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Abstract

In this paper, a backward problem for a nonlinear time-fractional diffusion equation in an axis-symmetric
cylinder has been considered. Under some assumptions, we prove the existence and uniqueness of the
solution to the nonlinear problem. The ill-posedness of the backward problem is established and we

obtain the error estimates by a generalized quasi-boundary value regularization method.
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1. Introduction

Nowadays, the diffusion equation is of great importance in science and engineering. It has a wide
range of practical application such as aeronautics and astronautics, atomic energy technology, metal-
lurgy, etc. The blast furnace steelmaking is an important technology in metallurgy, one can deduce the
thickness of the wall by using the measured temperature outside, which can effectively avoid production

accidents and ensure lower production costs (figure a).
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(a) The blast furnace steelmaking (b) An axis-symmetric cylinder model

Figure b shows an simplified blast furnace steelmaking model in an axis-symmetric cylinder which
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can be expressed mathematically as follows
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Although the classical integer order differential equation has acquired rather good effect on the
practical production as mentioned above, time-fractional diffusion equation can be more accurate to
describe the subdiffusion and superdiffusion phenomena in many areas [1-5]. We notice that the forward
problems of the time-fractional diffusion equation has been investigated extensively, while the backward
problems has not been studied sufficiently in spite of the significance. Actually, many phenomena cannot
be observed at the time ¢t = 0, which means that the initial data may not be known. On the contrary,
the phenomena can be measured at the backward time ¢ = 7' in some situations such as the temperature
measurement in the blast furnace steelmaking. Recently, scholars have done a lot of research on the
backward problems for the time-fractional diffusion equation [6-8].

We note that there are more one-dimensional works and less two-dimensional ones. In [9-12], the
authors obtained the solution of backward problem of the one-dimensional time-fractional diffusion
equation. In [13], the authors solved the backward problem of the two-dimensional nonlinear time-
fractional diffusion equation.

In this article, we focus on the following two-dimensional nonlinear time-fractional diffusion equation
in an axis-symmetric cylinder
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+ f(r,z, t,u(r, 2, 1)), (1.1)

subjected to the following initial and boundary conditions given respectively as

u(r, z,0) = h(r, z), 0<r<R0<z<IL, (1.2)
and
li_r}rg) u(r, z,t) bounded, 0<2<L0<t<T, (1.3)
uw(R,z,t) =0, 0<z<L0<t<T, (1.4)
u(r,0,t) = u(r, L,t) =0, 0<r<ROLZt<T, (1.5)

where Dfu(r, z,t) is the Caputo fractional derivatives of order 0 < o < 1 [14], f(r, z,t,u(r, 2z, 1)) is a
nonlinear source term.
If all the data f(r, z,¢,u(r, z,t)) and h(r,z) are given, then problem (1.1)-(1.5) is a direct problem

for the time fractional diffusion equation. From the information given at final time

u(r,z,T) = g(r, z), 0<r<R0<z<L, (1.6)



the goal of the inverse problem is to recover the information {u(r,z,t),h(r,z) initial condition }for
0 <t < T. Since the measurement is always noise-contaminated, thus we have only the measurement

data ¢°(r, 2) satisfying
||g6(rv Z) - g(ra Z)“ < 57 (17)

where || - || is the L2([0, R] x [0, L]) norm and ¢ > 0 indicates a noise level.

The remainder of this paper is organized as follows. In Section 2, we give the existence and unique-
ness of the solution to the backward problem. The instablity of the solution is analyzed in Section
3. Moreover, we introduce a generalized quasi-boundary value regularization method and provide the

error estimates.

2. Existence and uniqueness of the solution

We introduce the following Lebesgue space [6]

L2(Q) ={v:Q =R measurable; / v2(r, 2)rdrdz < +oo},
Q

which is a Hilbert space with the inner product

(u,v)r:/ﬂu(r, 2)u(r, z)rdrdz,

and the corresponding norm is defined by

2(Q) = (/ 2)2(7“ z)rdrdz)%
Q

lv

where Q = ([0, R] x [0, L]).
Definition 2.1 [14]. The two-parameter Mittag-Leffler function is defined by

ZFak+ﬁ 2e b

k=0
where a > 0 and 3 € R are arbitrary constants.
Lemma 2.1 [14]. Let a € (0,1) then E,1(—%) > 0 for any z > 0. Moreover, there exist three positive
constants M7, M{,, M3, such that

a

n M+ ./\/l
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1+Z — ’1( Z)— 1 = ) ( Z) 1 Z ( )

If o € g, ] for any 0 < ag < ey < 1 then by [19],the constants M7, M{,, M3, can be chosen
which depends only ag, .
Lemma 2.2 [15]. For A >0 and 0 < a < 1,we have

d

EEml(—)\to‘) = —MTE o (=MY), t>0.



