References
1. Bowles, M.W., J.M. Mogollan, S. Kasten, M. Zabel, and K.U. Hinrichs. 2014. Global rates of marine sulfate reduction and implications for sub- sea-floor metabolic activities. Science.. 344: 889–891.
2. Jørgensen, B.B., A.J. Findlay, and A. Pellerin. 2019. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10: 849.
3. Canfield, D.E. 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci. 291: 177–188.
4. Fike, D.A., A.S. Bradley, and C. V. Rose. 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43: 593–622.
5. Canfield, D.E., K.S. Habicht, and B. Thamdrup. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science.. 288: 658–661.
6. Shen, Y., R. Buick, and D.E. Canfield. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature. 410: 77–81.
7. Santos, A.A., S.S. Venceslau, F. Grein, W.D. Leavitt, C. Dahl, D.T. Johnston, and I.A.C. Pereira. 2015. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science.. 350: 1541–1545.
8. Skyring, G.W., and T.H. Donnelly. 1982. Precambrian sulfur isotopes and a possible role for sulfite in the evolution of biological sulfate reduction. Precambrian Res. 17: 41–61.
9. Rabus, R., S.S. Venceslau, L. Wohlbrand, G. Voordouw, J.D. Wall, and I.A.C. Pereira. 2015. Chapter Two - A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. In: Poole RK, editor. Advances in Microbial Physiology. Academic Press. pp. 55–321.
10. Grein, F., A.R. Ramos, S.S. Venceslau, and I.A.C. Pereira. 2013. Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochim. Biophys. Acta - Bioenerg. 1827: 145–160.
11. Colman, D.R., M.R. Lindsay, M.J. Amenabar, M.C. Fernandes-Martins, E.R. Roden, and E.S. Boyd. 2020. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. ISME J. 14: 1316–1331.
12. Chernyh, N.A., S. Neukirchen, E.N. Frolov, F.L. Sousa, M.L. Miroshnichenko, A.Y. Merkel, N. V. Pimenov, D.Y. Sorokin, S. Ciordia, M.C. Mena, M. Ferrer, P.N. Golyshin, A. V. Lebedinsky, I.A. Cardoso Pereira, and E.A. Bonch-Osmolovskaya. 2020. Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism. Nat. Microbiol. 5: 1428–1438.
13. Ranjan, S., Z.R. Todd, J.D. Sutherland, and D.D. Sasselov. 2018. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. Astrobiology. 18: 1023–1040.
14. Luo, G., S. Ono, N.J. Beukes, D.T. Wang, S. Xie, and R.E. Summons. 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2: 0–10.
15. Canfield, D.E., and R. Raiswell. 1999. The evolution of the sulfur cycle. Am. J. Sci. 299: 697–723.
16. Zhang, J.-Z., and F. Millero. 1991. The rate of sulfite oxidation in seawater. Geochim. Cosmochim. Acta. 55: 677–685.
17. Thauer, R.K., K. Jungermann, and K. Decker. 1977. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev. 41: 100–180.
18. Seitz, H.J., and H. Cypionka. 1986. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146: 63–67.
19. Nethe-Jaenchen, R., and R.K. Thauer. 1984. Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch. Microbiol. 137: 236–240.
20. Schiffer, A., K. Parey, E. Warkentin, K. Diederichs, H. Huber, K.O. Stetter, P.M.H. Kroneck, and U. Ermler. 2008. Structure of the Dissimilatory Sulfite Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus. J. Mol. Biol. 379: 1063–1074.
21. Larsen, Ø., T. Lien, and N.K. Birkeland. 1999. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: Phylogenetic and structural implications from gene sequences. Extremophiles. 3: 63–70.
22. Klein, M., M. Friedrich, A.J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L.L. Blackall, D.A. Stahl, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183: 6028–6035.
23. Müller, A.L., K.U. Kjeldsen, T. Rattei, M. Pester, and A. Loy. 2015. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9: 1152–1165.
