References
Averill C, Turner BL, Finzi AC (2014)Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545.
White, R., Murray, S., Rohweder, M., 2000. Pilot Analysis of Global Ecosystems: Grassland Ecosystems.World Resources Institute, Washington D. C,p.81.
Maestre, F.T., Salguero-Gomez, R., Quero, J.L., 2012. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos. Trans. R. Soc. B-Biol. Sci. 367 (1606), 3062–3075.
Kemp, D.R., Han, G., Hou, X., Michalk, D.L., Hou, F., Wu, J., et al., 2013. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. Unit. States Am. 110 (21), 8369–8374.
Davidson, E.A., Nepstad, D.C., Klink, C., Trumbore, S., 1995. Pasture soils as carbon sink. Nature 376, 472–473.
Scurlock, J.M.O., Hall, D.O., 1998. The global carbon sink: a grassland perspective.Global Change Biology 4, 229–233.
Tan, Z., Liu, S., Johnston, C.A., Liu, J., Tieszen, L.L., 2006. Analysis of ecosystem controls on soil carbon source–sink relationships in the northwest Great Plains.Global Biogeochemical Cycles 20, GB4012, doi:10.1029/2005GB002610.
Lugo, A.E., Brown, S., 1993. Management of tropical soils as sinks or sources of
atmospheric carbon. Plant and Soil 19, 27–41.
Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land-use change:
processes and potential. Global Change Biology 6, 317–327.
Jones, M.B., Donnelly, A., 2004. Carbon sequestration in temperate grassland
ecosystems and the influence of management, climate and elevated CO2. New
Phytologist 164, 423–439.
Billings, S.A., 2006. Soil organic matter dynamics and land use change at a grassland/forest ecotone. Soil Biology & Biochemistry 38, 2934–2943.
Elmore, A.J., Asner, G.P., 2006. Effects of grazing intensity on soil carbon stocks
following deforestation of a Hawaiian dry tropical forest. Global Change Biology
12, 1761–1772.
Liao, J.D., Boutton, T.W., Jastrow, J.D., 2006. Storage and dynamics of carbon and
nitrogen in soil physical fractions following woody plant invasion of grassland.
Soil Biology & Biochemistry 38, 3184–3196.
Harpole, W.S., Potts, D.L., Suding, K.N., 2007. Ecosystem responses to water and
nitrogen amendment in a California grassland. Global Change Biol. 13 (11),
2341–2348.
Houghton, R.A., Hackler, J.L., Lawrence, K.T., 1999. The U.S. carbon budget: contributions from land-use change. Science 285, 574–578.
Li, Y.H., 1994. Research on the grazing degradation model of the main steppe rangelands in Inner Mongolia and some considerations for the establishment of a computerized rangeland monitoring system. Acta Phytoecologica Sinica 18, 68–79 (in Chinese with English abstract).
Dong, X.B., Zhang, X.S., 2005. The grassland in the Inner Mongolia is overloaded and change of production pattern is highlighted. Resources Science 27, 175–179 (in
Chinese, with English abstract).
Stampfli, A., Bloor, J.M.G., Fischer, M., Zeiter, M., 2018. High land use intensity
exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biol. 24 (5), 2021–2034. Xu, Z., Ren, H., Cai, J., Wang, R., Li, M., Wan, S., et al., 2014. Effects of experimentallyenhanced precipitation and nitrogen on resistance, recovery and resilience of a semiarid grassland after drought. Oecologia 176 (4), 1187–1197.
Mackie, K.A., Zeiter, M., Bloor, J.M., Stampfli, A., 2019. Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment. J. Ecol. 107 (2), 937–949.
Xu, Z., Wan, S., Ren, H., Han, X., Li, M.H., Cheng, W., Jiang, Y., 2012. Effects of waterand nitrogen addition on species turnover in temperate grasslands in norther china PLoS ONE 7, e3976.
Morra, M.J., Bland, R.R., Freeborn, L.L., Shafii, B., 1991. Size fractionation of soil organicmineral complexes using ultrasonic dispersion. Soil Science 152, 294–303.
Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter.
In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis.
Gallaher, R.N., Weldon, C.O., Boswell, F.C., 1976. A semi-automated procedure for
total nitrogen in plant and soil samples. Soil Science Society of America Journal 40, 887–889.
Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology & Biochemistry 19, 703–707.
Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278.
Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D., 2003. Plant diversity,soil microbial communities, and ecosystem function: are there any links?
Ecology 84, 2042–2050.
Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In: Hurst CJ (Ed) Manual of environmental microbiology. ASM Press, Washington, DC, pp 101–113.
Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, Yu L, Liu W, Bi J, Wang Z, Ma K (2015) Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem 89:12–23.
DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138.
Dong, X.B., Zhang, X.S., 2005. The grassland in the Inner Mongolia is overloaded and change of production pattern is highlighted. Resources Science 27, 175–179 (in
Chinese, with English abstract).
Xiao, X. M., Wang, Y.F., Chen, Z.Z., 1996. Dynamics of primary productivity and soil
organic matter of typical steppe in the Xilin River basin of Inner Mongolia and their response to climate change. Acta Botanica Sinica 38, 45–52 (in Chinese,with English abstract).
Bai, Y. F., Han, X.G., Wu, J.G., Chen, Z.Z., Li, L.H., 2004. Ecosystem stability and
compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184.
Hulbert, L. C., 1988. Causes of fire effects in tallgrass prairie. Ecology 69, 46–58.
