References
Bakker, E. S., & Nolet, B. A. (2014). Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment. Oecologia, 176 (3), 825-836.https://doi.org/:10.1007/s00442-014-3047-y
Bakker, E. S., Van Donk, E., Declerck, S. A. J., Helmsing, N. R., Hidding, B., & Nolet, B. A. (2010). Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology, 11 (5), 432-439.https://doi.org/:10.1016/j.baae.2010.06.005
Bakker, E. S., Wood, K. A., Pagès, J. F., Veen, G. F., Christianen, M. J. A., Santamaría, L., . . . Hilt, S. (2016). Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 135 , 18-36.https://doi.org/:10.1016/j.aquabot.2016.04.008
Bartleson, R. D., Hunt, M. J., & Doering, P. H. (2014). Effects of temperature on growth of Vallisneria americana in a sub-tropical estuarine environment. Wetlands Ecology and Management, 22 (5), 571-583.https://doi.org/:10.1007/s11273-014-9354-6
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4.Journal of Statistical Software, 67 (1), 1-48.https://doi.org/:10.18637/jss.v067.i01
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73 (1), 1-14.https://doi.org/:10.1007/s00027-010-0162-7
Bronmark, C. (1989). Interactions between epiphytes, macrophytes and fresh-water snails - a review.Journal of Molluscan Studies, 55 , 299-311.https://doi.org/:10.1093/mollus/55.2.299
Bronmark, C. (1990). How do herbivorous fresh-water snails affect macrophytes - a comment.Ecology, 71 (3), 1212-1215.https://doi.org/:10.2307/1937391
Cao, Y., Li, W., & Jeppesen, E. (2014). The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach. Hydrobiologia, 738 (1), 49-59.https://doi.org/:10.1007/s10750-014-1914-5
Carpenter, S. R., & Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes.Aquatic Botany, 26 , 341-370.https://doi.org/:10.1016/0304-3770(86)90031-8
Catling, P. M., & Dobson, I. (1985). The biology of canadian weeds .69. Potamogeton-Crispus L .Canadian Journal of Plant Science, 65 (3), 655-668.https://doi.org/:10.4141/cjps85-088
Chou, Q., Zhang, W., Chen, J., Ren, W., Yuan, C., Wen, Z., . . . Jeppesen, E. (2022). Phenotypic responses of a submerged macrophyte (Vallisneria natans ) to low light combined with water depth. Aquatic Botany, 176 , 103462.https://doi.org/:10.1016/j.aquabot.2021.103462
Coppens, J., Hejzlar, J., Orf, M., Jeppesen, E., & Beklioglu, M. (2016). The influence of nutrient loading, climate and water depth on nitrogen and phosphorus loss in shallow lakes: a pan-European mesocosm experiment. Hydrobiologia, 778 (1), 13-32.https://doi.org/:10.1007/s10750-015-2505-9
Cronin, G., & Lodge, D. M. (2003). Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia, 137 (1), 32-41.https://doi.org/:10.1007/s00442-003-1315-3
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., & Litchman, E. (2016). Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography, 61 (4), 1232-1244.https://doi.org/:10.1002/lno.10282
Frost, P. C., Benstead, J. P., Cross, W. F., Hillebrand, H., Larson, J. H., Xenopoulos, M. A., & Yoshida, T. (2006). Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters, 9 (7), 774-779.https://doi.org/:10.1111/j.1461-0248.2006.00919.x
Gao, J., Luo, Q., Li, G., & Shao, Y. (2005). Effects of dissolved oxygen, temperature, nitrogen and phosphorus on winter bud germination and growth of Potamogeton crispus L . Journal of Wuhan University: Science Edition, 51 (4), 6.https://doi.org/:10.3321/j.issn:1671-8836.2005.04.026
Going, B., Simpson, J., & Even, T. (2008). The influence of light on the growth of watercress (Nasturtium officinale R. Br.). Hydrobiologia, 607 , 75-85.https://doi.org/:10.1007/s10750-008-9368-2
Gu, J., He, H., Jin, H., Yu, J., Jeppesen, E., Nairn, R. W., & Li, K. (2018). Synergistic negative effects of small-sized benthivorous fish and nitrogen loading on the growth of submerged macrophytes - Relevance for shallow lake restoration. Science of the Total Environment, 610-611 , 1572-1580.https://doi.org/:10.1016/j.scitotenv.2017.06.119
