7 References
1. Jensen, P. E., & Leister, D. (2014). Chloroplast evolution,
structure and functions. In F1000Prime Reports (Vol. 6).
https://doi.org/10.12703/P6-40
2. Daniell, H., Kumar, S., & Dufourmantel, N. (2005). Breakthrough in
chloroplast genetic engineering of agronomically important crops.Trends in Biotechnology , 23 (5), 238–245.
https://doi.org/10.1016/j.tibtech.2005.03.008
3. Adem, M., Beyene, D., & Feyissa, T. (2017). Recent achievements
obtained by chloroplast transformation. In Plant Methods (Vol.
13, Issue 1, pp. 1–11). https://doi.org/10.1186/s13007-017-0179-1
4. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P.,
Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D.,
Klein, T. M., Shark, K. B., & Sanford, J. C. (1988). Chloroplast
transformation in Chlamydomonas with high velocity
microprojectiles. Science , 240 (4858), 1534–1538.
https://doi.org/10.1126/science.2897716
5. Dyo, Y. M., & Purton, S. (2018). The algal chloroplast as a
synthetic biology platform for production of therapeutic proteins.Microbiology (United Kingdom) , 164 (2), 113–121.
https://doi.org/10.1099/mic.0.000599
6. Kwon, Y. M., Kim, K. W., Choi, T. Y., Kim, S. Y., & Kim, J. Y. H.
(2018). Manipulation of the microalgal chloroplast by genetic
engineering for biotechnological utilization as a green biofactory.World Journal of Microbiology and Biotechnology , 34 (12),
1–11. https://doi.org/10.1007/s11274-018-2567-8
7. Anil Kumar Ruguang Ou, Mustapha Samrakandi, Brenda T. Beerntsen and
Richard T. Sayre, S. W. (2013). Development of an RNAi based microalgal
larvicide to control mosquitoes . Mwj , 4 (6), 7.
8. Charoonnart, P., Worakajit, N., Zedler, J. A. Z., Meetam, M.,
Robinson, C., & Saksmerprome, V. (2019). Generation of microalgaChlamydomonas reinhardtii expressing shrimp antiviral dsRNA
without supplementation of antibiotics. Scientific Reports ,9 (1), 1–8. https://doi.org/10.1038/s41598-019-39539-x
9. Jackson, H. O., Taunt, H. N., Mordaka, P. M., Smith, A. G., &
Purton, S. (2021). The Algal Chloroplast as a Testbed for
Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism .12 (September), 1–15. https://doi.org/10.3389/fpls.2021.708370
10. Specht, E. A., & Mayfield, S. P. (2013). Synthetic oligonucleotide
libraries reveal novel regulatory elements in Chlamydomonaschloroplast mRNAs. ACS Synthetic Biology , 2 (1), 34–46.
https://doi.org/10.1021/sb300069k
11. Scaife, M. A., & Smith, A. G. (2016). Towards developing algal
synthetic biology. Biochemical Society Transactions ,44 (3), 716–722. https://doi.org/10.1042/BST20160061
12. Crozet, P., Navarro, F. J., Willmund, F., Mehrshahi, P., Bakowski,
K., Lauersen, K. J., Pérez-Pérez, M. E., Auroy, P., Gorchs Rovira, A.,
Sauret-Gueto, S., Niemeyer, J., Spaniol, B., Theis, J., Trösch, R.,
Westrich, L. D., Vavitsas, K., Baier, T., Hübner, W., De Carpentier, F.,
… Lemaire, S. D. (2018). Birth of a Photosynthetic Chassis: A
MoClo Toolkit Enabling Synthetic Biology in the MicroalgaChlamydomonas reinhardtii . ACS Synthetic Biology ,7 (9), 2074–2086. https://doi.org/10.1021/acssynbio.8b00251
13. Gallaher, S. D., Fitz-Gibbon, S. T., Strenkert, D., Purvine, S. O.,
Pellegrini, M., & Merchant, S. S. (2018). High-throughput sequencing of
the chloroplast and mitochondrion of Chlamydomonas reinhardtii to
generate improved de novo assemblies, analyze expression patterns and
transcript speciation, and evaluate diversity among laboratory strains
and wild is. Plant Journal , 93 (3), 545–565.
https://doi.org/10.1111/tpj.13788
14. Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y., & Vallon, O.
