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Abstract

Graph representation learning has attracted increasing attention in a variety of appli-
cations that involve learning on non-Euclidean data. Recently, generative adversarial
networks(GAN) have been increasingly applied to the field of graph representation
learning, and large progress has been made. However, most GAN-based graph repre-
sentation learning methods use adversarial learning strategies directly on the update
of the vector representation instead of the embedding mechanism, which does not
make full use of the essential advantages of GAN. The essential advantage of GAN
is the final embedding mechanism rather than the embedding representation itself.
To address this problem, we propose to use adversarial idea on the reconstruction
mechanism of deep autoencoders. Specifically, the generator and the discriminator
are the two basic components of the GAN structure. We use the deep autoencoder as
the discriminator, which can capture the highly non-linear structure of the graph. In
addition, the generator another generative model is introduced into the adversarial
learning system as a competitor. A series of empirical results proved the effective-
ness of the new approach.
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1 INTRODUCTION

The graph is a common representation of information management in many real-world problems, such as social networks, word
coexistence networks, and communication networks. Graph representation learning is beneficial to many real-world applications,
for example, recommendation system1, text embedding2, social network analysis3, link prediction4, node classification5, visu-
alization6 and knowledge graph representation7, etc. The essential graph representation learning is to learn the low-dimensional
representation of the vertices, which encodes the relationship and structure information between the vertices in the graph8,2,9.

In terms of technology used, the existing methods fall into two major categories. One is the model based on matrix factoriza-
tion. Some early methods, such as Local linear representation10 used the linear combination of adjacent vertices as the vertex
representation to preserve the local structure, converts the problem into the calculation of feature vectors. Besides, Laplace
eigenmap11 also preserved the local features of the data, turning the optimization problem into a generalized eigenvalue decom-
position problem. The directed graph embedding12 further extended the Laplace method. Different from the previous methods,
13 introduced modularity into the loss function. Furthermore, DeepWalk8 obtained the truncated vertex sequence through ran-
dom walk, and further expands the local structure. Afterward, TADW14 proved that the algorithm process of DeepWalk is
essentially a matrix factorization process.
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Another graph representation learning method is based on a depth model. SDNE15 is one of the earliest deep learning
algorithms for graph representation learning. SDNE adopts a semi-supervised learning method, which effectively maintains
the first-order and second-order approximation. After that,16 focuses on maintaining global structure, which approximates the
embedding of target vertex by aggregating neighborhood embedding, and learns graph embedding recursively. On this basis,17

introduces nonlinear tuple similarity. There is another method that focuses on graph attributes18. Combining nonparametric
probabilistic modeling with deep neural networks, DepthLGP19 proposes a deeply transformed high-order laplacian gaussian
process approach.

In recent years, GAN based models have been introduced into graph representation learning. For example, GraphGAN20 is a
shallow model that captures the network structure by fitting the connection distribution. ANE21 proposed a model to capture the
network structure properties, and designed minimax optimization problems to enhance robustness. And A-RNE22 focused on
sampling high-quality negative vertices to achieve a better similarity ranking among vertices pairs. CANE23 designed a novel
adversarial learning framework to capture the network communities.

However, most methods focus on preserving diverse network structures and properties, while ignoring the fact that networks
are usually noisy and incomplete. The existing methods usually directly update the representation of the node to match an
arbitrary distribution, but this strategy does not consider the noise data of the graph itself. We believe that applying the adversarial
learning strategy to the embedding mechanism that maps vertices to the latent space is a better way, rather than just requiring
representation distribution to follow priors.

In this paper, we propose a GAN-based deep neural network (DnnGAN) for graph representation learning. We adopt a struc-
tural deep autoencoder as a discriminator, which tries to restructure the neighbor relationship of the vertices and accurately
predicts whether the input vertex pair is positive according to the middle layer representation.

The generator is devoted to generating deceptive vertex pairs( the vertex pairs that are close to each other in the represen-
tation space )to deceive the discriminator. The training process can be formulated as a two-player game, the generator and the
discriminator maximize and minimize the model objective function, respectively.