Guan, J., Jacoby, C. A., & Frazer, T. K. (2020). Light attenuation by periphyton on Vallisneria americana.Ecological Indicators, 116 , 106498.https://doi.org/:10.1016/j.ecolind.2020.106498
Guo, Y., Zhang, P., Chen, J., & Xu, J. (2021). Freshwater snail and shrimp differentially affect water turbidity and benthic primary producers. Water Biology and Security , 100004.https://doi.org/:10.1016/j.watbs.2021.100004
Havens, K. E., Sharfstein, B., Brady, M. A., East, T. L., Harwell, M. C., Maki, R. P., & Rodusky, A. J. (2004). Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany, 78 (1), 67-82.https://doi.org/:10.1016/j.aquabot.2003.09.005
Hilt, S. (2006). Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany, 85 (3), 252-256.https://doi.org/:10.1016/j.aquabot.2006.05.004
Hilt, S., Alirangues Nunez, M. M., Bakker, E. S., Blindow, I., Davidson, T. A., Gillefalk, M., . . . Sayer, C. D. (2018). Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes.Frontiers in Plant Science, 9 , 194.https://doi.org/:10.3389/fpls.2018.00194
Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J., & Kosten, S. (2017). Translating regime shifts in shallow lakes into changes in ecosystem functions and services.BioScience, 67 (10), 928-936.https://doi.org/:10.1093/biosci/bix106
Hilt, S., Gross, E. M., Hupfer, M., Morscheid, H., Mählmann, J., Melzer, A., . . . van de Weyer, K. (2006). Restoration of submerged vegetation in shallow eutrophic lakes – A guideline and state of the art in Germany. Limnologica, 36 (3), 155-171.https://doi.org/:10.1016/j.limno.2006.06.001
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6 (1), 1-55.https://doi.org/:10.1080/10705519909540118
Janssen, A. B. G., Hilt, S., Kosten, S., Klein, J. J. M., Paerl, H. W., & Van de Waal, D. B. (2021). Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology, 66 (1), 1-12.https://doi.org/:10.1111/fwb.13582
Jeppesen, E., Søndergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia, 584 (1), 239-252.https://doi.org/:10.1007/s10750-007-0596-7
Jones, J. I., & Sayer, C. D. (2003). Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology, 84 (8), 2155-2167.https://doi.org/:10.1890/02-0422
Jones, J. I., Young, J. O., Haynes, G. M., Moss, B., Eaton, J. W., & Hardwick, K. J. (1999). Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia, 120 (3), 463-474.https://doi.org/:10.1007/s004420050879
Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460 (7254), 506-509.https://doi.org/:10.1038/nature08179
Klausmeier, C. A., Litchman, E., Daufresne, T., & Levin, S. A. (2004). Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429 (6988), 171-174.https://doi.org/:10.1038/nature02454
Koleszár, G., Nagy, Z., Peeters, E. T. H. M., Borics, G., Várbíró, G., Birk, S., & Szabó, S. (2021). The role of epiphytic algae and grazing snails in stable states of submerged and of free-floating plants. Ecosystems .https://doi.org/:10.1007/s10021-021-00721-w
Li, K. Y., Liu, Z. W., & Gu, B. H. (2009). Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis. Ecological Complexity, 6 (4), 438-442.https://doi.org/:10.1016/j.ecocom.2009.08.001
Li, K. Y., Liu, Z. W., Hu, Y. H., & Yang, H. W. (2009). Snail herbivory on submerged macrophytes and nutrient release: Implications for macrophyte management.Ecological Engineering, 35 (11), 1664-1667.https://doi.org/:10.1016/j.ecoleng.2008.05.009
Li, Y., Wang, L., Chao, C., Yu, H., Yu, D., & Liu, C. (2021). Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. Environmental Pollution, 268 (B), 115949.https://doi.org/:10.1016/j.envpol.2020.115949
Liu, Y., He, L., Hilt, S., Wang, R., Zhang, H., & Ge, G. (2021). Shallow lakes at risk: Nutrient enrichment enhances top-down control of macrophytes by invasive herbivorous snails.Freshwater Biology, 66 (3), 436-446.https://doi.org/:10.1111/fwb.13649