By the separation of variables and Laplace transform of Mittag-Leffler function, we can get the
solution of problem (1.1)-(1.5) as follows

oo

t
u(r, z,t) = Z [Pmn Ea1 (—Amnt®) +/ (t = 7)* B o (=X (t = 7)) foun (W) (T)dT Wi (7, 2),  (2.2)
m,n=1 0
where N, = (h(7, 2), Wan (T, z))r,fmn( (1) = (f(ryz,7u(r, 2, 7)), Winn (75 2) ey A = (55)% + (B5)2.
fRJl( J(J(“”)sm(”fr z) form an standard orthogonal basis in L?(£2)
while the Jy(x) and J;(z) denote the Oth order and 1st order Bessel functions, {u,}52 , are the sequence
of the zeros of Jy(x).
Applying the final value data u(r,z,7) = g¢(r,z), we can express the solution of the backward

problem(1.1),(1.3)-(1.6) as follows

The eigenfunctions wy,(r, z) =

U(T, Zs t) = EE|Q;1(<:;\mn;(:)) gmnwmn(r: Z)
m,n=1 @ mn
= r oa— Ea,l(_)\mnta>Ea,a<_>\mn<T - 7.)04)
_ m;l/o (T —7)~* A E Frnn (W) (T)dTwWin (1, 2)
+ Z /0 (t = 7)* ' B a (=Xt = 7)) frun (W) (T)dT w0 (7, 2), (2.3)
m,n=1

where Gmn = (9(7“, Z)awmn(rv Z))r

Theorem 2.1. Let the source term f(r,z,t,u(r, z,t)) satisfy

Hf(U)(, Y t)) - f(”)(’ '7t)”L%(Q) < K(t)Hu(v 'at> - U(-, . t)HL%(Q) (2'4)

for any t € [0,T], where K(t) > 0 is bounded, meanwhile the integral fOT(T — 1)72K3(t)dt converges to
|P(T)|>. Assume the following inequality holds

+
2a+1

P22 4 o sup k(1)) < 1. (2.5)

M, 0<t<T

A, T) =

then problem (1.1),(1.3)-(1.6) has a unique solution in L>(0,T; L3(2)).

Proof. Here we define the following operators

Fuulr. 1) Z [yt Bt e OO =0 ) 5,2,
Fou(r,z,t) = Z /0 (t —7)  Eoa(=An(t — 7)) frun (0) (7)dTWr00 (7, 2).

From (2.4) and Lemma 2.1,we get

| Fru(r, z,t) — fl“(ﬂ%ﬂ”ig(m



[e.9]

m,n=1
,/\/1;— 2 T )\2 T2a
<T @ T — 2a—2__"mn_ mn - Jmn 2d
=T |5, mgl/o (T =) g U (@)(7) = frn () (7)) dr
M P (T 2
< | e / (T = 72 F @)oo 7) = FO) Ty 7
1,
Mi P (T -
ST /0 (T — 7)K% lul, -, 7) = v, )20y d7
1,
My, |
< Tt RS PP flul - 7) = 06 D eorinzn -
1,
Therefore

[ Fru(r, 2,t) — }_IU(?"aZJ)HLoo(o,T;Lg(Q)) < TTMf P(T) ful-, - 7) — vl '77—)||L°°(O,T;L$(Q)) :

From Lemma 2.2 together with E, ;(0) = 1, there holds

1
(1= Ey1(—=Amnt®)) > 0.

t
/ (t = 7)1 By (— A (t — 7)) dr =
0 )\mn

Thus

| Fou(r, z,t) — Fau(r, z t)HLg

_ z ( ) B~ Agun(t — 7)°) (fmn<U><T>—fmn<“><T>)dT)

2
< @) = FO gz 3 ([ €= 7 Eaalunlt = a1 )
m,n=1

2 oo
< (sup W) Tt = ol oz 3 33— (1= Enal =t
0<t<T TR £ N2, ’
2 00 1
< KC(t ) =0 TP i .
< (gup, K1) 1t = Mo Y 5

Noting that Q2 = Zmn L /\2 < 00, we obtain

| Fou(r, z,t) — fQU(T7zat)||L°°(O,T;L2 <Q SltlfT KO Nl m) — vl '77-)HL°°(O,T;L$(Q)) :