The key contributions of the proposed method are summarized as follows:

1) We apply the adversarial learning strategy to the embedding mechanism of the deep autoencoder to tackle the issues
caused by connection noises and network incompleteness.

2) We formulate an adversarial learning structure that includes structured deep autoencoders, which generate a more robust
embedding representation by jointly considering both locality preserving and global reconstruction constraints.

3) We conduct extensive experiments on graph reconstruction, link prediction, and node classification tasks to evaluate the
effectiveness of the proposed method.

The rest of the manuscript is organized as follows: The next section describes the related work. Section 3 covers the proposed
method, and the experimental evaluation is discussed in Section 4. A conclusion and future work are provided in Section 5.

2 RELATED WORK

2.1 Graph Embedding Methods
Most of the existing works are aimed at exploring the structural features of graphs and preserving them in low-dimensional
embedding representation10,8,24.

On the one hand, a considerable number of methods based on matrix factorization have been proposed10,11,14,9,25. Among
them, Locally linear embedding10 designed a high-dimensional space nearest neighbor linear reconstruction to capture the
local neighborhood structures, and Laplace eigenmap preserved local distances based on edge weights. TADW14 proved that
DeepWalk8 is essentially a matrix decomposition process, and DeepWalk incorporates the text features via matrix factoriza-
tion. Further, GraRep9 derived a transition matrix to preserve high-order proximity, and then HOPE25 preserved asymmetric
transitivity in approximating the high-order proximity.

On the other hand, neural network-based methods have gained a lot of attention. GCN26 as an efficient variant of convolutional
neural networks used convolution operator on the graph and iteratively aggregates the embedding of neighbors for vertices, and
centrality information of vertices is utilized in27 to learn vertice importance of link formation. In addition, the vertex popularity
is incorporated as a structural feature in RaRE24. Similar to GCN, GraphSAGE28 used a sample and aggregate method to
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learn vertex features and neighbor relationships. There are also some graph representation Learning learning methods based on
hyper-graphs, such as HGNN29 applied the spectral convolution to hyper-graphs, and DHNE30 adopted the deep autoencoder
to capture the structural information of the hyper-edges.

2.2 Adversarial Representation Learning
Most recently, there is growing concerned about the application of GAN in graph representation learning. For instance, ARGA31

used an autoencoder to reconstruct the topology to obtain a compact representation, and used adversarial training to make the
representation match the prior distribution. NetRA32 used the LSTM autoencoder with vertex sequences as input to learn vec-
tor representations that are regularized by locality preserving constraint and generative adversarial training process. ProGAN33

attempted to capture undiscovered proximity by simulating and approximating the true proximity distribution through triples.
GraphGAN20 employed both generative and discriminative models to fit the connectivity distribution of direct neighbor vertices
of target vertice. AMIL34 used the mutual information between the autoencoder and the GAN to learn embedding representation.
Most of them only use adversarial learning to update the embedding representation rather than learning the embedding mecha-
nism, and they only apply to attribute graphs. Differently, in this paper, we leverage the mapping mechanism of the autoencoder
as part of the adversarial learning to reduce the interference caused by connection noises and graph incompleteness. In addition,
the locality-preserving and global reconstruction constraints are jointly considered during the training process to improve the
robustness and generalization ability of the model.

3 GAN-BASED DEEP NEURAL NETWORK

3.1 Problem Definition
Graph representation learning attempts to map high-dimensional graph data into low-dimensional embedding space while
preserving the graph structure. To be more specific, given a unweighted and undirected graph  = (𝑉 ,𝐸)(𝑛 = |𝑉 |), with
𝑉 =

{

𝑣𝑖
}𝑛
𝑖=1 as vertex set, 𝐸 =

{

𝑒𝑖,𝑗
}𝑛
𝑖,𝑗=1 as the edge set. 𝐴 is a 0-1 matrix, which used to describe the connectivity between

vertices, i.e., adjacency matrix. 𝐴𝑖,𝑗 = 1 means that 𝑣𝑖 and 𝑣𝑗 are connected, otherwise the opposite. The objective of the graph
representation is to convert each of the 𝑛 vertices into an embedding vector 𝑦𝑖 ∈ 𝑅𝑘 (where 𝑘 ≪ 𝑛 ), and preserves the captured
structural information.

