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Abstract

We present Wong-type oscillation criteria for nonlinear impulsive differential
equations having discontinuous solutions and involving both negative and positive
coefficients. We use a technique that involves the use of a nonprincipal solution of the
associated linear homogeneous equation. The existence of principal and nonpricipal
solutions was recently obtained by the present authors in [J. Math. Anal. Appl. 503
(2021) 125311]. As special cases, we have superlinear and sublinear Emden-Fowler
equations under impulse effects. It is shown that the oscillation behavior changes due
to impulses, in particular impulses acting on the solution itself, not on its derivative.
An example is also given to illustrate the importance of the results.
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1 INTRODUCTION.

We start with recalling one of the most celebrated classical oscillation theorem of Wong1 obtained for linear nonhomogeneous
equation

(p(t)x′)′ + q(t)x = f (t). (1)

It says that (1) is oscillatory if

lim sup
t→∞

0(t) = − lim inft→∞
0(t) = ∞,

where 0 is given by

0(t) =

t

∫
T

1
p(�)v2(�)

�

∫
T

f (s)v(s) dsd� (2)

and v is a positive nonprincipal solution of the corresponding homogeneous equation

(p(t)x′)′ + q(t)x = 0.

Recently, the above oscillation theorem has been extended by the present authors in2 to equations of impulsive type of the
form

{

(p(t)x′)′ + q(t)x = f (t), t ≠ �i,
Δx + aix = fi, Δp(t)x′ + bix + cix′ = gi, t = �i.
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Indeed, the first extension was given even earlier in3 for a much simpler case ai = ci = 0 as an application of nonprincipal
solutions.
A successful generalization of these results to nonlinear differential equations can be found in4,5. In particular, related

oscillation theorems were derived in4 for nonlinear equations with mixed type exponents � > 1 and � < 1 of the form

(p(t)x′)′ + q(t)|x|�−1x − r(t)|x|�−1x = f (t), (3)

where p and q are non-negative functions. Due to the sign changing coefficients the limiting case � → 1− and � → 1+ has led
an improvement of the Wong oscillation theorem mentioned above. We note that various extensions of Wong type oscillation
theorems to nonlinear ordinary differential equations can be found in7,8,9,10. However, there is not much work in the literature
for their impulsive counterparts5,11. On the other hand, there are many results involving different types of oscillation theorems
for nonlinear differential equations under impulse effects, see for instance12,13,14,15 and the references cited therein.
In this work, inspired by the above mentioned studies, we will establish Wong type oscillation criteria for a general class of

nonlinear impulsive differential equations of form

⎧

⎪

⎨

⎪

⎩

(p(t)x′)′ + q(t)F (x) − r(t)G(x) = f (t), t ≠ �i,
Δx + aiF (x) − biG(x) = fi, t = �i,
Δp(t)x′ + ciF (x) − diG(x) = gi, t = �i,

(4)

where p > 0, q, r, f are piece-wise left continuous functions on [0,∞); F and G are continuous on ℝ; {ai}, {bi}, {ci}, {di},
{fi} and {gi} are real sequences; 1 − ai + bi > 0; the sequence of impulses {�i} is unbounded and increasing. As usual,

Δy|t=�i = y(�
+
i ) − y(�

−
i )

measures the jump of y at t = �i.
A function y(t) satisfying (4) is said to be a solution of (4) if it is left continuous on (�i, �i+1] and limt→�i+ y(t) exists for each

i ∈ ℕ. As usual, we say that a solution is oscillatory if it is neither eventually positive nor eventually negative.
It turns out that the extension to nonlinear impulsive equations of the form (4) is possible if 0 in (2) is replaced by

(t) =

t

∫
a

1
p(s)v2(s)

(

s

∫
a

�(s, �)f (�)v(�) d� +
n(s)
∑

i=n(a)
�(s, �i)Mi

)

ds +
n(t)
∑

i=n(a)

fi
(1 − ai + bi)v(�i)

, (5)

where a is an arbitrarily large real number,

n(t) = inf{i ∶ �i ≥ t}, n(t) ∶= sup{i ∶ �i < t},

�(t, s) =
n(t)
∏

i=n(s)
(1 − ai + bi), t ≥ s ≥ a,

Mi = giv(�i) −
fi

(1 − ai + bi)

