N., Solodiankin, O., Gerilovych, A., Dagdag, R.,
Redlinger, M. & Drown, D. M. (2019). Complete genome sequence of a
virulent african swine fever virus from a domestic pig in
Ukraine. Microbiology resource announcements, 8(42), e00883-19.doi : 10.1128/MRA.00883-19
- Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A.
(2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics, 35(21), 4453-4455.doi : 10.1093/bioinformatics/btz305
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA
X: molecular evolutionary genetics analysis across computing
platforms. Molecular biology and evolution, 35(6), 1547.doi : 10.1093/molbev/msy096
- Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5:
an online tool for phylogenetic tree display and annotation. Nucleic
acids research, 49(W1), 293-296.
doi : 10.1093/nar/gkab301
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G., Abecasis, G. & Durbin, R. (2009). The sequence
alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.doi : 10.1093/bioinformatics/btp352
- Mazloum, A., van Schalkwyk, A., Shotin, A., Igolkin, A., Shevchenko,
I., Gruzdev, K. N., & Vlasova, N. (2021). Comparative Analysis of
Full Genome Sequences of African Swine Fever Virus Isolates Taken from
Wild Boars in Russia in 2019. Pathogens, 10(5), 521.
https://doi.org/10.3390/pathogens10050521
- Mazur-Panasiuk, N., Walczak, M., Juszkiewicz, M. & Woźniakowski, G.
(2020). The spillover of African swine fever in Western Poland
revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R
and IGR I73R/I329L genomic sequences. Viruses, 12(10), 1094.doi : 10.3390/v12101094
- Mazur-Panasiuk, N., Woźniakowski, G. & Niemczuk, K. (2019). The first
complete genomic sequences of African swine fever virus isolated in
Poland. Scientific reports, 9(1), 1-9.https://doi.org/10.1038/s41598-018-36823-0
- Montgomery, R. E. (1921). On a form of swine fever occurring in
British East Africa (Kenya Colony). Journal of comparative pathology
and therapeutics, 34, 159-191.
- OIE report, 2021, retrieved from
https://rr-asia.oie.int/en/projects/asf/situational-updates-of-asf/
- Olasz, F., Mészáros, I., Marton, S., Kaján, G. L., Tamás, V.,
Locsmándi, G., Magyar, T., Bálint, Á.,Bányai, K. & Zádori, Z. (2019).
A simple method for sample preparation to facilitate efficient
whole-genome sequencing of African swine fever virus. Viruses, 11(12),
1129.doi : 10.3390/v11121129
- Rajukumar, K., Senthilkumar, D., Venkatesh, G., Singh, F., Patil,
V.P., Kombiah, S., Tosh, C., Dubey, C.K., Sen, A., Barman, N.N. &
Chakravarty, A. (2021). Genetic characterization of African swine
fever virus from domestic pigs in India. Transboundary and Emerging
Diseases. https://doi.org/10.1111/tbed.13986
- Sambrook, J., & Russell, D. W. (2006). Purification of nucleic acids
by extraction with phenol: chloroform. Cold Spring Harbor
Protocols, 2006(1),
pdb-prot4455.doi :10.1101/pdb.prot4455
- Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., &
Carrasco, L. (2015). An update on the epidemiology and pathology of
African swine fever. Journal of comparative pathology, 152(1), 9-21.doi : 10.1016/j.jcpa.2014.09.003
- Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide
substitutions in the control region of mitochondrial DNA in humans and
chimpanzees. Molecular biology and evolution, 10(3), 512-526.doi : 10.1093/oxfordjournals.molbev.a040023
- Tcherepanov, V., Ehlers, A. & Upton, C. (2006). Genome Annotation
Transfer Utility (GATU): rapid annotation of viral genomes using a
closely related reference genome.https://doi.org/10.1186/1471-2164-7-150
- Tran, H.T.T., Truong, A.D., Dang, A.K., Ly, D.V., Nguyen, C.T., Chu,
N.T., Hoang, T.V., Nguyen, H.T. & Dang, H.V. (2021). Circulation of
two different variants of intergenic region (IGR) located between the
I73R and I329L genes of African swine fever virus strains in Vietnam.
Transboundary and Emerging Diseases.doi : 10.1111/tbed.13996
- Wen, X., He, X., Zhang, X., Zhang, X., Liu, L., Guan, Y., Zhang, Y. &
Bu, Z. (2019). Genome sequences derived from pig and dried blood pig
feed samples provide important insights into the transmission of
African swine fever virus in China in 2018. Emerging microbes &
infections, 8(1), 303-306.doi : 10.1080/22221751.2019.1565915
- Yanez, R. J., Rodrı́guez, J. M., Nogal, M. L., Yuste, L., Enrı́quez, C.,
Rodriguez, J. F., & Vinuela, E. (1995). Analysis of the complete
nucleotide sequence of African swine fever virus. Virology, 208(1),
249-278.doi : 10.1006/viro.1995.1149
- Zsak, L.A.S.Z.L.O., Borca, M.V., Risatti, G.R., Zsak, A., French,
R.A., Lu, Z., Kutish, G.F., Neilan, J.G., Callahan, J.D., Nelson, W.M.
& Rock, D.L., (2005). Preclinical diagnosis of African swine fever in
contact-exposed swine by a real-time PCR assay. Journal of Clinical
Microbiology, 43, 112–119.doi : 10.1128/JCM.43.1.112-119.2005