3.2 Framework of DnnGAN
We formulate the GAN structure nets for graph representation learning, and improve the ability to capture the global structure
by adopting a deep autoencoder for the GAN discriminator. The framework is shown in Figure 1.

The generator (𝐺) generates (or selects) the vertices most likely to be connected to 𝑣𝑐 from all vertices 𝑉 according to the
current parameter 𝜙, which is the negative samples in Figure 1. We denote 𝐺 as 𝐺𝜙

(

⋅ ∣ 𝑣𝑐
)

. Correspondingly, the positive sam-
ples are selected from the edge set 𝐸. Negative samples and positive samples together serve as the input of the discriminator.
On the other hand, the discriminator(𝐷) uses an autoencoder framework similar to a deep autoencoder15. It reconstructs the
neighborhood structure of the vertices, so that the vertices with similar neighbor structures have more similar representations in
the middle layer. Meanwhile, the 𝐷 calculates the similarity score of the vertex pair according to the middle layer representa-
tion (the 𝑌 in Figure 1) as the output. We denote 𝐷 as 𝐷𝜃

(

𝑣, 𝑣𝑐
)

. The discrimination loss is calculated by comparing the output
with the ground truth. We choose the cross-entropy function (𝑡𝑓 .𝑛𝑛.𝑠𝑖𝑔𝑚𝑜𝑖𝑑_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑤𝑖𝑡ℎ_𝑙𝑜𝑔𝑖𝑡𝑠) imported from Ten-
sorFlow in Python for calculation. The model updates the parameters based on the discrimination loss. In addition, the 𝐷 will
additionally update the parameters based on the reconstruction loss unsupervised.

In the adversarial training process, 𝐺 and 𝐷 are continuously improved. The connectivity distribution of the generator is
getting closer and closer to the true distribution 𝑝𝑡

(

⋅ ∣ 𝑣𝑐
)

. The 𝐷 assigns a higher score to the positive vertex pairs and reduces
the score of the negative vertex pairs. Like other regular GAN models35,36,37,38,33, our model is essentially a minimax game, and
its objective function is expressed as:

min
𝜙

max
𝜃

𝑂(𝐺,𝐷) =
𝑛
∑

𝑐=1

(

𝐸𝑣∼𝑝𝑡(⋅∣𝑣𝑐)
[

log𝐷𝜃
(

𝑣, 𝑣𝑐
)]

+ 𝐸𝑣∼𝐺𝜙(⋅∣𝑣𝑐)
[

log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))]

)

. (1)
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FIGURE 1 Illustration of DnnGAN framework.

The 𝐺 wants to generate samples that minimize the objective function, and the 𝐷 tries to maximize the objective function.
The competitive relationship drives them to improve their models until the 𝐺 is indistinguishable from the true connectivity
distribution.

3.2.1 Discriminator
In view of it can capture the global structure by reconstructing the second-order proximity15, we adopt the autoencoder as
the discriminator. The vector 𝐚𝑖 = [𝐴𝑖,1, 𝐴𝑖,2,⋯ , 𝐴𝑖,𝑛]𝑇 characterizes the neighborhood structure of the vertex, and similarity
between 𝐚𝑖 and 𝐚𝑗 determines the second-order proximity between vertices 𝑣𝑖 and 𝑣𝑗 . Thus 𝐷 takes 𝐚𝑖 as input, and the processing
of data in the discriminator is shown in Figure 2. The encoder encodes 𝐚𝑖 into a 𝑑-dimensional embedding representation 𝐲𝑖,
and the decoder maps 𝐲𝑖 to the reconstruction space, which denotes as 𝐲̂𝑖.

