References
1. Bowles, M.W., J.M. Mogollan, S. Kasten, M. Zabel, and K.U. Hinrichs.
2014. Global rates of marine sulfate reduction and implications for sub-
sea-floor metabolic activities. Science.. 344: 889–891.
2. Jørgensen, B.B., A.J. Findlay, and A. Pellerin. 2019. The
biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10:
849.
3. Canfield, D.E. 1991. Sulfate reduction in deep-sea sediments. Am. J.
Sci. 291: 177–188.
4. Fike, D.A., A.S. Bradley, and C. V. Rose. 2015. Rethinking the
ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43: 593–622.
5. Canfield, D.E., K.S. Habicht, and B. Thamdrup. 2000. The Archean
sulfur cycle and the early history of atmospheric oxygen. Science.. 288:
658–661.
6. Shen, Y., R. Buick, and D.E. Canfield. 2001. Isotopic evidence for
microbial sulphate reduction in the early Archaean era. Nature. 410:
77–81.
7. Santos, A.A., S.S. Venceslau, F. Grein, W.D. Leavitt, C. Dahl, D.T.
Johnston, and I.A.C. Pereira. 2015. A protein trisulfide couples
dissimilatory sulfate reduction to energy conservation. Science.. 350:
1541–1545.
8. Skyring, G.W., and T.H. Donnelly. 1982. Precambrian sulfur isotopes
and a possible role for sulfite in the evolution of biological sulfate
reduction. Precambrian Res. 17: 41–61.
9. Rabus, R., S.S. Venceslau, L. Wohlbrand, G. Voordouw, J.D. Wall, and
I.A.C. Pereira. 2015. Chapter Two - A Post-Genomic View of the
Ecophysiology, Catabolism and Biotechnological Relevance of
Sulphate-Reducing Prokaryotes. In: Poole RK, editor. Advances in
Microbial Physiology. Academic Press. pp. 55–321.
10. Grein, F., A.R. Ramos, S.S. Venceslau, and I.A.C. Pereira. 2013.
Unifying concepts in anaerobic respiration: Insights from dissimilatory
sulfur metabolism. Biochim. Biophys. Acta - Bioenerg. 1827: 145–160.
11. Colman, D.R., M.R. Lindsay, M.J. Amenabar, M.C. Fernandes-Martins,
E.R. Roden, and E.S. Boyd. 2020. Phylogenomic analysis of novel
Diaforarchaea is consistent with sulfite but not sulfate reduction in
volcanic environments on early Earth. ISME J. 14: 1316–1331.
12. Chernyh, N.A., S. Neukirchen, E.N. Frolov, F.L. Sousa, M.L.
Miroshnichenko, A.Y. Merkel, N. V. Pimenov, D.Y. Sorokin, S. Ciordia,
M.C. Mena, M. Ferrer, P.N. Golyshin, A. V. Lebedinsky, I.A. Cardoso
Pereira, and E.A. Bonch-Osmolovskaya. 2020. Dissimilatory sulfate
reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds
light on the evolution of sulfur metabolism. Nat. Microbiol. 5:
1428–1438.
13. Ranjan, S., Z.R. Todd, J.D. Sutherland, and D.D. Sasselov. 2018.
Sulfidic Anion Concentrations on Early Earth for Surficial
Origins-of-Life Chemistry. Astrobiology. 18: 1023–1040.
14. Luo, G., S. Ono, N.J. Beukes, D.T. Wang, S. Xie, and R.E. Summons.
2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago.
Sci. Adv. 2: 0–10.
15. Canfield, D.E., and R. Raiswell. 1999. The evolution of the sulfur
cycle. Am. J. Sci. 299: 697–723.
16. Zhang, J.-Z., and F. Millero. 1991. The rate of sulfite oxidation in
seawater. Geochim. Cosmochim. Acta. 55: 677–685.
17. Thauer, R.K., K. Jungermann, and K. Decker. 1977. Energy
Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev. 41:
100–180.