Define the following operator

% E _ a
Lu)= Y E:,ll((— :\::;a)) G (1, 2) + Fru(r, 2,t) + Fau(r, z,t).

m,n=1

= 30 ([ om0 = ) )

(2.6)

(2.7)



Combining (2.5), (2.6) and (2.7), we deduce that

[1£(u) = L) |z 0,522(0) < [F1w = F1vll g o riz2(0)) + 1F20 = Favll oo 220
< A(a,T) lu— U||Loo(o,T;Lg(Q)) : (2.8)

In view of (2.8) and noting that A(«,T) < 1, we conlude that £ is a contraction mapping. By using
Banach fixed point theorem, we can deduce that problem (1.1),(1.3)-(1.6) has a unique solution in
L0, L2(Q)).

3. Regularization and error estimate

In order to illustrate the ill-posedness of the backward problem (1.1),(1.3)-(1.6) through an example,
we express the solution with noisy data as follows

o

L .
Ea,l (_)\mnTa)

u‘;(r, z,t) =

m,n=1

(ryz) + Flué(r, z,t) + Fgu‘;(r, z,t), (3.1)

where ¢° = g + (for some nature numbers i, j) is the possible measurement data. Substituting

Z]

(2.8) into (3.1), we can get it immediately

”ud('v'?t) _u(' ) t)||L2

mnt®)

(96 — Gonn)Winn (7, 2)

)\mnTa) — Ale, T) H“ - UHLOO(OTLZ(Q))
LZ(Q)
Ea 1(—)\th ) 5
— ’ — A, T) ||u® —ull; ) (3.2)
/)\ian,l(_AijTO‘) H HL (0,T;L2(Q))
This implies that
[ =l o rizz) + Al T) ([0 =l e 120y = (14 Al T = ull o zi2(0)
> (1) = uls )z + A, T) [|u’ ~ “||Loo<0T L3(@)
> sup Eajl(—)\ijta) > 1 1+ /\UTQ
T 0<t<T A/ Nij B (=N TY) T /A Ea1 (=i T9) \/ ”M
Therefore,we derive that
14 N1
ggﬂm [u? — u”LOO (0,T;L2(9)) = ALOO (1+ Ala, D)oy Mi, = %9 (3.3)

which indicates that even if the noise level § =

goes to zero, as i,j — 00, the instability always
i
happens in time. Hence, a regularization method is needed to restore the stability of the solution.



Here we provide a generalized quasi-boundary value regularization method which is inspired by the

paper of [18]. In view of the complexity of nonlinear operator in two-dimensional cases, we define the

regularized problem as follows

(Df‘u‘s’”(r, z,t) = 8;1::” %8;5:” + 0;1:‘;*” + (2t u? (r,2,1),0<r <R, 0<z2< L0<t<T,
u® (1, 2,0) = B (r, 2), 0<r<R0<z<L,

lig(l) u® (r, 2, t) bounded, 0<z<L0<t<T,

u (R, z,t) =0, 0<2<LO0O<L<t<T,

u® (r,0,t) = u(r, L,t) = 0, 0<r<RO<t<T,
L’ (r,2,T) = g°(r, 2) —v(W) R (1, 2). 0<r<RO0<t<T,

(3.4)
where v > 0 is a given real number, v > 0 is the regularization paramete, W is an operator satisfying
WY(h)(r, 2) = 3200 1 A (B Wi )i (1, 2), thus we can get the solution u®"(r, z,t) of the regularized

problem (3.4) as follows

[e.e]

EO (—)\m t )

v ,1 n s

(r,z,t) = § ImnWmn\Ts 2
u ( g ) ) E 71( )\m Ta) )\’y Y mn ( )

_ Z /0 (T . 7_)01—1 Ea,l(_)\mnta>Ea,a<_)\mn<T — T>a)fmn(ua’y>(7')d7'wmn(7", Z)

Ea,l (_)\mnTa) + )\;ynnl/

m,n=

o0

+ Z /0 (t —7) " Epa(=Amn(t = 7)) frn (W) (T)dTwpmn (1, 2). (3.5)

m,n=1

Remark 3.1. We can compare the previous regularization method similarly in spite of the specific
nonlinear operator in the quasi-boundary value condition. If we take v = 0 in the above problem, the
regularization method is parallel to the standard quasi-boundary value method, which is also the well
known Lavrentiev regularization method for this case. The best convergence rate is O(d %) , see [16, 17]
for solving backward problems of fractional diffusion equations. If taking v = 1, it is analogous to the
modified quasi-boundary value method, an optimal convergence order O(33) is obtained, see [18] for

solving the inverse source problem of fractional diffusion equation.