24. Anantharaman, K., B. Hausmann, S.P. Jungbluth, R.S. Kantor, A. Lavy, L.A. Warren, M.S. Rappé, M. Pester, A. Loy, B.C. Thomas, and J.F. Banfield. 2018. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 12: 1715–1728.
25. Morcos, F., A. Pagnani, B. Lunt, A. Bertolino, D.S. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, and M. Weigt. 2011. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. U. S. A. 108.
26. Marks, D.S., T.A. Hopf, and C. Sander. 2012. perspective Protein structure prediction from sequence variation. Nat. Publ. Gr. 30.
27. Wang, X., X. Jing, Y. Deng, Y. Nie, F. Xu, Y. Xu, Y. Zhao, and T. Szyperski. 2020. Evolutionary coupling saturation mutagenesis : Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. 594: 799–812.
28. Kuipers, R., H.-J. Jootsen, E. Verwiel, S. Paans, J. Akerboom, J. vsn der Oost, N. Leferink, W. van Berkel, G. Vriend, and P. Schaap. 2009. Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins Struct. Funct. Bioinforma. 76: 608–615.
29. Danyal, K., S. Shaw, T.R. Page, S. Duval, M. Horitani, A.R. Marts, D. Lukoyanov, D.R. Dean, S. Raugei, B.M. Hoffman, L.C. Seefeldt, and E. Antony. 2016. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. Proc. Natl. Acad. Sci. U. S. A. 113: E5783–E5791.
30. Sievers, F., A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J.D. Thompson, and D.G. Higgins. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7.
31. Pei, J., B.H. Kim, and N. V. Grishin. 2008. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36: 2295–2300.
32. Oliveira, T.F., C. Vonrhein, P.M. Matias, S.S. Venceslau, I.A.C. Pereira, and M. Archer. 2008. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 283: 34141–34149.
33. Catherinot, V., and G. Labesse. 2004. ViTO: tool for refinement of protein sequence-structure alignments. Bioinforma. Appl. NOTE. 20: 3694–3696.
34. Šali, A., and T.L. Blundell. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.
35. Hsieh, Y.C., M.Y. Liu, V.C.C. Wang, Y.L. Chiang, E.H. Liu, W.G. Wu, S.I. Chan, and C.J. Chen. 2010. Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulphite reductase from Desulfovibrio gigas. Mol. Microbiol. 78: 1101–1116.
36. Parey, K., E. Warkentin, P.M.H. Kroneck, and U. Ermler. 2010. Reaction cycle of the dissimilatory sulfite reductase from archaeoglobus fulgidus. Biochemistry. 49: 8912–8921.
37. Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Z’idek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596: 583–589.
38. Hopf, T., C. Schärfe, J. Rodrigues, A. Green, O. Kohlbacher, C. Sander, A. Bonvin, and D. Marks. 2014. Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife. 3: e03430.
39. Hopf, T.A., A.G. Green, B. Schubert, J.B. Ingraham, S. Mersmann, C.P.I. Scha, A. Toth-petroczy, K. Brock, A.J. Riesselman, P. Palmedo, C. Kang, R. Sheridan, E.J. Draizen, C. Dallago, C. Sander, and D.S. Marks. 2019. Sequence analysis The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics. 35: 1582–1584.
40. Atilgan, A.R., S.R. Durell, R.L. Jernigan, M.C. Demirel, O. Keskin, and I. Bahar. 2001. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80: 505–515.
41. Eyal, E., G. Lum, and I. Bahar. 2015. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics. 31: 1487–1489.
42. Afonine, P. V, R.W. Grosse-Kunstleve, Echols, Nathaniel, J.J. Headd, N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H. Zwart, and P.D. Adams. 2012. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 68: 325–367.
43. Burnley, B.T., P.V. Afonine, P.D. Adams, and P. Gros. Modelling dynamics in protein crystal structures by ensemble refinement. Elife. 1: e00311.