Liu, Z., Hu, J., Zhong, P., Zhang, X., Ning, J., Larsen, S. E., . . . Jeppesen, E. (2018). Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 146 , 88-97.https://doi.org/:10.1016/j.watres.2018.09.007
Mette, E. M., Vanni, M. J., Newell, J. M., & Gonzàlez, M. J. (2011). Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish.Limnology and Oceanography, 56 (6), 1959-1975.https://doi.org/:10.4319/lo.2011.56.6.1959
Middelboe, A. L., & Markager, S. (1997). Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology, 37 (3), 553-568.https://doi.org/:10.1046/j.1365-2427.1997.00183.x
Mormul, R. P., Thomaz, S. M., Silveira, M. J. d., & Rodrigues, L. (2010). Epiphyton or macrophyte: Which primary producer attracts the snail hebetancylus moricandi ?American Malacological Bulletin, 28 (2), 127-133, 127.https://doi.org/:doi.org/10.4003/006.028.0205
O’Hare, M. T., Aguiar, F. C., Asaeda, T., Bakker, E. S., Chambers, P. A., Clayton, J. S., . . . Wood, K. A. (2017). Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia, 812 (1), 1-11.https://doi.org/:10.1007/s10750-017-3190-7
Ozimek, T., van Donk, E., & Gulati, R. D. (1993). Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. In A. Hillbricht-Ilkowska & E. Pieczyńska (Eds.), Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers (pp. 13-18). Dordrecht: Springer Netherlands.
Pakdel, F. M., Sim, L., Beardall, J., & Davis, J. (2013). Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquatic Botany, 110 , 24-30.https://doi.org/:10.1016/j.aquabot.2013.04.005
Philbrick, C. T., & Les, D. H. (1993). The evolution of aquatic plants - an introduction and tribute to sculthorpe,cyril,duncan, author of the biology of aquatic vascular plants. Aquatic Botany, 44 (2-3), 101-104.https://doi.org/:10.1016/0304-3770(93)90067-7
Phillips, G., Willby, N., & Moss, B. (2016). Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany, 135 , 37-45.https://doi.org/:10.1016/j.aquabot.2016.04.004
Ren, J., Qiao, J., Dong, W., & Dai, C. (1997). Study on ecological habits of Potamogeton crispus and its growth in Jing-Mi Cannal, Beijing. Acta Scientiarum Naturalium Universitatis Pekinensis, 33 (6), 749-755.https://doi.org/:10.13209/j.0479-8023.1997.107
Riis, T., Olesen, B., Clayton, J. S., Lambertini, C., Brix, H., & Sorrell, B. K. (2012). Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 102 , 56-64.https://doi.org/:10.1016/j.aquabot.2012.05.002
Rosseel, Y. (2012). Structural Equation Modeling with lavaan.
Sand-Jensen, K., Riis, T., Vestergaard, O., & Larsen, S. E. (2000). Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology, 88 (6), 1030-1040.https://doi.org/:10.1046/j.1365-2745.2000.00519.x
Scheffer, M. (2004). Ecology of shallow lakes (Vol. 22): Springer Netherlands.
Schwaderer, A. S., Yoshiyama, K., de Tezanos Pinto, P., Swenson, N. G., Klausmeier, C. A., & Litchman, E. (2011). Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography, 56 (2), 589-598.https://doi.org/:10.4319/lo.2011.56.2.0589
Thomaz, S. M. (2021). Ecosystem services provided by freshwater macrophytes. Hydrobiologia .https://doi.org/:10.1007/s10750-021-04739-y
Tobiessen, P., & Snow, P. D. (1984). Temperature and light effects on the growth of Potamogeton crispus in Collins Lake, New York State. Canadian Journal of Botany, 62 (12), 2822-2826.https://doi.org/:10.1139/b84-376
Underwood, G. J. C., Thomas, J. D., & Baker, J. H. (1992). An experimental investigation of interactions in snail-macrophyte-epiphyte systems. Oecologia, 91 (4), 587-595.https://doi.org/:10.1007/bf00650335
Velthuis, M., van Deelen, E., van Donk, E., Zhang, P., & Bakker, E. S. (2017). Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis. Frontiers in Plant Science, 8 .https://doi.org/:10.3389/fpls.2017.00655
Wang, B., Song, Z., Liu, G., Lu, F., & Li, W. (2010). Comparison of the extent of genetic variation of Vallisneria natans and its sympatric congener V. spinulosa in lakes of the middle–lower reaches of the Yangtze River. Aquatic Botany, 92 (4), 233-238.https://doi.org/:10.1016/j.aquabot.2009.12.006