(

p(�i)v′(�i) − (ci − di)v(�i)
)

,

and v is a positive nonprincipal solution of
{

(p(t)x′)′ + [q(t) − r(t)]x = 0, t ≠ �i,
Δx + [ai − bi]x = 0, Δp(t)x′ + [ci − di]x = 0, t = �i

(6)

for t ≥ a.
The existence of principal and nonprincipal solutions of (6) and their applications to asymptotic integration of certain

nonlinear impulsive differential equations can be found in6.
Obviously, the equation (3) is a special case of (4), and hence the certain particular cases of equation (4) result in the Emden-

Fowler type impulsive equations. The corresponding Wong type oscillation theorems will be stated in the present work.

2 LEMMAS

We give two useful lemmas that we will rely on in the proof of our main oscillation theorem. The first lemma is a construction
of an integral equation that is equivalent to given impulsive system (1), and the second one is a simple calculus application.
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Let x be a real valued function defined on [0,∞). We define the operators J1, J2, and J3 as follows:

(J1x)(t) =

t

∫
a

�(t, �)v(�)Q(q(�), r(�), x(�)) d�,

(J2x)(t) =
n(t)
∑

i=n(a)
�(t, �i)

{

v(�i)Q(ci, di, x(�i)) −
1

1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
]

Q(ai, bi, x(�i))
}

,

and

(J3x)(t) = c1 + c2

t

∫
a

�(s, a)
p(s)v2(s)

ds +

t

∫
a

(J1x)(s) + (J2x)(s)
p(s)v2(s)

ds +
n(t)
∑

i=n(a)

Q(ai, bi, x(�i))
(1 − ai + bi)v(�i)

, (7)

where
Q(a, b, x) = (a − b)x − aF (x) + bG(x).

Lemma 1. Let v > 0 be a solution of (6). Then, x is a solution of (4) if and only if it satisfies the integral equation
x
v(t)

= J3x +(t), (8)

where  and J3 are as defined in (5) and (7), respectively.

Proof. Let x(t) be a solution of (8) and t ≠ �l. It is not difficult to see that

(J3x)′ =
1

p(t)v2(t)
(c2�(t, a) + J1x + J2x). (9)

Thus,

p(t)x′ = p(t)v′(t)J3x +
1
v(t)

(c2�(t, a) + J1x + J2x) + p(t)z′

and so

(p(t)x′)′ = (p(t)v′(t))′J3x + p(t)v′(t)(J3x)′ −
v′(t)
v2(t)

(c2�(t, a) + J1x + J2x)

+ 1
v(t)

(

(J1x)′ + (J2x)′
)

+ (p(t)z′)′, (10)

where z = v. One can easily show that

(J1x)′ = �(t, t)v(t)Q(q(t), r(t), x), (J2x)′(t) = 0, �(t, t) = 1.

Also, as shown in2 Theorem 2.2, z = v is a solution of
{

(p(t)z′)′ + [q(t) − r(t)]z = f (t), t ≠ �i,
Δz + [ai − bi]z = fi, Δp(t)z′ + [ci − di]z = gi, t = �i.

(11)

Taking the above considerations into account, it follows from (10) that

(p(t)x′)′ = − [q(t) − r(t)]v(t)J3x +Q(q(t), r(t), x) − [q(t) − r(t)]z + f (t)

or

(p(t)x′)′ + q(t)F (x) − r(t)G(x) =f (t). (12)

Now, we look at t = �l. Clearly,

(J3x)(�l+) = (J3x)(�l) +
Q(al, bl, x(�l))
(1 − al + bl)v(�l)

. (13)

Then,

Δx|t=�l =Δ[v(�l)J3x(�l)] + Δz(�l)
=(1 − al + bl)v(�l)J3x(�l+) − v(�l)J3x(�l) − (al − bl)z(�l) + fl
= − (al − bl)x(�l) +Q(al, bl, x(�l)) + fl
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which implies that

Δx|t=�l + alF (x(�l)) − blG(x(�l)) =fl. (14)

Now, it is not difficult to see that J1x(�l+) = (1 − al + bl)J1x(�l) and

J2x(�l+) =(1 − al + bl)J2x(�l) + (1 − al + bl)v(�l)Q(cl, dl, x(�l))
−
[

p(�l)v′(�l) − (cl − dl)v(�l)
]

Q(al, bl, x(�l)).

