http://doi.org/10.1186/2192-1709-2-20
Bainbridge, D.A. (2001). Irrigation and surface mulch effects on transplant establishment. Native Plants Journal , 2, 25-29.
Barberá, G.G., Martínez-Fernández, F., Álvarez-Rogel, J., Albadalejo, J., & Castillo, V. (2005). Short- and intermediate-term effects of site and plant preparation techniques on reforestation of a Mediterranean semiarid ecosystem with Pinus halepensis Mill. New Forests , 29, 177–198.
Bellot, J., Maestre, F.T., Chirino, E., Hernández, N., & Ortiz de Urbina, J.M. (2004). Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecologica , 25, 7-15.
Bhogal, A., Nicholson, F.A., Rollett, A., Taylor, M., Litterick, A., Whittingham M.J., & Williams, J.R. (2018). Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front. Sustain. Food Syst. , 19, 1-13.https://doi.org/10.3389/fsufs.2018.00009.
Bindang-Oná, M., Goberna, M., Navarro-Cano, J.A. (2021). Natural seed limitation and effectiveness of forest plantations to restore semiarid abandoned metal mining areas in SE Spain. Forests , 12(5), 548.https://doi.org/10.3390/f12050548
Bochet, E., García-Fayos, P. & Tormo, J. (2010). How can we control erosion of roadslopes in semiarid Mediterranean areas? Soil improvement and native plant establishment. Land Degradation and Development , 21, 110-121.
Calama, R., Manso, R., Lucas-Borja, M.E., Espelta, J.M., Piqué, M., Bravo, F., del Peso, C., & Pados, M. (2017). Natural regeneration in Iberian pines: A review of dynamic processes and proposals for management. Forest Systems , 26(2), 1-20.
Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Christopher, J.L., Michalet, R., Paolini, L., Pugnaireq, F.I., Newingham, B., Aschehoug, E.T., Armas, C., Kikodze, D., & Cook, B.J., 2002. Positive interactions among alpine plants increase with stress. Nature , 417, 844–848.
Carabassa, V., Ortiz, O., & Alcañiz, J.M. (2018). Sewage sludge as an organic amendment for quarry restoration: effects on soil and vegetation. Land Degradation and Development , 29, 2568– 2574.
Clemente, A,S., Werner C., Máguas, C., Cabral, M.S., Martins-Louçao, M.A., & Correia, O. (2004). Restoration of a limestone quarry: effect of soil amendments on the establishment of native Mediterranean sclerophyllous shrubs. Restoration Ecology , 12, 20–28.
Cook, K.L., Wallender, W.W., Bledsoe, C.S., Pasternack, G., & Upadhyaya, S.K. (2011). Effects of Native Plant Species, Mycorrhizal Inoculum, and Mulch on Restoration of Reservoir Sediment Following Dam Removal, Elwha River, Olympic Peninsula, Washington. Restoration Ecology , 19:251–260.
Daskalakou, E.N. & Thanos, C.A. (1996). Aleppo pine (Pinus halepensis) postfire regeneration: the role of canopy and soils seed banks.Int. J. Wildland Fire , 6(2), 59-66.
Eliason, S.A. & Allen, E.B. (1997). Exotic Grass Competition in Suppressing Native Shrubland Re-establishment. Restoration Ecology , 5, 245-255.
Eldridge, J.D., Redente, E.F., & Paschke, M. (2012). The Use of Seedbed Modifications and Wood Chips to Accelerate Restoration of Well Pad Sites in Western Colorado, U.S.A. Restoration Ecology , 20, 524-531.
Espinosa, N.J., Moore1, D.J.P., Rasmussen, C., Fehmi, J.S., & Gallery, R-E. (2020). Woodchip and biochar amendments differentially influence microbial responses, but do not enhance plant recovery in disturbed semiarid soils. Restoration Ecology , 28, S381–S392.
Fehmi, J.S., Rasmussen, C., & Gallery, R.E. (2020). Biochar and woodchip amendments alter restoration outcomes, microbial processes, and soil moisture in a simulated semiarid ecosystem. Restoration Ecolology , 28, S355–S364.https://doi.org/10.1111/rec.131
Floyd, D.A. & Anderson, J.E. (1982) A new point interception frame for estimating cover of vegetation. Vegetatio , 50, 185–186.
Franklin, J.A., Zipper, C.E., & Burger, J.A. (2012). Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New Forests , 43, 905–924.
Fristensky, A.J., Grismer,  M.E. (2009). Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA. Catena , 79, 93-102.
Fuentes, D., Valdecantos, A., Llovetm J., Cortina, J., & Vallejo, V.R. (2010). Fine-tuning of sewage sludge application to promote the establishment of Pinus halepensis seedlings. Ecological Engineering , 36, 1213-1221.
Grime, J.P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat , 111, 1169-1194.
Golos, P. J., Dixon, K. W., Erickson, T. E. (2016). Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. Restoration Ecology , 24(2), 53–61.https://doi.org/10.1111/rec.12389
Guo, P., Yu, F., Ren, Y., Liu, D., Ouyanf, Z. & Wang, X. (2018). Response of ruderal species diversity and urban environment: implications for conservation and management. Env. Res. Publ. Health, 15(2), 2832.https://doi.org/10.3390/ijerph15122832
Hahn, A., & Quideau, S.A. (2013). Long-term effects of organic amendments on the recovery of plant and soil microbial communities following disturbance in the Canadian boreal forest. Plant and Soil , 363, 331–344.
Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2009. Palaeontological Statistics, 92 p. ver. 1.9. Users 501 Manual.https://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hess, M.C.M., Mesléard, F., & Buisson, E. (2019). Priority effects: emerging principles for invasive plant species management. Ecol. Eng. , 127, 48–57.https://doi.org/10.1016/j.ecoleng.2018.11.011
Holl K.D. (2002). Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. J. Appl. Ecol. , 39, 960–970.
Hueso-González, P., Martínez-Murillo, J.F., Ruiz Sinoga, J.D. (2016). Effects of topsoil treatments on afforestation in a dry-Mediterranean climate (Southern Spain). Solid Earth , 7, 1479-1489.https://doi.org/10.5194/se-2016-98.
IUSS Working Group (2014). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports nº 106, FAO, Rome.
Jorba, M. & Vallejo, R. (2008). La restauración ecológica de canteras: un caso con aplicación de enmiendas orgánicas y riegos.Ecosistemas , 17, 119-132.
Junta de Andalucía (1997). Proyecto de restauración de la vegetación en 396 ha en Sierra Alhamilla (provincia de Almería). Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, J.A., Almería.
Kühn, N. (2012). Intentions for the unintentional. Spontaneous Vegetation as the Basis for Innovative Planting Design in Urban Areas.Journal of Landscape Architecture , 1(2), 46-53.https://doi.org/10.1080/18626033.2006.9723372
Lal, R. (1976). Soil Erosion Problems on an Alfisol in Western Nigeria and Their Control: Mulching Effect on Runoff and Soil Loss. I.I.T.A. Monograph No. 1. International Institute for Tropical Agriculture, Ibadan, Nigeria.
Luna, L., Pastorelli, R., Bastida, F., Hernández, T., García, C., Miralles, I., Solé-Benet, A. (2016a). The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Applied Soil Ecology 107, 33-47.http://dx.doi.org/10.1016/j.apsoil.2016.05.006
Luna, L., Miralles, I,m Andrenelli, M.C., Gispert, M., Pellegrini, S., Vignozzi, N., Solé-Benet, A. (2016b). Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena 143, 256-264.