Wang, H. J., Pan, B. Z., Liang, X. M., Wang, H. Z., Wang, H. J., Pan, B. Z., . . . Wang, H. Z. (2010). Gastropods on submersed macrophytes in Yangtze lakes: Community characteristics and empirical modelling. International Review Of Hydrobiology, 91 (6), 521-538.https://doi.org/:10.1002/iroh.200510846
Wang, R., He, L., Zhang, M., Cao, T., Zhang, X., Liu, Y., . . . Ge, G. (2021). Factors on seed germination, tuber sprout and plant growth of Vallisnera species in China.Journal of Lake Sciences, 33 (05), 1315-1333.https://doi.org/:10.18307/2021.0503
Xiong, W., Dan, Y. U., Wang, Q., Liu, C., & Wang, L. (2010). A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology, 53 (11), 2256-2263.https://doi.org/:10.1111/j.1365-2427.2008.02058.x
Yamamichi, M., Kazama, T., Tokita, K., Katano, I., Doi, H., Yoshida, T., . . . Urabe, J. (2018). A shady phytoplankton paradox: when phytoplankton increases under low light.Proceedings Of The Royal Society B-Biological Sciences, 285 (1882).https://doi.org/:10.1098/rspb.2018.1067
Yang, L., He, H., Guan, B., Yu, J., Yao, Z., Zhen, W., . . . Liu, Z. (2020). Mesocosm experiment reveals a strong positive effect of snail presence on macrophyte growth, resulting from control of epiphyton and nuisance filamentous algae: Implications for shallow lake management. Science of the Total Environment, 705 , 135958.https://doi.org/:10.1016/j.scitotenv.2019.135958
Zhang, P., Bakker, E. S., Zhang, M., & Xu, J. (2016). Effects of warming on Potamogeton crispusgrowth and tissue stoichiometry in the growing season. Aquatic Botany, 128 , 13-17.https://doi.org/:10.1016/j.aquabot.2015.08.004
Zhang, P., Kong, X., Bakker, E. S., Xu, J., & Zhang, M. (2021). Temperature affects carbon and nitrogen stable isotopic signatures of aquatic plants. Aquatic Sciences, 83 (2), 39.https://doi.org/:10.1007/s00027-021-00794-8
Zhang, P., Kuramae, A., Leeuwen, C., Velthuis, M., & Bakker, E. S. (2020). Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Frontiers in Plant Science, 11 , 58.https://doi.org/:10.3389/fpls.2020.00058
Zhang, P., Zhang, H., Wang, H., Hilt, S., Li, C., Yu, C., . . . Xu, J. (2021). Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms. Journal of Applied Ecology, 59 (1), 165-175.https://doi.org/:10.1111/1365-2664.14040
Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., . . . Deng, J. (2017). Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173 , 259-265.https://doi.org/:10.1016/j.earscirev.2017.08.013
Zhi, Y. W., Liu, Y., Li, W., & Cao, Y. (2020). Responses of four submerged macrophytes to freshwater snail density (Radix swinhoei ) under clear-water conditions: A mesocosm study. Ecology and Evolution, 10 (14), 7644-7653.https://doi.org/:10.1002/ece3.6489
Ziu, Y., Zhang, W., & Wang, Y. (1979). Chinese economic zoology. Freshwater molluscs . China: Science Press.
Table1 Effects of shading, herbivory, nutrient loading and their interactions on the growth of primary producers, macrophyte elemental composition and stoichiometry. Effects were analyzed by generalized linear models. Data transformation to meet model requirements is indicated. Due to the nonlinear response of P. crispus shoot biomass to snail biomass, the quadratic of snail biomass is used as a predicted variable in the models. For the manipulated factors shading (S), herbivory (H) and nutrient loading (E), main effects are classified directionally as positive (+) or negative (−) based on the response direction of manipulated versus control levels. Combined (C) two-way interactions with herbivory are also classified directionally (+ or −effect of herbivory) and as stronger (>), weaker (<) or different (±) effects in the presence of the second stressor. “log” indicates the data are natural log transformed respectively. Bold numbers indicate p < 0.05 and empty cells are not significant.