http://doi.org/10.1186/2192-1709-2-20
Bainbridge, D.A. (2001). Irrigation and surface mulch effects on
transplant establishment. Native Plants Journal , 2, 25-29.
Barberá, G.G., Martínez-Fernández, F., Álvarez-Rogel, J., Albadalejo,
J., & Castillo, V. (2005). Short- and intermediate-term effects of site
and plant preparation techniques on reforestation of a Mediterranean
semiarid ecosystem with Pinus halepensis Mill. New Forests , 29,
177–198.
Bellot, J., Maestre, F.T., Chirino, E., Hernández, N., & Ortiz de
Urbina, J.M. (2004). Afforestation with Pinus halepensis reduces
native shrub performance in a Mediterranean semiarid area. Acta
Oecologica , 25, 7-15.
Bhogal, A., Nicholson, F.A., Rollett, A., Taylor, M., Litterick, A.,
Whittingham M.J., & Williams, J.R. (2018). Improvements in the quality
of agricultural soils following organic material additions depend on
both the quantity and quality of the materials applied. Front.
Sustain. Food Syst. , 19, 1-13.https://doi.org/10.3389/fsufs.2018.00009.
Bindang-Oná, M., Goberna, M., Navarro-Cano, J.A. (2021). Natural seed
limitation and effectiveness of forest plantations to restore semiarid
abandoned metal mining areas in SE Spain. Forests , 12(5), 548.https://doi.org/10.3390/f12050548
Bochet, E., García-Fayos, P. & Tormo, J. (2010). How can we control
erosion of roadslopes in semiarid Mediterranean areas? Soil improvement
and native plant establishment. Land Degradation and Development ,
21, 110-121.
Calama, R., Manso, R., Lucas-Borja, M.E., Espelta, J.M., Piqué, M.,
Bravo, F., del Peso, C., & Pados, M. (2017). Natural regeneration in
Iberian pines: A review of dynamic processes and proposals for
management. Forest Systems , 26(2), 1-20.
Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Christopher,
J.L., Michalet, R., Paolini, L., Pugnaireq, F.I., Newingham, B.,
Aschehoug, E.T., Armas, C., Kikodze, D., & Cook, B.J., 2002. Positive
interactions among alpine plants increase with stress. Nature ,
417, 844–848.
Carabassa, V., Ortiz, O., & Alcañiz, J.M. (2018). Sewage sludge as an
organic amendment for quarry restoration: effects on soil and
vegetation. Land Degradation and Development , 29, 2568– 2574.
Clemente, A,S., Werner C., Máguas, C., Cabral, M.S., Martins-Louçao,
M.A., & Correia, O. (2004). Restoration of a limestone quarry: effect
of soil amendments on the establishment of native Mediterranean
sclerophyllous shrubs. Restoration Ecology , 12, 20–28.
Cook, K.L., Wallender, W.W., Bledsoe, C.S., Pasternack, G., &
Upadhyaya, S.K. (2011). Effects of Native Plant Species, Mycorrhizal
Inoculum, and Mulch on Restoration of Reservoir Sediment Following Dam
Removal, Elwha River, Olympic Peninsula, Washington. Restoration
Ecology , 19:251–260.
Daskalakou, E.N. & Thanos, C.A. (1996). Aleppo pine (Pinus halepensis)
postfire regeneration: the role of canopy and soils seed banks.Int. J. Wildland Fire , 6(2), 59-66.
Eliason, S.A. & Allen, E.B. (1997). Exotic Grass Competition in
Suppressing Native Shrubland Re-establishment. Restoration
Ecology , 5, 245-255.
Eldridge, J.D., Redente, E.F., & Paschke, M. (2012). The Use of Seedbed
Modifications and Wood Chips to Accelerate Restoration of Well Pad Sites
in Western Colorado, U.S.A. Restoration Ecology , 20, 524-531.
Espinosa, N.J., Moore1, D.J.P., Rasmussen, C., Fehmi, J.S., & Gallery,
R-E. (2020). Woodchip and biochar amendments differentially influence
microbial responses, but do not enhance plant recovery in disturbed
semiarid soils. Restoration Ecology , 28, S381–S392.
Fehmi, J.S., Rasmussen, C., & Gallery, R.E. (2020). Biochar and
woodchip amendments alter restoration outcomes, microbial processes, and
soil moisture in a simulated semiarid ecosystem. Restoration
Ecolology , 28, S355–S364.https://doi.org/10.1111/rec.131
Floyd, D.A. & Anderson, J.E. (1982) A new point interception frame for
estimating cover of vegetation. Vegetatio , 50, 185–186.