One of the purposes of the discriminator is to reduce reconstruction errors. The loss function is as follows:

𝑂𝑢𝑛𝑠𝑢𝑝 =
𝑛
∑

𝑖=1

‖

‖

𝐚̂𝑖 − 𝐚𝑖‖‖
2
2 . (2)

The corresponding algorithm is presented in Alg. 2. In real situations, graphs are usually sparse and incomplete in fact. Most
of the elements in 𝐚𝑖 are zero. However, the reconstruction of non-zero elements is more important, so we increase the penalty
for reconstruction errors of non-zero elements as follows:

𝑂𝑢𝑛𝑠𝑢𝑝 =
𝑛
∑

𝑖=1

‖

‖

‖

(

𝐚̂𝑖 − 𝐚𝑖
)

◦𝐭𝐢
‖

‖

‖

2

2

= ‖(𝐴̂ − 𝐴)◦𝑇 ‖2𝐹 ,
(3)

where ◦ means the Hadamard product. 𝐭𝐢 = [𝑇𝑖,1, 𝑇𝑖,2,⋯ , 𝑇𝑖,𝑛]𝑇 . If 𝑎𝑖,𝑗 = 0, 𝑡𝑖,𝑗 = 1, else 𝑡𝑖,𝑗 = 𝛼 > 1, 𝛼 is the penalty coefficient
for non-zero element reconstruction error.

Another purpose of the discriminator is to improve the ability to correctly distinguish between positive and negative samples.
That is to maximize the objective function:

𝑂𝑠𝑢𝑝 =
{

log𝐷𝜃
(

𝑣, 𝑣𝑐
)

, 𝑖𝑓 𝑣 ∼ 𝑝𝑡
(

⋅ ∣ 𝑣𝑐
)

;
1 − log𝐷𝜃

(

𝑣, 𝑣𝑐
)

, 𝑖𝑓 𝑣 ∼ 𝐺𝜙
(

⋅ ∣ 𝑣𝑐
)

,
(4)
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FIGURE 2 Illustration of autoencoder framework.

where 𝐷 is defined as the sigmoid function of the vertex pair inner product:

𝐷𝜃
(

𝑣, 𝑣𝑐
)

= 𝜎
(

𝐲⊤𝑣 𝐲𝑣𝑐
)

= 1
1 + exp

(

−𝐲⊤𝑣 𝐲𝑣𝑐
) , (5)

where 𝐲𝑣 and 𝐲𝑣𝑐 are the embedding representations of vertex 𝑣 and vertex 𝑣𝑐 in the middle layer of the discriminator.
Ultimately, the ultimate goal of the 𝐷 is to maximize the objective function:

𝑂𝑑𝑖𝑠 = 𝑂𝑠𝑢𝑝 − 𝑂𝑢𝑛𝑠𝑢𝑝. (6)
The 𝑂𝑠𝑢𝑝 considers locality-preserving in the way of adversarial learning, and 𝑂𝑢𝑛𝑠𝑢𝑝 preserves the global structure with unsu-
pervised learning. The objective function combines them in a unified framework by applying the adversarial learning strategy
to the embedding mechanism of deep structure autoencoder.

3.2.2 Generator
As the opponent, 𝐺 selects the vertexes that are most likely to be connected to 𝑉𝑐 based on the current parameter 𝜙, and tries to
make the generated samples get a higher score in the discriminator, i.e., minimizing the following objective function.

𝑂gen = log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))

. (7)
The generator updates its parameters according to the result returned by the discriminator. In other words, the generator shifts

its connectivity distribution to increase the scores of its generated samples, as judged by D. Furthermore, the discriminator
captures the global structure by preserving the second-order proximity, so that the locality preservation and the global structure
restriction are jointly considered in the adversarial learning process.