18. Seitz, H.J., and H. Cypionka. 1986. Chemolithotrophic growth of
Desulfovibrio desulfuricans with hydrogen coupled to ammonification of
nitrate or nitrite. Arch. Microbiol. 146: 63–67.
19. Nethe-Jaenchen, R., and R.K. Thauer. 1984. Growth yields and
saturation constant of Desulfovibrio vulgaris in chemostat culture.
Arch. Microbiol. 137: 236–240.
20. Schiffer, A., K. Parey, E. Warkentin, K. Diederichs, H. Huber, K.O.
Stetter, P.M.H. Kroneck, and U. Ermler. 2008. Structure of the
Dissimilatory Sulfite Reductase from the Hyperthermophilic Archaeon
Archaeoglobus fulgidus. J. Mol. Biol. 379: 1063–1074.
21. Larsen, Ø., T. Lien, and N.K. Birkeland. 1999. Dissimilatory sulfite
reductase from Archaeoglobus profundus and Desulfotomaculum
thermocisternum: Phylogenetic and structural implications from gene
sequences. Extremophiles. 3: 63–70.
22. Klein, M., M. Friedrich, A.J. Roger, P. Hugenholtz, S. Fishbain, H.
Abicht, L.L. Blackall, D.A. Stahl, and M. Wagner. 2001. Multiple lateral
transfers of dissimilatory sulfite reductase genes between major
lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183: 6028–6035.
23. Müller, A.L., K.U. Kjeldsen, T. Rattei, M. Pester, and A. Loy. 2015.
Phylogenetic and environmental diversity of DsrAB-type dissimilatory
(bi)sulfite reductases. ISME J. 9: 1152–1165.
24. Anantharaman, K., B. Hausmann, S.P. Jungbluth, R.S. Kantor, A. Lavy,
L.A. Warren, M.S. Rappé, M. Pester, A. Loy, B.C. Thomas, and J.F.
Banfield. 2018. Expanded diversity of microbial groups that shape the
dissimilatory sulfur cycle. ISME J. 12: 1715–1728.
25. Morcos, F., A. Pagnani, B. Lunt, A. Bertolino, D.S. Marks, C.
Sander, R. Zecchina, J.N. Onuchic, T. Hwa, and M. Weigt. 2011.
Direct-coupling analysis of residue coevolution captures native contacts
across many protein families. Proc. Natl. Acad. Sci. U. S. A. 108.
26. Marks, D.S., T.A. Hopf, and C. Sander. 2012. perspective Protein
structure prediction from sequence variation. Nat. Publ. Gr. 30.
27. Wang, X., X. Jing, Y. Deng, Y. Nie, F. Xu, Y. Xu, Y. Zhao, and T.
Szyperski. 2020. Evolutionary coupling saturation mutagenesis :
Coevolution-guided identification of distant sites influencing Bacillus
naganoensis pullulanase activity. 594: 799–812.
28. Kuipers, R., H.-J. Jootsen, E. Verwiel, S. Paans, J. Akerboom, J.
vsn der Oost, N. Leferink, W. van Berkel, G. Vriend, and P. Schaap.
2009. Correlated mutation analyses on super-family alignments reveal
functionally important residues. Proteins Struct. Funct. Bioinforma. 76:
608–615.
29. Danyal, K., S. Shaw, T.R. Page, S. Duval, M. Horitani, A.R. Marts,
D. Lukoyanov, D.R. Dean, S. Raugei, B.M. Hoffman, L.C. Seefeldt, and E.
Antony. 2016. Negative cooperativity in the nitrogenase Fe protein
electron delivery cycle. Proc. Natl. Acad. Sci. U. S. A. 113:
E5783–E5791.
30. Sievers, F., A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R.
Lopez, H. McWilliam, M. Remmert, J. Söding, J.D. Thompson, and D.G.
Higgins. 2011. Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7.
31. Pei, J., B.H. Kim, and N. V. Grishin. 2008. PROMALS3D: A tool for
multiple protein sequence and structure alignments. Nucleic Acids Res.
36: 2295–2300.