In view of (9) we can write

Δ
[

p(t)v(t)(J3x)′(t)
]

|t=�l =
[

1 − al + bl
v(�l+)

− 1
v(�l)

]

(

c2�(�l, a) + J1x(�l) + J2x(�l)
)

+ 1
v(�l+)

(

(1 − al + bl)v(�l)Q(cl, dl, x(�l)) −
[

p(�l)v′(�l) − (cl − dl)v(�l)
]

Q(al, bl, x(�l))
)

=Q(cl, dl, x(�l)) −
p(�l)v′(�l) − (cl − dl)v(�l)

(1 − al + bl)v(�l)
Q(al, bl, x(�l)). (15)

On the other hand, using (13) we have

Δ
[

p(t)v′(t)J3x(t)
]

|t=�l =
[

p(�l)v′(�l) − (cl − dl)v(�l)
]

J3x(�l+) − p(�l)v′(�l)J3x(�l)

= − (cl − dl)v(�l)J3x(�l) +
p(�l)v′(�l) − (cl − dl)v(�l)

(1 − al + bl)v(�l)
Q(al, bl, x(�l)). (16)

In view of (15), (16) and the fact that z(t) is a solution of (11) it follows that

Δp(t)x′|t=�l =Δ
[

p(�l)v(�l)(J3x)′(�l)
]

+ Δ
[

p(�l)v′(�l)J3x(�l)
]

+ Δ
[

p(�l)z′(�l)
]

=Q(cl, dl, x(�l)) − (cl − dl)v(�l)J3x(�l) − (cl − dl)z(�l) + gl,

or

Δp(t)x′|t=�l + clF (x(�l)) − dlG(x(�l)) =gl. (17)

From (12), (14) and (17), we deduce that x(t) is a solution of (4).
To prove the converse, let x be a solution of (4). Letting x1 = x and x2 = p(t)x′1, we may write (4) as a system of first order

impulsive differential equations
{

X′ + A(t)X = '(t, X), t ≠ �i
ΔX + AiX = 'i(X), t = �i,

(18)

where
X =

[

x1
x2

]

, A(t) =
[

0 −1∕p(t)
q(t) − r(t) 0

]

, Ai =
[

ai − bi 0
ci − di 0

]

,

and
'(t, X) =

[

0
Q(q(t), r(t), x1) + f (t)

]

, 'i(X) =
[

Q(ai, bi, x1) + fi
Q(ci, di, x1) + gi

]

.

As it is shown in6 Theorem 2.2, the homogeneous equation (6) associated with (4) has principal and nonprincipal solutions u
and v such that

u(t) = v(t)

t

∫
a

�(s, a)
p(s)v2(s)

ds. (19)

Let Φ(t, s) = Φ(t)Φ−1(s), where

Φ(t) =
[

u(t) v(t)
p(t)u′(t) p(t)v′(t)

]

.

Obviously, Φ(t, s) is a state transition matrix of
{

X′ + A(t)X = 0, t ≠ �i
ΔX + AiX = 0, t = �i.
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By using the relation (19) one can easily see that the entries a11 and a12 of Φ(t, s) are

a11 = v(t)
[

− p(s)v′(s)

t

∫
s

�(�, s)
p(�)v2(�)

d� + 1
v(s)

]

, a12 = v(t)v(s)

t

∫
s

�(�, s)
p(�)v2(�)

d�.

Using the variation of parameters formula, we may write from (18) that

X(t) = Φ(t, a)X(a) +

t

∫
a

Φ(t, s)'(s,X) ds +
n(t)
∑

i=n(a)
Φ(t, �i+)'i(X).

