References
- Wang HY, Huang LJ, Liu Z, Garcia R, Li S, Galliani CA. Erythroblastic
sarcoma presenting as bilateral ovarian masses in an infant with pure
erythroid leukemia. Hum Pathol . 2011;42(5):749-758.
- Lapadat R, Tower RL 2nd, Tam W, Orazi A, Gheorghe G. Pure erythroid
leukemia mimicking Ewing sarcoma/primitive neuroectodermal tumor in an
infant. Pediatr Blood Cancer . 2016;63(5):935-937.
- Mohanlal RD, Vaughan J, Ramparsad N, Naidu G. Do not forget the
Glycophorin A: An unusual case of myeloid sarcoma. J Pediatr
Hematol Oncol . 2016;38(5):e173-e176.
- Manresa P, Tarín F, Niveiro M, et al. A rare case of pure erythroid
sarcoma in a pediatric patient: case report and literature
review. Children (Basel) . 2017;4(12):113.
- Liu H, Guinipero TL, Schieffer KM, et al. De novo primary
central nervous system pure erythroid leukemia/sarcoma with
t(1;16)(p31;q24) NFIA/CBFA2T3 translocation. Haematologica .
2020;105(4):e194-e197.
- King RL, Siaghani PJ, Wong K, et al. Novel t(1;8)(p31.3;q21.3)
NFIA-RUNX1T1 translocation in an infant erythroblastic
sarcoma. Am J Clin Pathol . 2021;156(1):129-138.
- Tomizawa D, Tanaka S, Hasegawa D, et al. Evaluation of high-dose
cytarabine in induction therapy for children with de novo acute
myeloid leukemia: a study protocol of the Japan Children’s Cancer
Group Multi-Center Seamless Phase II-III Randomized Trial (JPLSG
AML-12). Jpn J Clin Oncol . 2018;48(6):587-593.
- Iacobucci I, Wen J, Meggendorfer M, et al. Genomic subtyping and
therapeutic targeting of acute erythroleukemia. Nat Genet .
2019;51(4):694-704.
- Micci F, Thorsen J, Panagopoulos I, et al. High-throughput sequencing
identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia
with t(1;16)(p31;q24). Leukemia . 2013;27(4):980-982.
- Castañeda VL, Parmley RT, Saldivar VA, Cheah MS. Childhood
undifferentiated leukemia with early erythroid markers and c-myb
duplication. Leukemia . 1991;5(2):142-149.
- Köller U, Haas OA, Ludwig WD, et al. Phenotypic and genotypic
heterogeneity in infant acute leukemia. II. Acute nonlymphoblastic
leukemia. Leukemia . 1989;3(10):708-714.
- Panagopoulos I, Micci F, Thorsen J, et al. Fusion of ZMYND8 and RELA
genes in acute erythroid leukemia. PLoS One . 2013;8(5):e63663.
- Kas K, Voz ML, Röijer E, et al. Promoter swapping between the genes
for a novel zinc finger protein and beta-catenin in pleiomorphic
adenomas with t(3;8)(p21;q12) translocations. Nat Genet .
1997;15(2):170-174.
- Ren X, Jiang K, Zhang F. The multifaceted roles of RCC1 in
tumorigenesis. Front Mol Biosci . 2020;7:225.
- Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn,
in T-cell development and activation. Oncogene. 2004;23(48):7990-8000.
- Bommhardt U, Schraven B, Simeoni L. Beyond TCR signaling: emerging
functions of Lck in cancer and immunotherapy. Int J Mol Sci .
2019;20(14):3500.
- Duque-Afonso J, Lin CH, Han K, et al. E2A-PBX1 remodels oncogenic
signaling networks in B-cell precursor acute lymphoid
leukemia. Cancer Res . 2016;76(23):6937-6949.
- Gocho Y, Liu J, Hu J, et al. Network-based systems pharmacology
reveals heterogeneity in LCK and BCL2 signaling and therapeutic
sensitivity of T-cell acute lymphoblastic leukemia. Nat Cancer .
2021;2(3):284-299.
- Rouer E, Dreyfus F, Melle J, Benarous R. Pattern of expression of five
alternative transcripts of the lck gene in different hematopoietic
malignancies: correlation of the level of lck messenger RNA I B with
the immature phenotype of the malignancy. Cell Growth Differ .
1994;5(6):659-666.
- Li L, Cui Y, Shen J, Dobson H, Sun G. Evidence for activated Lck
protein tyrosine kinase as the driver of proliferation in acute
myeloid leukemia cell, CTV-1. Leuk Res . 2019; 78:12-20.
Legends
Figure 1. Morphologic and immunophenotypic features of this case. (A)
Wright-Giemsa-stained cultured tumor cells (× 1000). The tumor cells
formed marked intracellular vacuoles. (B) PAS-stained cultured tumor
cells (× 1000). Some tumor cells showed granular to diffuse positive
staining. (C) Flow cytometry analysis of cultured tumor cells. Tumor
cells were positive for CD71 (transferrin receptor), CD99, CD36, GPA,
and blood group A antigen.
Figure 2. Detection of the RCC1-LCK fusion. (A) Gel image showing
the amplified fragment. RCC1-LCK , reverse transcriptase PCR
product obtained with the primer combination, RCC1-123F, and LCK-396R
(band size, 239 bp). GAPDH , cDNA of the
glyceraldehyde-3-phosphate dehydrogenase gene (band size, 142 bp) was
amplified as a control. M, size marker; N, healthy volunteer as a
negative control; P, patient leukemic cells from left humerus tumor
samples. (B) Partial chromatogram showing the junction of theRCC1 and LCK genes. cDNA sequences showing the fusion ofRCC1 exon 2 and LCK exon 2. (C) Schematic representation
of fusion transcripts in this case. Chromosomal organization of theRCC1 gene (exons, white boxes) and LCK (exons, black
boxes). The positions of translation initiation sites (ATG) and stop
codons (TGA) are indicated. Exons are not to scale. Arrows, primer
positions. Below, schematic showing the composition of hybrid
transcripts.