32. Oliveira, T.F., C. Vonrhein, P.M. Matias, S.S. Venceslau, I.A.C.
Pereira, and M. Archer. 2008. The crystal structure of Desulfovibrio
vulgaris dissimilatory sulfite reductase bound to DsrC provides novel
insights into the mechanism of sulfate respiration. J. Biol. Chem. 283:
34141–34149.
33. Catherinot, V., and G. Labesse. 2004. ViTO: tool for refinement of
protein sequence-structure alignments. Bioinforma. Appl. NOTE. 20:
3694–3696.
34. Šali, A., and T.L. Blundell. 1993. Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.
35. Hsieh, Y.C., M.Y. Liu, V.C.C. Wang, Y.L. Chiang, E.H. Liu, W.G. Wu,
S.I. Chan, and C.J. Chen. 2010. Structural insights into the enzyme
catalysis from comparison of three forms of dissimilatory sulphite
reductase from Desulfovibrio gigas. Mol. Microbiol. 78: 1101–1116.
36. Parey, K., E. Warkentin, P.M.H. Kroneck, and U. Ermler. 2010.
Reaction cycle of the dissimilatory sulfite reductase from archaeoglobus
fulgidus. Biochemistry. 49: 8912–8921.
37. Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O.
Ronneberger, K. Tunyasuvunakool, R. Bates, A. Z’idek, A. Potapenko, A.
Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B.
Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D.
Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T.
Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K.
Kavukcuoglu, P. Kohli, and D. Hassabis. 2021. Highly accurate protein
structure prediction with AlphaFold. Nature. 596: 583–589.
38. Hopf, T., C. Schärfe, J. Rodrigues, A. Green, O. Kohlbacher, C.
Sander, A. Bonvin, and D. Marks. 2014. Sequence co-evolution gives 3D
contacts and structures of protein complexes. Elife. 3: e03430.
39. Hopf, T.A., A.G. Green, B. Schubert, J.B. Ingraham, S. Mersmann,
C.P.I. Scha, A. Toth-petroczy, K. Brock, A.J. Riesselman, P. Palmedo, C.
Kang, R. Sheridan, E.J. Draizen, C. Dallago, C. Sander, and D.S. Marks.
2019. Sequence analysis The EVcouplings Python framework for
coevolutionary sequence analysis. Bioinformatics. 35: 1582–1584.
40. Atilgan, A.R., S.R. Durell, R.L. Jernigan, M.C. Demirel, O. Keskin,
and I. Bahar. 2001. Anisotropy of fluctuation dynamics of proteins with
an elastic network model. Biophys. J. 80: 505–515.
41. Eyal, E., G. Lum, and I. Bahar. 2015. The anisotropic network model
web server at 2015 (ANM 2.0). Bioinformatics. 31: 1487–1489.
42. Afonine, P. V, R.W. Grosse-Kunstleve, Echols, Nathaniel, J.J. Headd,
N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H.
Zwart, and P.D. Adams. 2012. Towards automated crystallographic
structure refinement with phenix.refine. Acta Crystallogr. Sect. D Biol.
Crystallogr. 68: 325–367.
43. Burnley, B.T., P.V. Afonine, P.D. Adams, and P. Gros. Modelling
dynamics in protein crystal structures by ensemble refinement. Elife. 1:
e00311.
44. Liebschner, D., P.V. Afonine, M.L. Baker, G. Buncoczi, V.B. Chen,
T.I. Croll, B. Hintze, L.W. Hung, S. Jain, A.J. McCoy, N.W. Moriarty,
R.D. Oeffner, B.K. Poon, M.J. Prisant, R.J. Read, J.S. Richardson, D.C.
Richardson, M.D. Sammito, O.V. Sobolev, D.H. Stockwell, T.C.
Terwilliger, A.G. Urzhumstev, L.L. VVideau, C.J. Williams, and P.D.
Adams. 2019. Macromolecular structure determination using X-rays,
neutrons and electrons: recent developments in Phenix. Acta Crystallogr.
Sect. D Biol. Crystallogr. 75: 861–877.
45. Colman, D.R., S. Poudel, B.W. Stamps, E.S. Boyd, and J.R. Spear.
2017. The deep, hot biosphere: Twenty-five years of retrospection. Proc.
Natl. Acad. Sci. U. S. A. 114: 6895–6903.