Therefore,

x1(t) =c1v(t) + c2v(t)

t

∫
a

�(s, a)
p(s)v2(s)

ds

+ v(t)

{ t

∫
a

[

Q(q(s), r(s), x1(s)) + f (s)
]

v(s)

t

∫
s

�(�, s)
p(�)v2(�)

d�ds (20)

−
n(t)
∑

i=n(a)

[

Q(ai, bi, x1(�i)) + fi
]

[

p(�i+)v′(�i+)

t

∫
�i

�(�, �i+)
p(�)v2(�)

d� − 1
v(�i+)

]

(21)

+
n(t)
∑

i=n(a)

[

Q(ci, di, x1(�i)) + gi
]

v(�i+)

t

∫
�i

�(�, �i+)
p(�)v2(�)

d�

}

. (22)

By changing the order of integration in (20), the order of integration and summation both in (21) and in (22), and using�(t, �i+) =
�(t, �i)∕(1 − ai + bi), we finally obtain that x1 is a solution of (8).

We will also need the following simple lemma. The proof is elementary, so we omit it.

Lemma 2. Suppose that xF (x) > 0, xG(x) > 0 for x ≠ 0. If

lim
|x|→∞

F (x)
x

> 1, lim
|x|→0

F (x)
x

< 1, lim
|x|→∞

G(x)
x

< 1, lim
|x|→0

G(x)
x

> 1, (23)

then
Fm = −minx≤0

[

x − F (x)
]

, FM = max
x≥0

[

x − F (x)
]

, Gm = −minx≥0

[

x − G(x)
]

, GM = max
x≤0

[

x − G(x)
]

exist as positive real numbers.

3 WONG’S OSCILLATION THEOREM

In addition to  given by (5), we define

N(t) ∶=

t

∫
a

1
p(s)v2(s)

{ s

∫
a

�(s, �)v(�)
[

q(�)FM + r(�)Gm
]

d� +
n(s)
∑

i=n(a)
�(s, �i)

[

CiFM +DiGm
]

+
n(t)
∑

i=n(a)

1
(1 − ai + bi)v(�i)

[

aiFM + biGm
]

and

N(t) ∶=

t

∫
a

1
p(s)v2(s)

{ s

∫
a

�(s, �)v(�)
[

q(�)Fm + r(�)GM
]

d� +
n(s)
∑

i=n(a)
�(s, �i)

[

CiFm +DiGM
]

}

ds

+
n(t)
∑

i=n(a)

1
(1 − ai + bi)v(�i)

[

aiFm + biGM
]

,
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where Fm, FM , Gm, and GM are as in Lemma 2, and

Ci ∶= civ(�i) −
ai

1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
]

,

Di ∶= div(�i) −
bi

1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
]

.

We may now state and prove our main result for oscillation of (4).

Theorem 1. Let (6) be nonoscillatory and v(t) > 0 be its nonprincipal solution. Suppose that (23) holds, and q(t), r(t), ai, bi,
Ci and Di are non-negative. If

lim sup
t→∞

[(t) −N(t)] = − lim inf
t→∞

[(t) +N(t)] = ∞, (24)

then the impulsive equation (4) is oscillatory.

Proof. Let x(t) be a solution of the nonlinear impulsive equation (4). By Lemma 1, x(t) satisfies (8). We need to estimate J3x
given in (7). To do so, we need to estimate J1x and J2x. Since q(t) and r(t) are non-negative, in view of Lemma 2, we can write
from

(J1x)(t) =

t

∫
a

�(t, �)v(�)
(

q(�)
[

x − F (x)
]

− r(�)
[

x − G(x)
]

)

d�

that

(J1x)(t)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≤
t
∫
a
�(t, �)v(�)

(

q(�)FM + r(�)Gm
)

d�, x > 0,

≥
t
∫
a
�(t, �)v(�)

(

q(�)Fm + r(�)GM
)

d�, x < 0.
(25)

Next, we rewrite (J2x)(t) as

(J2x)(t) =
n(t)
∑

i=n(a)
�(t, �i)

{

v(�i)
(

(ci − di)x(�i)) − ciF (x(�i)) + diG(x(�i))
)

− 1
1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
](

(ai − bi)x(�i)) − aiF (x(�i)) + biG(x(�i))
)

}

=
n(t)
∑

i=n(a)
�(t, �i)

{

(

Ci[x − F (x)] −Di[x − G(x)]
)

}

.