44. Liebschner, D., P.V. Afonine, M.L. Baker, G. Buncoczi, V.B. Chen, T.I. Croll, B. Hintze, L.W. Hung, S. Jain, A.J. McCoy, N.W. Moriarty, R.D. Oeffner, B.K. Poon, M.J. Prisant, R.J. Read, J.S. Richardson, D.C. Richardson, M.D. Sammito, O.V. Sobolev, D.H. Stockwell, T.C. Terwilliger, A.G. Urzhumstev, L.L. VVideau, C.J. Williams, and P.D. Adams. 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D Biol. Crystallogr. 75: 861–877.
45. Colman, D.R., S. Poudel, B.W. Stamps, E.S. Boyd, and J.R. Spear. 2017. The deep, hot biosphere: Twenty-five years of retrospection. Proc. Natl. Acad. Sci. U. S. A. 114: 6895–6903.
46. Oliveira, T.F., E. Franklin, J.P. Afonso, A.R. Khan, N.J. Oldham, I.A.C. Pereira, and M. Archer. 2011. Structural insights into dissimilatory sulfite reductases: Structure of desulforubidin from Desulfomicrobium norvegicum. Front. Microbiol. 2: 71.
47. Pereira, I.A.C., A.R. Ramos, F. Grein, M.C. Marques, S.M. da Silva, and S.S. Venceslau. 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2: 1–22.
48. Anishchenko, I., S. Ovchinnikov, H. Kamisetty, and D. Baker. 2017. Origins of coevolution between residues distant in protein 3D structures. Proc. Natl. Acad. Sci. U. S. A. 114: 9122–9127.
49. Xu, C., D. Tobi, and I. Bahar. 2003. Allosteric changes in protein structure computed by a simple mechanical model: Hemoglobin T ↔ R2 transition. J. Mol. Biol. 333: 153–168.
50. Ando, N., B. Barquera, D.H. Bartlett, E. Boyd, A.A. Burnim, A.S. Byer, D. Colman, R.E. Gillilan, M. Gruebele, G. Makhatadze, C.A. Royer, E. Shock, A.J. Wand, and M.B. Watkins. 2021. The Molecular Basis for Life in Extreme Environments. Annu. Rev. Biophys. 50: 343–372.
51. Dahl, C., N.M. Kredich, R. Deutzmann, and H.G. Truper. 1993. Dissimilatory sulphite reductase from Archaeoglobus fulgidus: Physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J. Gen. Microbiol. 139: 1817–1828.
52. Aramini, J.M., K. Hamilton, L.C. Ma, G.V.T. Swapna, P.G. Leonard, J.E. Ladbury, R.M. Krug, and G.T. Montelione. 2014. F NMR Reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure. 22: 515–525.
53. Huang, Y.J., and G.T. Montelione. 2005. Proteins flex to function. Nature. 438: 36–37.
54. Schreiber, G., and A. Keating. 2011. Protein Binding Specificity versus Promiscuity Gideon. Curr Opin Struct Biol. 21: 50–61.
55. Ferreira, D., and A.C.C. Barbosa. 2022. The DsrD functional marker protein is an allosteric activator of the DsrAB dissimilatory sul fi te reductase. : 1–9.
56. Lockless, S.W., and R. Ranganathan. 1999. Evolutionarily conserved pathways of energetic connectivity in protein families. Science.. 286: 295–299.
57. Süel, G.M., S.W. Lockless, M.A. Wall, and R. Ranganathan. 2003. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10: 59–69.
58. Reynolds, K.A., R.N. McLaughlin, and R. Ranganathan. 2011. Hot spots for allosteric regulation on protein surfaces. Cell. 147: 1564–1575.
59. Dima, R.I. 2006. Determination of network of residues that regulate allostery in protein families using sequence analysis. Protein Sci. 15: 258–268.
60. Beckett, D. 2012. Hydrogen–Deuterium Exchange Studyof an Allosteric Energy Cycle. In: Methods in Molecular Biology. . pp. 261–278.
61. Peacock, R.B., and E.A. Komives. 2021. Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry. 60: 3441–3448.
62. Ribeiro, A.A.S.T., and V. Ortiz. 2016. A Chemical Perspective on Allostery. Chem. Rev. 116: 6488–6502.