(2017). Small RNA profiling in Chlamydomonas : Insights into
chloroplast RNA metabolism. Nucleic Acids Research ,45 (18), 10783–10799. https://doi.org/10.1093/nar/gkx668
15. Taylor, G. M., Mordaka, P. M., & Heap, J. T. (2019). Start-Stop
Assembly: A functionally scarless DNA assembly system optimized for
metabolic engineering. Nucleic Acids Research , 47 (3), e17.
https://doi.org/10.1093/nar/gky1182
16. Larrea-Alvarez, M., & Purton, S. (2020). Multigenic engineering of
the chloroplast genome in the green alga Chlamydomonas
reinhardtii . Microbiology (United Kingdom) , 166 (6),
510–515. https://doi.org/10.1099/mic.0.000910
17. Gimpel, J. A., Nour-Eldin, H. H., Scranton, M. A., Li, D., &
Mayfield, S. P. (2016). Refactoring the Six-Gene Photosystem II Core in
the Chloroplast of the Green Algae Chlamydomonas reinhardtii .ACS Synthetic Biology , 5 (7), 589–596.
https://doi.org/10.1021/acssynbio.5b00076
18. Esland, L., Larrea-Alvarez, M., & Purton, S. (2018). Selectable
markers and reporter genes for engineering the chloroplast ofChlamydomonas reinhardtii . Biology , 7 (4), In press.
https://doi.org/10.3390/biology7040046
19. Goldschmidt-clermont, M. (1991). Transgenic expression of
aminoglycoside adenine transferase in the chloroplast: A selectable
marker for site-directed transformation of chlamydomonas. Nucleic
Acids Research , 19 (15), 4083–4089.
https://doi.org/10.1093/nar/19.15.4083
20. Bateman, J. M., & Purton, S. (2000). Tools for chloroplast
transformation in Chlamydomonas : Expression vectors and a new
dominant selectable marker. Molecular and General Genetics ,263 (3), 404–410. https://doi.org/10.1007/s004380051184
21. Sandoval-Vargas, J. M., Jiménez-Clemente, L. A., Macedo-Osorio, K.
S., Oliver-Salvador, M. C., Fernández-Linares, L. C., Durán-Figueroa, N.
V., & Badillo-Corona, J. A. (2019). Use of the ptxD gene as a
portable selectable marker for chloroplast transformation inChlamydomonas reinhardtii . Molecular Biotechnology ,61 (6), 461–468. https://doi.org/10.1007/s12033-019-00177-3
22. Rosales-Mendoza, S., Solís-Andrade, K. I., Márquez-Escobar, V. A.,
González-Ortega, O., & Bañuelos-Hernandez, B. (2020). Current advances
in the algae-made biopharmaceuticals field. Expert Opinion on
Biological Therapy , 20 (7), 751–766.
https://doi.org/10.1080/14712598.2020.1739643
23. Keese, P. (2008). Risks from GMOs due to Horizontal Gene Transfer.Environmental Biosafety Research , 7 (2008), 123–149.