David, N. T., Schimel, D.S., Owensby, C.E., Ojima, D.S., 1991. Fire and grazing in the tallgrass prairie: contingent effects on nitrogen budgets. Ecology 72, 1374–1382.
Collins, S. L., Smith, M. D., 2006. Scale-dependent interaction of fire and grazing on
community heterogeneity in tallgrass prairie. Ecology 87, 2058–2067.
MacNeil, M. D., Haferkamp, M. R., Vermeire, L. T., Muscha, J. M., 2008. Prescribed fire and grazing effects on carbon dynamics in a northern mixed-grass prairie. Agriculture, Ecosystems and Environment 127, 66–72.
Wu, H. B., Guo, Z. T., Peng, C. H., 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology 9, 305–315.
Post, W.M., Emanuel, W. R., Zinke, P. J., Stangenberger, A. G., 1982. Soil carbon pools and world life zones. Nature 298, 156–159.
Burke, I. C., Lauenroth, W. K., Coffin, D. P., 1995. Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program. Ecological Applications 5, 793–801.
Ma, Q., Liu, X., Li, Y., Li, L., Yu, H., Qi, M., et al., 2020. Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. J. Ecol. 108 (2), 598–610.
DeAngelis, D. L., Mulholland, P. J., Palumbo, A. V., Stienman, A. D., Huston, A., Elwood, J. W., 1989. Nutrient dynamics and food web stability. Annu. Rev. Ecol. Systemat. 20, 71–95.
Herbert, D. A., Fownes, J. H., Vitousek, P. M., 1999. Hurricane damage to a Hawaiian
forest: nutrient supply rate affects resistance and resilience. Ecology 80 (3), 908–920. Xu, Z., Zhou, G., Shimizu, H., 2009. Are plant growth and photosynthesis limited by predrought following rewatering in grass? J. Exp. Bot. 60 (13), 3737–3749.
Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G., et al., 2017. Global patterns of drought recovery. Nature 548 (7666), 202–205. https://doi. org/10.1038/nature23021.
Mackie, K. A., Zeiter, M., Bloor, J. M., Stampfli, A., 2019. Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment. J. Ecol. 107 (2), 937–949.
Chen, N., Zhang, Y., Zu, J., Zhu, J., Zhang, T., Huang, K., et al., 2020. The compensation effects of post-drought regrowth on earlier drought loss across the Tibetan plateau grasslands. Agric. For. Meteorol. 281, 107822 .2019.107822.
Sankaran, M., 2019. Droughts and the ecological future of tropical savanna vegetation. J. Ecol. 107 (4), 1531–1549.
Xu, Z., Zhou, G., 2007. Photosynthetic recovery of a perennial grass Leymus chinensis after different periods of soil drought. Plant Prod. Sci. 10 (3), 277–285. Sankaran, M., 2019. Droughts and the ecological future of tropical savanna vegetation. J. Ecol. 107 (4), 1531–1549.
Xu, Z., Ren, H., Cai, J., Wang, R., Li, M., Wan, S., et al., 2014. Effects of experimentallyenhanced precipitation and nitrogen on resistance, recovery and resilience of a semiarid grassland after drought. Oecologia 176 (4), 1187–1197.
Manzoni S, Schimel J P, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938.
Pennanen T, Fritze H, Vanhala P, Kiikkilä O, Neuvonen S, Bååth E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microb 64:2173–2180.
Ruzhen, Wang, Maxim, et al. Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland[J]. Biology and Fertility of Soils, 2016.
Zhang, N., Liu, W., Yang, H., Yu, X., Gutknecht, J.L.M., Zhang, Z., Wan, S., Ma, K.,
2013a. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173, 1125e1142.
Dungait J A, Hopkins D W, Gregory A S, Whitmore A P (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796.
Nielsen U N, Ball B A (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob Chang Biol 21:1407–1421.
Griffiths B S, Ritz K, Ebblewhite N, Dobson G (1998) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153.
Frey S D, Knorr M, Parrent J L, Simpson R T (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manag 196:159–171.
Strickland M S, Rousk J (2010) Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395.
Bai Y, Wu J, Clark C M, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob Chang Biol 16:358–372.
Xu, Z., Wan, S., Zhu, G., Ren, H., Han, X., 2010. The inflfluence of historical land use and water availability on grassland restoration. Restoration Ecology 18, 217e225.
Hobbie, E. A., Jumpponen, A., Trappe, J., 2005. Foliar and fungal 15N: 14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession:
testing analytical models. Oecologia 146, 258e268.
Wei, C., Yu, Q., Bai, E., Lü, X., Li, Q., Xia, J., Kardol, P., Liang, W., Wang, Z., Han, X., 2013.Nitrogen deposition weakens plantemicrobe interactions in grassland ecosystems. Global Change Biology 19, 3688-3697.
Treseder, K. K., 2008. Nitrogen additions and microbial biomass: a meta-analysis of
ecosystem studies. Ecology Letters 11, 1111-1120.
Gutknecht, J. L. M., Field, C. B., Balser, T. C., 2012. Microbial communities and their
responses to simulated global change fluctuate greatly over multiple years.Global Change Biology 18, 2256-2269.
Wei, C., Yu, Q., Bai, E., Lü, X., Li, Q., Xia, J., Kardol, P., Liang, W., Wang, Z., Han, X., 2013.Nitrogen deposition weakens plantemicrobe interactions in grassland ecosystems. Global Change Biology 19, 3688-3697.
Table 1 Characteristics of experimental plots (DS, dry-season; WS, wet-season)