Since ai, bi, Ci and Di are non-negative, by Lemma 2 we easily obtain

(J2x)(t)

⎧

⎪

⎨

⎪

⎩

≤
∑n(t)
i=n(a) �(t, �i)

(

CiFM +DiGm
)

, x > 0

≥
∑n(t)
i=n(a) �(t, �i)

(

CiFm +DiGM
)

, x < 0.
(26)

On the other hand, it is not difficult to see that

n(t)
∑

i=n(a)

Q(ai, bi, x(�i))
(1 − ai + bi)v(�i)

⎧

⎪

⎨

⎪

⎩

≤
∑n(t)
i=n(a)

1
(1−ai+bi)v(�i)

(

aiFM + biGm
)

, x > 0,

≥
∑n(t)
i=n(a)

1
(1−ai+bi)v(�i)

(

aiFm + biGM
)

, x < 0.
(27)

Employing (25), (26), and (27) in (7) leads to
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(J3x)(t)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

≤ c1 + c2

t

∫
a

�(s, a)
p(s)v2(s)

ds +N(t), x > 0

≥ c1 + c2

t

∫
a

�(s, a)
p(s)v2(s)

ds −N(t), x < 0.

(28)

By using the estimate (28) in (8), we easily obtain

x(t)
v(t)

≤ c1 + c2

t

∫
a

�(s, a)
p(s)v2(s)

ds +(t) +N(t), x > 0, (29)

x(t)
v(t)

≥ c1 + c2

t

∫
a

�(s, a)
p(s)v2(s)

ds +(t) −N(t), x < 0. (30)

By making use of (24) and the fact that
t

∫
a

�(s, a)
p(s)v2(s)

ds <∞,

it follows from (29) and (30) that

lim sup
t→∞

x(t)
v(t)

= − lim inf
t→∞

x(t)
v(t)

= ∞.

Since v(t) > 0, we conclude that x(t) must be oscillatory.

In the next section we illustrate some important special cases of Theorem 1.

4 EMDEN-FOWLER TYPE IMPULSIVE EQUATIONS

Let F (x) = |x|�−1x and G(x) = |x|�−1x, where 0 < � < 1 < �, then (4) turns into the Emden-Fowler type impulsive equation
with superlinear and sublinear terms

⎧

⎪

⎨

⎪

⎩

(p(t)x′)′ + q(t)|x|�−1x − r(t)|x|�−1x = f (t), t ≠ �i,
Δx + ai|x|�−1x − bi|x|�−1x = fi, t = �i,
Δp(t)x′ + ci|x|�−1x − di|x|�−1x = gi, t = �i.

(31)

By a simple calculation we have

Fm = FM = ��∕(1−�)(� − 1), Gm = GM = ��∕(1−�)(1 − �).

Therefore, we obtain the following oscillation theorem.

Theorem 2. Let (6) be nonoscillatory and v(t) > 0 be its nonprincipal solution. Suppose that q(t), r(t), ai, bi, Ci and Di are
non-negative. Then, the halflinear impulsive Emden-Fowler equation (31) is oscillatory provided that

lim sup
t→∞

[(t) −N(t)] = − lim inf
t→∞

[(t) +N(t)] = ∞, (32)
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where (t) is as given in (5) and

N(t) ∶=

t

∫
a

1
p(s)v2(s)

{ s

∫
a

�(s, �)v(�)
[

q(�)��∕(1−�)(� − 1) + r(�)��∕(1−�)(1 − �)
]

d�

+
n(s)
∑

i=n(a)
�(s, �i)

[

Ci�
�∕(1−�)(� − 1) +Di�

�∕(1−�)(1 − �)
]

}

ds

+
n(t)
∑

i=n(a)

1
(1 − ai + bi)v(�i)

[

ai�
�∕(1−�)(� − 1) + bi��∕(1−�)(1 − �)

]

.