24. Fischer, N., Stampacchia, O., Redding, K., & Rochaix, J. D. (1996).
Selectable marker recycling in the chloroplast. Molecular and
General Genetics , 251 (3), 373–380.
https://doi.org/10.1007/BF02172529
25. Martin Avila, E., Gisby, M. F., & Day, A. (2016). Seamless editing
of the chloroplast genome in plants. BMC Plant Biology ,16 (1), 1–13. https://doi.org/10.1186/s12870-016-0857-6
26. Cerutti, H., Johnson, A. M., Boynton, J. E., & Gillham, N. W.
(1995). Inhibition of chloroplast DNA recombination and repair by
dominant negative mutants of Escherichia coli RecA.Molecular and Cellular Biology , 15 (6), 3003–3011.
https://doi.org/10.1128/mcb.15.6.3003
27. Bingham, S. E., & Webber, A. N. (1994). Maintenance and expression
of heterologous genes in chloroplast of Chlamydomonas
reinhardtii . Journal of Applied Phycology , 6 (2),
239–245. https://doi.org/10.1007/BF02186077
28. Kunstner, P., Guardiola, A., Takahashi, Y., & Rochaix, J. D.
(1995). A mutant strain of Chlamydomonas reinhardtii lacking the
chloroplast photosystem II psbI gene grows photoautotrophically.Journal of Biological Chemistry , 270 (16), 9651–9654.
https://doi.org/10.1074/jbc.270.16.9651
29. Vermes, A., Guchelaar, H. J., & Dankert, J. (2000). Flucytosine: a
review of its pharmacology, clinical indications, pharmacokinetics,
toxicity and drug interactions. Journal of Antimicrobial
Chemotherapy , 46 (2), 171–179.
https://doi.org/10.1093/jac/46.2.171
30. Svab, Z., & Maliga, P. (1993). High-frequency plastid
transformation in tobacco by selection for a chimeric aadA gene.Proceedings of the National Academy of Sciences of the United
States of America , 90 (3), 913–917.
https://doi.org/10.1073/pnas.90.3.913
31. Serino, G., & Maliga, P. (1997). A negative selection scheme based
on the expression of cytosine deaminase in plastids. Plant
Journal , 12 (3), 697–701.
https://doi.org/10.1046/j.1365-313X.1997.d01-17.x
32. Young, R. E. B., & Purton, S. (2014). Cytosine deaminase as a
negative selectable marker for the microalgal chloroplast: A strategy
for the isolation of nuclear mutations that affect chloroplast gene
expression. Plant Journal , 80 (5), 915–925.
https://doi.org/10.1111/tpj.12675
33. Bankaitis, V. A. (1990). The Chlamydomonas sourcebook.Cell , 61 (4), 559–560.
https://doi.org/10.1016/0092-8674(90)90467-s
34. Cox, R. S., Dunlop, M. J., & Elowitz, M. B. (2010). A synthetic
three-color scaffold for monitoring genetic regulation and noise.Journal of Biological Engineering , 4 .
https://doi.org/10.1186/1754-1611-4-10
35. El-Sheekh, M. M. (2000). Stable Chloroplast Transformation inChlamydomonas reinhardtii using Microprojectile Bombardment.Folia Microbiologica , 45 (6), 496–504.
https://doi.org/10.1007/BF02818717
36. Berthold, D. A., Best, B. A., & Malkin, R. (1993). A rapid DNA
preparation for PCR from Chlamydomonas reinhardtii andArabidopsis thaliana . Plant Molecular Biology Reporter ,11 (4), 338–344. https://doi.org/10.1007/BF02905336
37. Franklin, J. L., Zhang, J., & Redding, K. (2003). Use of
aminoglycoside adenyltransferase translational fusions to determine
topology of thylakoid membrane proteins. FEBS Letters ,536 (1–3), 97–100. https://doi.org/10.1016/S0014-5793(03)00034-6
38. Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein
linkers: Property, design and functionality. In Advanced Drug
Delivery Reviews (Vol. 65, Issue 10, pp. 1357–1369).
https://doi.org/10.1016/j.addr.2012.09.039
39. Macedo-Osorio, K. S., Pérez-España, V. H., Garibay-Orijel, C.,
Guzmán-Zapata, D., Durán-Figueroa, N. V., & Badillo-Corona, J. A.