3.3 Discriminator Optimization
To optimize the model of𝐷, the goal is to maximize the objective function𝑂𝑑𝑖𝑠, the key step is to calculate the partial derivatives:

𝜕dis

𝜕𝜃𝑑
=

𝜕 unsup

𝜕𝜃𝑑
𝜕dis

𝜕𝜃𝑒
=

𝜕 sup

𝜕𝜃𝑒
+

𝜕𝑢𝑛𝑠𝑢𝑝

𝜕𝜃𝑒
,

(8)

where 𝜃𝑒 and 𝜃𝑑 are the encoder and decoder parameters of 𝐷 respectively. Since the discrimination result of 𝐷 is based on the
encoded vector, the parameter update of 𝑂𝑠𝑢𝑝 loss only involves 𝜃𝑒.



6 AUTHOR ONE ET AL

It can be seen from Eq. 3 that 𝑂𝑢𝑛𝑠𝑢𝑝 has only one variable 𝑎̂, so we first get the partial derivatives:

𝜕unsup

𝜕𝜃𝑑
=

𝜕 unsup

𝜕𝐴̂
⋅
𝜕𝐴̂
𝜕𝜃𝑑

𝜕unsup

𝜕𝐴̂
= 2

(

𝐴̂ − 𝐴
)

◦𝑇 ,
(9)

Based on back-propagation, we can iteratively calculate 𝜕𝐴̂∕𝜕𝜃𝑑 . In the same way, we can calculate 𝜕unsup∕𝜕𝜃𝑒.
The next step is to calculate 𝜕 sup ∕𝜕𝜃𝑒.  sup is essentially the cross-entropy between the discrimination result and ground

truth. The calculation process is as follows:

𝜕sup

𝜕𝜃𝑒
=

𝜕 sup

𝜕𝑌
⋅
𝜕𝑌
𝜕𝜃𝑒

, (10)

Through the cross entropy function (𝑡𝑓 .𝑛𝑛.𝑠𝑖𝑔𝑚𝑜𝑖𝑑_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑤𝑖𝑡ℎ_𝑙𝑜𝑔𝑖𝑡𝑠) update the middle layer vector representa-
tion of the discriminator 𝑌 . After that, updating the encoder parameters 𝜃𝑒 in the process of backward propagation.

3.4 Generator Optimization
As a competitor, the generator hopes to minimize the probability that the discriminator will correctly assign the negative label
to the generated sample. The optimization of the generator is essentially adjusting the parameters 𝜙 to approximate the true
connectivity distribution. The key is to calculate the gradient of 𝑂𝑔𝑒𝑛 with respect to 𝜙:

∇𝜙𝑂𝑔𝑒𝑛

=∇𝜙
𝑛
∑

𝑐=1
𝐸𝑣∼𝐺𝜙

(

⋅∣𝑣𝑐
)

[

log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))]

=
𝑛
∑

𝑐=1

𝑚
∑

𝑖=1
∇𝜙𝐺𝜙

(

𝑣𝑖 ∣ 𝑣𝑐
)

log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))

=
𝑛
∑

𝑐=1

𝑚
∑

𝑖=1
𝐺𝜙

(

𝑣𝑖 ∣ 𝑣𝑐
)

∇𝜙 log𝐺𝜙
(

𝑣𝑖 ∣ 𝑣𝑐
)

log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))

=
𝑛
∑

𝑐=1
𝐸𝑣∼𝐺𝜙

(

⋅∣𝑣𝑐
)

[

∇𝜙 log𝐺𝜙
(

𝑣 ∣ 𝑣𝑐
)

log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))

]

,

(11)

where 𝑚 is the number of neighbor nodes of 𝑣𝑐 generated by the generator.
In other words, ∇𝜙𝑂𝑔𝑒𝑛 is the expected summation of ∇𝜙 log𝐺𝜙

(

𝑣 ∣ 𝑣𝑐
)

weighted by log
(

1 −𝐷𝜃
(

𝑣, 𝑣𝑐
))

. We apply gradient
descent to 𝜙 , so the distance between two vertices in a vertex pair with a higher probability of negative samples is increased.