46. Oliveira, T.F., E. Franklin, J.P. Afonso, A.R. Khan, N.J. Oldham,
I.A.C. Pereira, and M. Archer. 2011. Structural insights into
dissimilatory sulfite reductases: Structure of desulforubidin from
Desulfomicrobium norvegicum. Front. Microbiol. 2: 71.
47. Pereira, I.A.C., A.R. Ramos, F. Grein, M.C. Marques, S.M. da Silva,
and S.S. Venceslau. 2011. A comparative genomic analysis of energy
metabolism in sulfate reducing bacteria and archaea. Front. Microbiol.
2: 1–22.
48. Anishchenko, I., S. Ovchinnikov, H. Kamisetty, and D. Baker. 2017.
Origins of coevolution between residues distant in protein 3D
structures. Proc. Natl. Acad. Sci. U. S. A. 114: 9122–9127.
49. Xu, C., D. Tobi, and I. Bahar. 2003. Allosteric changes in protein
structure computed by a simple mechanical model: Hemoglobin T ↔ R2
transition. J. Mol. Biol. 333: 153–168.
50. Ando, N., B. Barquera, D.H. Bartlett, E. Boyd, A.A. Burnim, A.S.
Byer, D. Colman, R.E. Gillilan, M. Gruebele, G. Makhatadze, C.A. Royer,
E. Shock, A.J. Wand, and M.B. Watkins. 2021. The Molecular Basis for
Life in Extreme Environments. Annu. Rev. Biophys. 50: 343–372.
51. Dahl, C., N.M. Kredich, R. Deutzmann, and H.G. Truper. 1993.
Dissimilatory sulphite reductase from Archaeoglobus fulgidus:
Physico-chemical properties of the enzyme and cloning, sequencing and
analysis of the reductase genes. J. Gen. Microbiol. 139: 1817–1828.
52. Aramini, J.M., K. Hamilton, L.C. Ma, G.V.T. Swapna, P.G. Leonard,
J.E. Ladbury, R.M. Krug, and G.T. Montelione. 2014. F NMR Reveals
multiple conformations at the dimer interface of the nonstructural
protein 1 effector domain from influenza A virus. Structure. 22:
515–525.
53. Huang, Y.J., and G.T. Montelione. 2005. Proteins flex to function.
Nature. 438: 36–37.
54. Schreiber, G., and A. Keating. 2011. Protein Binding Specificity
versus Promiscuity Gideon. Curr Opin Struct Biol. 21: 50–61.
55. Ferreira, D., and A.C.C. Barbosa. 2022. The DsrD functional marker
protein is an allosteric activator of the DsrAB dissimilatory sul fi te
reductase. : 1–9.
56. Lockless, S.W., and R. Ranganathan. 1999. Evolutionarily conserved
pathways of energetic connectivity in protein families. Science.. 286:
295–299.
57. Süel, G.M., S.W. Lockless, M.A. Wall, and R. Ranganathan. 2003.
Evolutionarily conserved networks of residues mediate allosteric
communication in proteins. Nat. Struct. Biol. 10: 59–69.
58. Reynolds, K.A., R.N. McLaughlin, and R. Ranganathan. 2011. Hot spots
for allosteric regulation on protein surfaces. Cell. 147: 1564–1575.
59. Dima, R.I. 2006. Determination of network of residues that regulate
allostery in protein families using sequence analysis. Protein Sci. 15:
258–268.
60. Beckett, D. 2012. Hydrogen–Deuterium Exchange Studyof an Allosteric
Energy Cycle. In: Methods in Molecular Biology. . pp. 261–278.
61. Peacock, R.B., and E.A. Komives. 2021. Hydrogen/Deuterium Exchange
and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on
Multiple Time Scales in the Serine Protease Thrombin. Biochemistry. 60:
3441–3448.
62. Ribeiro, A.A.S.T., and V. Ortiz. 2016. A Chemical Perspective on
Allostery. Chem. Rev. 116: 6488–6502.