Taking � → 1− and � → 1+ in (31) results in a linear impulsive equation

⎧

⎪

⎨

⎪

⎩

(p(t)x′)′ + [q(t) − r(t)]x = f (t), t ≠ �i,
Δx + [ai − bi]x = fi, t = �i,
Δp(t)x′ + [ci − di]x = gi, t = �i.

(33)

In this case, ��∕(1−�) → 1∕e and ��∕(1−�) → 1∕e, and so Fm = FM = Gm = GM = 0. Thus we easily obtain the following
corollary.

Corollary 1. Let (6) be nonoscillatory and v(t) > 0 be its nonprincipal solution. Then, the linear impulsive Emden-Fowler
equation (33) is oscillatory provided that

lim sup
t→∞

(t) = − lim inf
t→∞

(t) = ∞,

where (t) is as given in (5).

We finally state the Wong type oscillation theorems for the superlinear impulsive Emden-Fowler type equation

⎧

⎪

⎨

⎪

⎩

(p(t)x′)′ + q(t)|x|�−1x = f (t), t ≠ �i,
Δx + ai|x|�−1x = fi, t = �i,
Δp(t)x′ + ci|x|�−1x = gi, t = �i

(34)

and the sublinear impulsive Emden-Fowler type equation

⎧

⎪

⎨

⎪

⎩

(p(t)x′)′ − r(t)|x|�−1x = f (t), t ≠ �i,
Δx − bi|x|�−1x = fi, t = �i,
Δp(t)x′ − di|x|�−1x = gi, t = �i.

(35)

The following results are readily available from Theorem 2.

Corollary 2. Let the homogeneous equation associated with (34) be nonoscillatory and v(t) > 0 be its nonprincipal solution.
Suppose that q(t), ai andCi1 ∶= civ(�i)−aip(�i)v′(�i) are non-negative. Then, the superlinear impulsive Emden-Fowler equation
(34) under impulse effects is oscillatory provided that

lim sup
t→∞

[1(t) −N1(t)] = − lim inft→∞
[1(t) +N1(t)] = ∞,

where

1(t) ∶=

t

∫
a

1
p(s)v2(s)

(

s

∫
a

n(s)
∏

i=n(�)
(1 − ai)f (�)v(�) d� +

n(s)
∑

i=n(a)

n(s)
∏

k=i
(1 − ak)Mi1

)

ds +
n(t)
∑

i=n(a)

fi
(1 − ai)v(�i)

,

with

Mi1 ∶= giv(�i) −
fi

(1 − ai)

(

p(�i)v′(�i) − civ(�i)
)

,
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N1(t) ∶=

t

∫
a

1
p(s)v2(s)

{ s

∫
a

n(s)
∏

i=n(�)
(1 − ai)v(�)q(�)��∕(1−�)(� − 1) d�

+
n(s)
∑

i=n(a)

[ n(s)
∏

k=i+1
(1 − ak)Ci1��∕(1−�)(� − 1)

]

}

ds +
n(t)
∑

i=n(a)

ai
(1 − ai)v(�i)

��∕(1−�)(� − 1).

Corollary 3. Let the homogeneous equation associated with (35) be nonoscillatory and v(t) > 0 be its nonprincipal solution.
Suppose that r(t), bi andDi2 ∶= div(�i)−bip(�i)v′(�i) are non-negative. Then, the sublinear Emden-Fowler equation (35) under
impulse effects is oscillatory provided that

lim sup
t→∞

[2(t) −N2(t)] = − lim inft→∞
[2(t) +N2(t)] = ∞,

where

2(t) ∶=

t

∫
a

1
p(s)v2(s)

(

s

∫
a

n(s)
∏

i=n(�)
(1 + bi)f (�)v(�) d� +

n(s)
∑

i=n(a)

n(s)
∏

k=i
(1 + bk)Mi2

)

ds +
n(t)
∑

i=n(a)

fi
(1 + bi)v(�i)

,

with

Mi2 ∶= giv(�i) −
fi

(1 + bi)

(

p(�i)v′(�i) + div(�i)
)

,

N2(t) ∶=

t

∫
a

1
p(s)v2(s)

{ s

∫
a

n(s)
∏

i=n(�)
(1 + bi)v(�)r(�)��∕(1−�)(1 − �) d�

+
n(s)
∑

i=n(a)

[ n(s)
∏

k=i+1
(1 + bk)Di2�

�∕(1−�)(1 − �)
]

}

ds +
n(t)
∑

i=n(a)

bi
(1 + bi)v(�i)

��∕(1−�)(1 − �).