Algorithm 1 DnnGAN framework.
Input: 𝑑: dimension of embedding; 𝑠: size of generating samples; 𝑝: size of discriminating samples;
Output:generator 𝐺𝜙

(

𝑣 ∣ 𝑣𝑐
)

; discriminator 𝐷𝜃
(

𝑣, 𝑣𝑐
)

;
Initialize 𝐺𝜙

(

𝑣 ∣ 𝑣𝑐
)

and 𝐷𝜃
(

𝑣, 𝑣𝑐
)

.
while not converge do

for G-steps do
𝐺𝜙

(

𝑣 ∣ 𝑣𝑐
)

generates 𝑠 vertices for each 𝑣𝑐 ;
Update 𝜙 according to Eq. (7) and (11);

end for
for D-steps do

Sample 𝑝 positive vertices from ground truth and 𝑝 negative vertices from 𝐺𝜙
(

𝑣 ∣ 𝑣𝑐
)

for each 𝑣𝑐 ;
Update 𝜃𝐷 according to Eq. (6), (9) and (10);

end for
end while
return 𝐺𝜙

(

𝑣 ∣ 𝑣𝑐
)

and 𝐷𝜃
(

𝑣, 𝑣𝑐
)

;



AUTHOR ONE ET AL 7

Algorithm 2 Discriminator’s autoencoder framework.
Input:the graph  = (𝑉 ,𝐸) with adjacency matrix 𝐴;
Output:graph representation 𝑌 and updated parameters: 𝜃;
Initialized parameters 𝜃;
while true do

Based on 𝜃, obtain the reconstruction 𝐴̂ and the middle layer representation 𝑌 of the input vertices.
Based on Eq. (3), (8) and (9), update the discriminator parameters 𝜃;

end while

TABLE 1 Statistics of datasets.

Dataset #nodes #edges #label

Wiki 2363 5278 17
Cora 2708 5278 7

Citeseer 3264 4551 6
Pubmed 19717 44338 3

3.5 Complexity Analysis
As shown in Alg. 2, the training complexity of the discriminator to reduce the reconstruction loss is 𝑂(𝑛𝑐𝑑𝐼), where 𝑛 is the
number of vertices, 𝑐 is the average degree of the graph, 𝑑 is the dimensionality of the graph embedding, and 𝐼 is the number of
iterative updates. While 𝑐 can usually be regarded as a constant in the real world. 𝑐, 𝑑, and 𝐼 are independent with 𝑛. Therefore,
the training complexity of the discriminator has a linear relationship with the number of vertices in the graph.

In the adversarial learning process, we use graph softmax20 as our sampling strategy, and the sampling complexity is log 𝑛.
So the complexity of line 4 and line 5 in Alg. 1 are both 𝑂(𝑠𝑛 ⋅ log 𝑛 ⋅ 𝑑), the complexity of line 8 is 𝑂(𝑡𝑛 ⋅ log 𝑛 ⋅ 𝑑), and the
complexity of line 9 is 𝑂(𝑛𝑐𝑑𝐼) + 𝑂(𝑡𝑛𝑑). Usually, we treat 𝑠, 𝑡, and 𝑑 as constants, so the complexity of each iteration of the
model is 𝑂(𝑛 log 𝑛).

4 EXPERIMENTS

4.1 Experiments Setup
We use the following four datasets for experiments, the detailed statistics of the datasets are shown in Table 1, where |𝑉 |, |𝐸|,
|𝐶| are the number of vertices, edges, and vertex categories, respectively.

1) Wiki39 is a Wikipedia hyperlink graph, where the vertices are web pages and edges are hyperlinks.

2) Citeseer, Cora40 are paper citation graphs. Citeseer consists of 3264 papers with 6 categories, and Cora consists of 2708
papers with 7 categories. The labels represent the research topics of the papers.

3) Pubmed41 is a relatively large-scale citation graph, consists of 19717 papers with 3 categories.

We use the following five models as baselines to compare their performance in various tasks:

1) DeepWalk8 transforms the graph into a series of vertices through a truncated random walk strategy, and learns the
embedding of vertices in combination with Skip-gram42.