Franklin, J.A., Zipper, C.E., & Burger, J.A. (2012). Influence of
herbaceous ground cover on forest restoration of eastern US coal surface
mines. New Forests , 43, 905–924.
Fristensky, A.J., Grismer, M.E. (2009). Evaluation of ultrasonic
aggregate stability and rainfall erosion resistance of disturbed and
amended soils in the Lake Tahoe Basin, USA. Catena , 79, 93-102.
Fuentes, D., Valdecantos, A., Llovetm J., Cortina, J., & Vallejo, V.R.
(2010). Fine-tuning of sewage sludge application to promote the
establishment of Pinus halepensis seedlings. Ecological
Engineering , 36, 1213-1221.
Grime, J.P. (1977). Evidence for the existence of three primary
strategies in plants and its relevance to ecological and evolutionary
theory. Am Nat , 111, 1169-1194.
Golos, P. J., Dixon, K. W., Erickson, T. E. (2016). Plant recruitment
from the soil seed bank depends on topsoil stockpile age, height, and
storage history in an arid environment. Restoration Ecology ,
24(2), 53–61.https://doi.org/10.1111/rec.12389
Guo, P., Yu, F., Ren, Y., Liu, D., Ouyanf, Z. & Wang, X. (2018).
Response of ruderal species diversity and urban environment:
implications for conservation and management. Env. Res. Publ. Health,
15(2), 2832.https://doi.org/10.3390/ijerph15122832
Hahn, A., & Quideau, S.A. (2013). Long-term effects of organic
amendments on the recovery of plant and soil microbial communities
following disturbance in the Canadian boreal forest. Plant and
Soil , 363, 331–344.
Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2009. Palaeontological
Statistics, 92 p. ver. 1.9. Users 501 Manual.https://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hess, M.C.M., Mesléard, F., & Buisson, E. (2019). Priority effects:
emerging principles for invasive plant species management. Ecol.
Eng. , 127, 48–57.https://doi.org/10.1016/j.ecoleng.2018.11.011
Holl K.D. (2002). Long-term vegetation recovery on reclaimed coal
surface mines in the eastern USA. J. Appl. Ecol. , 39, 960–970.
Hueso-González, P., Martínez-Murillo, J.F., Ruiz Sinoga, J.D. (2016).
Effects of topsoil treatments on afforestation in a dry-Mediterranean
climate (Southern Spain). Solid Earth , 7, 1479-1489.https://doi.org/10.5194/se-2016-98.
IUSS Working Group (2014). World Reference Base for Soil Resources.
International soil classification system for naming soils and creating
legends for soil maps. World Soil Resources Reports nº 106, FAO, Rome.
Jorba, M. & Vallejo, R. (2008). La restauración ecológica de canteras:
un caso con aplicación de enmiendas orgánicas y riegos.Ecosistemas , 17, 119-132.
Junta de Andalucía (1997). Proyecto de restauración de la vegetación en
396 ha en Sierra Alhamilla (provincia de Almería). Consejería de
Agricultura, Ganadería, Pesca y Desarrollo Sostenible, J.A., Almería.
Kühn, N. (2012). Intentions for the unintentional. Spontaneous
Vegetation as the Basis for Innovative Planting Design in Urban Areas.Journal of Landscape Architecture , 1(2), 46-53.https://doi.org/10.1080/18626033.2006.9723372
Lal, R. (1976). Soil Erosion Problems on an Alfisol in Western Nigeria
and Their Control: Mulching Effect on Runoff and Soil Loss. I.I.T.A.
Monograph No. 1. International Institute for Tropical Agriculture,
Ibadan, Nigeria.
Luna, L., Pastorelli, R., Bastida, F., Hernández, T., García, C.,
Miralles, I., Solé-Benet, A. (2016a). The combination of quarry
restoration strategies in semiarid climate induces different responses
in biochemical and microbiological soil properties. Applied Soil Ecology
107, 33-47.http://dx.doi.org/10.1016/j.apsoil.2016.05.006
Luna, L., Miralles, I,m Andrenelli, M.C., Gispert, M., Pellegrini, S.,
Vignozzi, N., Solé-Benet, A. (2016b). Restoration techniques affect soil
organic carbon, glomalin and aggregate stability in degraded soils of a
semiarid Mediterranean region. Catena 143, 256-264.