Lemma 3.1 [19]. For constants v >0, >0, 7>0, =1 <0 <~, s > A\j; >0, we have

Sl+9 641

Fls)= g < G,

where C; = C1(B,7,0) > 0 is a constant independent of s.
Moreover for constants p >0, v >0, 3>0,v>0, s> Xy >0, then we have

psYti—% Cglﬂ(ﬁﬂ) ,0<p<2vy+1),

G(s) = —— <
) v BT Carp > 2(y + 1),

7



where Cy = Cy(p, 5,7) > 0, C3 = Cs(p, 8,7, A1) > 0 are constants independent of s.

Theorem 3.1. Assume that there exists a priori bound condition such that

lg(r.2)lesz < B, p>0, (3.6)
where )
00 00 2
ﬂ
lg(r, Z)HPQﬂ = Z ()‘mn)pQ GrmnWnn (T 2) = < Z (Amn)m_?gfnn) :
m,n=1 L2(Q) m,n=1
Suppose the noise assumption (1.7) holds, then we have
(1) If 0 < p < 2(y+ 1), we have a convergence rate
[u™ = ul| o ors2(0)) < C4Eﬁ5#;
(2) If p > 2(y + 1), we have a convergence rate
[u™ = ull L orsn2(0)) < CiET25732,
where Cy, Cs are positive constants depending on p,~y, A1, a, T, My,
Proof. By the definition of F; and F3, we obtain
- Eoi(—Amnt®) N Ea (= Ant®)
oV < a,l mn 5 . a, mn
e —ullizey < || D s (AT + Xy Irntmn(72) 2 For(—hy Ty Jmnmn(7:2)
m,n=1 ' m,n=1 ’ L3 (Q)
D)
+ | Fru® (r, 2,t) — Frulr, z,t) || 12() + [|[Fou® (1, 2,t) — Foulr, z,t) || 12(0)- (3.7)
Applying Lemma 2.1, we estimate D; as follows
Dy | S el g e,
b= Eoz,l(_)\mnTa) + )\?rmV Jmn Frmn )G (T
=l L)
- Al Bt (= Amnt®)
- Z Ea,l<_>\mnTa)<Ea,1(_)\mnTa) + )\Z"my> gmnwmn(ru Z)
= 12(Q)
< i Ln_i_l(gfrm - gmn)wmn(ra 2)
= 12(2)
> —\ v 1 2 [ Egi(—Amnt®)
s >\72nn : mn¥mn Y 3‘8
+ mgl (Ea,l(_)\mnTa> + )\;Ynnl/)) )\T%nn (Eﬂl,l(_AmnTa) ImnW (T Z) ( )

L3 (Q)

Substituting the priori bound condition (3.6) and Lemma 3.1 into (3.8), we obtain

v+l

C = A2y i ’
1 mn
Di<—6+| ) (m) C*(Nn)" 2 Gum

m,n=1



c, Cov®aim 0 < p < 2(y + 1),

<—0+F (3.9)
25 C3V7p22(7+1>7
where C' = ﬁ;‘; is a positive constant, C7, Cy, C3 are constants defined by Lemma 3.1.Combining (2.9),

(3.7) and (3.9), we can easily obtain

, e Cor™6,0 < p < 2(y + 1),
[ = ul| gy € ——0+ E + A, T) [l = 0ll o iz - (3:10)

poatt C3V7p22<7+1)7

The right hand side of (3.10) is independent of ¢ which implies that

v Cl OQVQ(’YI?H)?O <p < 2(’}/—’_ 1)7
[ = ullp=rizzoy < ——0+ B + Ales T) fJu = vll o rz20)) -
vt Cav,p > 2(y + 1),

Since A(a,T) < 1, we obtain

5 Cy E Cov®im, 0 < p < 2(y + 1),
[0 = ul| L0, 7522(0)) < ——0+
1— A, T 1 =AT) | Cyv,p> 20y +1).

(3.11)

Choosing the regularization parameter v by

2(y+1)
p+2

- 0<p<?2 1
) osp<an)

+1

N a4l

then we deduce that

Gy
V 1—Aa,T
[ = ull o 0,s22009) < Gy Jf Cs |

1—A(a,T)

En3§72,0 < p < 2(y + 1),
v+l

E7265%%,p > 2(v + 1).

The proof is completed.

Remark 3.2. We note that the convergence rates of the generalized quasi-boundary value method
have no saturation phenomena. If we choose an appropriate 7 such that the convergence rate O(d %)
can be better than O(83) for the fixed v = 1 or O(d2) for the fixed v = 0.
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