2) Node2vec43 is a variant of DeepWalk, which designs a biased random walk process to balance local attributes and global
attributes.

3) Grarep9 uses SVD to train the model and constructs different 𝑘-step probability conversion matrices to preserve high-order
vertex proximity.
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TABLE 2 Discriminator Structures.

Dataset #nodes in each layer

Wiki 2363-500-128-500-2363
Cora 2708-500-128-500-2708

Citeseer 3264-500-128-500-3264
Pubmed 19717-5000-1000-128-1000-5000-19717

TABLE 3 AUC and F-Score on all datasets in Link Prediction.

Model Wiki Cora Citeseer Pubmed
AUC F-Score AUC F-Score AUC F-Score AUC F-Score

DeepWalk 0.89 0.81 0.72 0.59 0.71 0.60 0.79 0.37
Node2vec 0.93 0.86 0.57 0.45 0.59 0.42 0.86 0.36

Grarep 0.97 0.91 0.87 0.69 0.74 0.63 0.87 0.76
SDNE 0.77 0.68 0.73 0.63 0.66 0.59 0.81 0.72

GraphGAN 0.95 0.89 0.93 0.87 0.94 0.87 0.86 0.78
DnnGAN 0.99 0.96 0.96 0.91 0.95 0.89 0.95 0.89

4) SDNE15 applies unsupervised deep network structure to network embedding, trying to preserve first-order and second-
order proximity.

5) GraphGAN20 is a unified framework that designs models via adversarial training in a minimax game. The graph softmax
solves the limitations of the traditional softmax function.

Usually the embedding dimension is set to a power of 2. To ensure fairness, we set it to 128 uniformly. The parameter settings
of the baselines follow the suggestions of their authors. For more objective experimental results, we introduce the EvalNE44

toolbox in the experiment. It comprehensively and systematically evaluates all algorithms in a unified framework.
In our approach DnnGAN, the hyper-parameters of 𝛼, 𝑠 and 𝑝 are tuned by using grid search on the validation set. 𝐺 and 𝐷

are initialized weights from the uniform distribution in [−0.1, 0.1]. The structure of 𝐷 varies with the size of the dataset, and
the size of each layer is shown in Table 2. If the model becomes more complex, the performance is almost unchanged. We use
the tensorflow deep learning tools to learn the model with a starting learning rate of 0.001.

4.2 Experiment Results
4.2.1 Link Prediction
In link prediction, the goal is to predict whether there is an edge between two vertices. So this task can evaluate the edge
predictability of different methods. Specifically, we randomly select 60% of the edges of the original graph to train all methods.
The test set contains the remaining 40%of the edges as positive samples and the same number of randomly selected unconnected
vertex pairs as negative samples. After training, we can get the low-dimensional representation for each vertex, and then use
logistic regression to make predictions on the edges of the test set. Considering the incompleteness of the graph, we restrict
the shortest path length of negative samples to be greater than 2. We use 10-fold cross-validation to evaluate the performance
of all methods, and use AUC (area under the ROC curve), F-score, and Precision@K as evaluation metrics. We report the
performances of AUC and F-score on all datasets in Table 3, the learning curves of 𝐺 and 𝐷 in Figure 3, and the change of F-
score on Cora by changing the embeddings dimension 𝑑 in Figure 4. Moreover, the value of Precision on top-𝐾 link prediction
result is an important indicator for evaluating model stability. We use Wiki as the dataset to report the result in Figure 5.

We have the following observations: (i) As shown in Table 4, DnnGAN outperforms all baselines in link prediction on four
datasets. It improves AUC by 9% to 95% and F-score by 11% to 89% on Pubmed. This proves that the application of the
adversarial learning strategy to the embedding mechanism is an improvement. (ii) The training curve in Figure 3 shows that the
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FIGURE 3 Learning curves of the generator and the discriminator of DnnGAN on Wiki in Link Prediction.

performance of the 𝐺 increases with the number of iterations, and the performance of the 𝐷 decreases slightly after it stabilizes.
It means that the 𝐷 can continuously provide effective supervision information for the 𝐺. (iii) As shown in Figure 4, most
models achieve their best performance when the embedding dimension is about 128, and DnnGAN keeps the lead. This proves
the effectiveness of DnnGAN. (iv)The results in Figure 5 show that as the value of k increases, the performance of our method
is always better than other methods. It shows that the representation learned by our method has better predictive power on the
formation of new links.