5 EXAMPLE

In this section we provide an example to illustrate the efficiency of Theorem 2. So, we consider an Emden-Fowler type impulsive
equation with superlinear and sublinear terms

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(t2(t2 + 1)x′)′ + 4|x|�−1x − 10(t2 + 1)|x|�−1x = sin t, t ≠ i, t ≥ 1,

Δx + i|x|�−1x − i2 + 1
i

|x|�−1x = (−1)ii3(i + 1), t = i,

Δ(t2(t2 + 1)x′) + 2i2(i2 + 1)|x|�−1x − 2(i2 + 1)2|x|�−1x = 2i, t = i, i > 1.

(36)

Comparing with the general form (31), we observe that �i = i, p(t) = t2(t2+1), q(t) = 4, r(t) = 10(t2+1), ai = i, bi = (i2+1)∕i,
ci = 2i2(i2 + 1), di = 2(i2 + 1)2, f (t) = sin t, fi = (−1)ii3(i + 1) and gi = 2i. Thus, 1 − ai + bi = (i + 1)∕i > 0,

Ci = civ(�i) −
ai

1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
]

= 0

and

Di = div(�i) −
bi

1 − ai + bi

[

p(�i)v′(�i) − (ci − di)v(�i)
]

= 0,

where v(t) = it2, t ∈ (i − 1, i] is a nonprincipal solution of the associated homogeneous equation

⎧

⎪

⎨

⎪

⎩

(t2(t2 + 1)x′)′ + 4x − 10(t2 + 1)x = 0, t ≠ i, t ≥ 1,

Δx + ix − i2 + 1
i

x = 0, Δ(t2(t2 + 1)x′) + 2i2(i2 + 1)x − 2(i2 + 1)2x = 0, t = i, i > 1.
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For convenience we write

N(t) =

t

∫
1

1
p(s)v2(s)

(

y1(s) + y2(s)
)

ds

+
n(t)
∑

i=n(a)

1
(1 − ai + bi)v(�i)

[

ai�
�∕(1−�)(� − 1) + bi��∕(1−�)(1 − �)

]

,

(t) =y3(t) + y4(t),

where

y1(t) ∶ =

t

∫
a

�(t, �)v(�)
[

q(�)��∕(1−�)(� − 1) + r(�)��∕(1−�)(1 − �)
]

d�,

y2(t) ∶ =
n(t)
∑

i=n(a)
�(t, �i)

[

Ci�
�∕(1−�)(� − 1) +Di�

�∕(1−�)(1 − �)
]

,

y3(t) ∶ =

t

∫
a

1
p(s)v2(s)

(

s

∫
a

�(s, �)f (�)v(�) d� +
n(s)
∑

i=n(a)
�(s, �i)Mi

)

ds,

y4(t) ∶ =
n(t)
∑

i=n(a)

fi
(1 − ai + bi)v(�i)

.

Let a = 1, t ∈ (k − 1, k] and s ∈ (j − 1, j] for k > j > 2. It follows that

�(s, �) = (n(s) + 1)∕n(�) = (j + 1)∕n(�),

and so, �(s, i) = (j + 1)∕i, n(�) = i − 1 for � ∈ (i − 1, i] and n(�) = j − 1 for � ∈ (j − 1, s). Thus, we have

y1(s) =(j + 1)
j−1
∑

i=2

i
i − 1

i

∫
i−1

�2
[

4��∕(1−�)(� − 1) + 10(�2 + 1)��∕(1−�)(1 − �)
]

d�

+
(j + 1)j
j − 1

s

∫
j−1

�2
[

4��∕(1−�)(� − 1) + 10(�2 + 1)��∕(1−�)(1 − �)
]

d�

=O(s6), s→∞,

y2(s) =
j
∑

i=2

j + 1
i

[

Ci�
�∕(1−�)(� − 1) +Di�

�∕(1−�)(1 − �)
)

]

= 0,

and

n(t)
∑

i=n(a)

1
(1 − ai + bi)v(�i)

[

ai�
�∕(1−�)(� − 1) + bi��∕(1−�)(1 − �)

]

=
n(t)
∑

i=2

i
(i + 1)i3

[

i��∕(1−�)(� − 1) + i2 + 1
i

��∕(1−�)(1 − �)
]

= O(1), t→∞.