(2018). Intercistronic expression elements (IEE) from the chloroplast ofChlamydomonas reinhardtii can be used for the expression of
foreign genes in synthetic operons. Plant Molecular Biology ,98 (4–5), 303–317. https://doi.org/10.1007/s11103-018-0776-z
40. Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T.
(2001). Design of the linkers which effectively separate domains of a
bifunctional fusion protein. Protein Engineering , 14 (8),
529–532. https://doi.org/10.1093/protein/14.8.529
41. Purton, S. (2007). Tools and techniques for chloroplast
transformation of Chlamydomonas . In Advances in
Experimental Medicine and Biology (Vol. 616, pp. 34–45).
https://doi.org/10.1007/978-0-387-75532-8_4
42. Zhao, S., & Gorte, R. J. (2003). The effect of oxide dopants in
ceria on n-butane oxidation. Applied Catalysis A: General ,248 (1–2), 9–18. https://doi.org/10.1016/S0926-860X(03)00102-9
43. Wannathong, T., Waterhouse, J. C., Young, R. E. B., Economou, C. K.,
& Purton, S. (2016). New tools for chloroplast genetic engineering
allow the synthesis of human growth hormone in the green algaChlamydomonas reinhardtii . Applied Microbiology and
Biotechnology , 100 (12), 5467–5477.
https://doi.org/10.1007/s00253-016-7354-6
44. Eberhard, S., Drapier, D., & Wollman, F. A. (2002). Searching
limiting steps in the expression of chloroplast-encoded proteins:
Relations between gene copy number, transcription, transcript abundance
and translation rate in the chloroplast of Chlamydomonas reinhardtii.Plant Journal , 31 (2), 149–160.
https://doi.org/10.1046/j.1365-313X.2002.01340.x
45. Coragliotti, A. T., Beligni, M. V., Franklin, S. E., & Mayfield, S.
P. (2011). Molecular factors affecting the accumulation of recombinant
proteins in the Chlamydomonas reinhardtii . Molecular
Biotechnology , 48 (1), 60–75.
https://doi.org/10.1007/s12033-010-9348-4
46. Fuentes, P., Armarego-Marriott, T., & Bock, R. (2018). Plastid
transformation and its application in metabolic engineering.Current Opinion in Biotechnology , 49 , 10–15.
https://doi.org/10.1016/j.copbio.2017.07.004
47. Barnes, D., Franklin, S., Schultz, J., Henry, R., Brown, E.,
Coragliotti, A., & Mayfield, S. P. (2005). Contribution of 5′- and
3′-untranslated regions of plastid mRNAs to the expression ofChlamydomonas reinhardtii chloroplast genes. Molecular
Genetics and Genomics , 274 (6), 625–636.
https://doi.org/10.1007/s00438-005-0055-y
48. Dauvillee, D., Hilbig, L., Preiss, S., & Johanningmeier, U. (2004).
Minimal extent of sequence homology required for homologous
recombination at the psbA locus in Chlamydomonas reinhardtiichloroplasts using PCR-generated DNA fragments. Photosynthesis
Research , 79 (2), 219–224.
https://doi.org/10.1023/B:PRES.0000015384.24958.a9
49. Yu, Z., Geisler, K., Leontidou, T., Young, R., Vonlanthen, S.,
Purton, S., Abell, C., & Smith, A. (2021). Droplet-based microfluidic
screening and sorting of microalgal populations for strain engineering
applications. Algal Research, in Press , 1 (56), 102293.
50. Maliga, P. (2004). Plastid transformation in higher plants.Annual Review of Plant Biology , 55 , 289–313.
https://doi.org/10.1146/annurev.arplant.55.031903.141633
51. Agrawal, S., Karcher, D., Ruf, S., & Bock, R. (2020). The functions
of chloroplast glutamyl-tRNA in translation and tetrapyrrole
biosynthesis. Plant Physiology , 183 (5), 263–276.
https://doi.org/10.1104/pp.20.00009