FIGURE 4 F-Score on Cora in different dimensions
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FIGURE 5 Precision@K on Wiki in Link Prediction

TABLE 4 Micro-F1 on all datasets in Node Classification.

Model Wiki Cora Citeseer Pubmed

DeepWalk 0.68 0.87 0.74 0.81
Node2vec 0.69 0.85 0.73 0.81

Grarep 0.69 0.83 0.70 0.81
SDNE 0.57 0.62 0.44 0.52

GraphGAN 0.52 0.56 0.33 0.52
DnnGAN 0.70 0.89 0.82 0.80

4.2.2 Nodes Classification
In nodes classification, we aim to classify each vertex into one of multiple labels. Specifically, we use logistic regression as
a classifier, take the embedding results of different models as a training set, and classify these vertices after training. The
performance of vertex classification reveals whether the graph representation learning method can discover and preserve the
proximity. We split the training and test sets at a ratio of 9:1, and report the Micro-F1 of all models on all data sets in Table 4.
In addition, we observe how the training set reduces model performance changes. The results Micro-F1 are shown in Figure 6.

We have the following observations: (i) As shown in Table 4, DnnGAN performed best in three of the four data sets. In
particular, compared with GraphGAN, there is an obvious improvement that Micro-F1 has increased by 0.18, 0.33, 0.49, 0.28
respectively on all data sets. This indicates that DnnGAN outperforms GraphGAN on node classification. (ii) In Figure 6, our
method is always at the top with minimal change. In the case of a small percentage of the training set, DnnGAN can still main
a decent performance, proving the strong generalization ability of DnnGAN.

4.2.3 Visualization
Another important application of graph representation learning is visualization. We choose Pubmed as the dataset for the task
of visualization. We obtain the vector representations of Pubmed under different graph representation learning models after
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FIGURE 6 Micro-F1 on Cora

training, and use t-SNE45 to map the representation vector to a two-dimensional space. The vertices of different categories
are marked with different colors. Therefore, the ideal visualization result should make the vertices of the same category closer
together.

The visualized result is shown in Figure 7. We can see that: (i) For the baselines, effective clustering only occurs in small
and scattered areas, which is still chaotic and indistinguishable when viewed as a whole; (ii) DnnGAN can distinguish different
types of vertices more clearly. It is evidence that DnnGAN captures a more desirable global graph structure.

FIGURE 7 Visualization of Pubmed. Each dot represents a publication. The color of the dot indicates the category of the
publication.
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4.2.4 Impact of Embedding Dimension
We test the impact of dimensional changes on the link prediction performance of all methods on Cora. Figure 4 shows the
results of different embedding sizes in the link prediction experiment. It is not difficult to see that a higher embedding size can
improve the experimental results to a certain extent, because a higher embedding size means more vertex attribute information.
But when the embedding size increases above 100, this parameter has little effect on the experimental results. Overall, choosing
the correct size can make the model get better results. The ideal size range of the current model is between 100 and 150.

5 CONCLUSIONS

To capture the highly non-linear characteristics of the graph and better utilize the essential advantage of GAN, we propose a
new approach of GAN-based deep neural network for graph representation learning. Our approach adopts a deep autoencoder
as discriminator, which captures the global structural information, and it formulates an adversarial learning strategy on the rep-
resentation mechanism (autoencoder reconstruction) rather than on embedding representations. In addition, the negative sample
generator is introduced into the adversarial learning system as a competitor. The adversarial learning system approximates the
true connectivity distribution, and the local structure is preserved. The method proposed is evaluated on real data sets of different
scales and fields. Experiments show that DnnGAN has superior performance in different application scenarios.
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