11

Therefore,

N(t) =
k−1
∑

i=2

i

∫
i−1

1
s6(s2 + 1)i2

(

y1(s) + y2(s)
)

ds +

t

∫
k−1

1
s6(s2 + 1)k2

(

y1(s) + y2(s)
)

ds

+
n(t)
∑

i=n(a)

1
(1 − ai + bi)v(i)

[

ai�
�∕(1−�)(� − 1) + bi��∕(1−�)(1 − �)

]

=O(1), t→∞. (37)

On the other hand, we calculate thatMi = 2i4
[

1 − (−1)ii3(i + 1)(i2 + 1)
]

,
s

∫
a

�(s, �)f (�)v(�) d� =(j + 1)
j−1
∑

i=2

i
i − 1

i

∫
i−1

�2 sin � d� +
(j + 1)j
j − 1

s

∫
j−1

�2 sin � d�

=O(s4), s→∞, (38)

and
n(s)
∑

i=n(a)
�(s, �i)Mi =

j
∑

i=2

j + 1
i
2i4

[

1 − (−1)ii3(i + 1)(i2 + 1)
]

=(−1)j+1j10 + O(j9), j →∞. (39)

Then, from (38) we have
t

∫
a

1
p(s)v2(s)

s

∫
a

�(s, �)f (�)v(�) d� =
k−1
∑

j=2

j

∫
j−1

1
j2s6(s2 + 1)

s

∫
1

�(s, �)f (�)v(�) d� ds

+

t

∫
k−1

1
k2s6(s2 + 1)

s

∫
1

�(s, �)f (�)v(�) d� ds

=O
(

1), t→∞. (40)

In a similar way, (39) implies that
t

∫
a

1
p(s)v2(s)

n(s)
∑

i=n(a)
�(s, �i)Mi ds = (−1)k

k8

7t7
+ O(1), t→∞. (41)

Finally,

y4(t) =
k
∑

i=2
(−1)ii = (−1)k k + 2

4
+ 3
4
. (42)

The sum of (40), (41) and (42) yields to lim supt→∞
[

y3(t) + y4(t)
]

= − lim inf t→∞
[

y3(t) + y4(t)
]

= ∞, or

lim sup
t→∞

(t) = − lim inf
t→∞

(t) = ∞. (43)

Combining (37) and (43), we see that (32) holds. Since all the conditions of Theorem 2 are satisfied, we conclude that (36) is
oscillatory. The oscillation behavior of the solution when � = 1∕2 and � = 3∕2 is shown in Figure 1 .
It is worth mentioning that the impulsive equation

{

(t2(t2 + 1)x′)′ + 4|x|1∕2x − 10(t2 + 1)|x|−1∕2x = sin t, t ≠ i, t ≥ 1,
Δ(t2(t2 + 1)x′) + 2i2(i2 + 1)|x|1∕2x − 2(i2 + 1)2|x|−1∕2x = 2i, t = i, i > 1,

(44)

obtained from (36) by setting Δx = 0, and the nonimpulsive equation

(t2(t2 + 1)x′)′ + 4|x|1∕2x − 10(t2 + 1)|x|−1∕2x = sin t, t ≥ 1, (45)

obtained by removing impulses in (36) are nonoscillatory. This is illustrated in Figure 2 and 3 , respectively.
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FIGURE 1 Graph of solution of (36) for t ∈ [1, 100].
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FIGURE 2 Graph of solution of (44)
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FIGURE 3 Graph of solution of (45)

Graphs of the solutions of equations (44) and (45) for t ∈ [1, 1000].
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