References
  1. Wang HY, Huang LJ, Liu Z, Garcia R, Li S, Galliani CA. Erythroblastic sarcoma presenting as bilateral ovarian masses in an infant with pure erythroid leukemia. Hum Pathol . 2011;42(5):749-758.
  2. Lapadat R, Tower RL 2nd, Tam W, Orazi A, Gheorghe G. Pure erythroid leukemia mimicking Ewing sarcoma/primitive neuroectodermal tumor in an infant. Pediatr Blood Cancer . 2016;63(5):935-937.
  3. Mohanlal RD, Vaughan J, Ramparsad N, Naidu G. Do not forget the Glycophorin A: An unusual case of myeloid sarcoma. J Pediatr Hematol Oncol . 2016;38(5):e173-e176.
  4. Manresa P, Tarín F, Niveiro M, et al. A rare case of pure erythroid sarcoma in a pediatric patient: case report and literature review. Children (Basel) . 2017;4(12):113.
  5. Liu H, Guinipero TL, Schieffer KM, et al. De novo  primary central nervous system pure erythroid leukemia/sarcoma with t(1;16)(p31;q24) NFIA/CBFA2T3  translocation. Haematologica . 2020;105(4):e194-e197.
  6. King RL, Siaghani PJ, Wong K, et al. Novel t(1;8)(p31.3;q21.3) NFIA-RUNX1T1 translocation in an infant erythroblastic sarcoma. Am J Clin Pathol . 2021;156(1):129-138.
  7. Tomizawa D, Tanaka S, Hasegawa D, et al. Evaluation of high-dose cytarabine in induction therapy for children with de novo acute myeloid leukemia: a study protocol of the Japan Children’s Cancer Group Multi-Center Seamless Phase II-III Randomized Trial (JPLSG AML-12). Jpn J Clin Oncol . 2018;48(6):587-593.
  8. Iacobucci I, Wen J, Meggendorfer M, et al. Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nat Genet . 2019;51(4):694-704.
  9. Micci F, Thorsen J, Panagopoulos I, et al. High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24). Leukemia . 2013;27(4):980-982.
  10. Castañeda VL, Parmley RT, Saldivar VA, Cheah MS. Childhood undifferentiated leukemia with early erythroid markers and c-myb duplication. Leukemia . 1991;5(2):142-149.
  11. Köller U, Haas OA, Ludwig WD, et al. Phenotypic and genotypic heterogeneity in infant acute leukemia. II. Acute nonlymphoblastic leukemia. Leukemia . 1989;3(10):708-714.
  12. Panagopoulos I, Micci F, Thorsen J, et al. Fusion of ZMYND8 and RELA genes in acute erythroid leukemia. PLoS One . 2013;8(5):e63663.
  13. Kas K, Voz ML, Röijer E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet . 1997;15(2):170-174.
  14. Ren X, Jiang K, Zhang F. The multifaceted roles of RCC1 in tumorigenesis. Front Mol Biosci . 2020;7:225.
  15. Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990-8000.
  16. Bommhardt U, Schraven B, Simeoni L. Beyond TCR signaling: emerging functions of Lck in cancer and immunotherapy. Int J Mol Sci . 2019;20(14):3500.
  17. Duque-Afonso J, Lin CH, Han K, et al. E2A-PBX1 remodels oncogenic signaling networks in B-cell precursor acute lymphoid leukemia. Cancer Res . 2016;76(23):6937-6949.
  18. Gocho Y, Liu J, Hu J, et al. Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nat Cancer . 2021;2(3):284-299.
  19. Rouer E, Dreyfus F, Melle J, Benarous R. Pattern of expression of five alternative transcripts of the lck gene in different hematopoietic malignancies: correlation of the level of lck messenger RNA I B with the immature phenotype of the malignancy. Cell Growth Differ . 1994;5(6):659-666.
  20. Li L, Cui Y, Shen J, Dobson H, Sun G. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leuk Res . 2019; 78:12-20.
Legends
Figure 1. Morphologic and immunophenotypic features of this case. (A) Wright-Giemsa-stained cultured tumor cells (× 1000). The tumor cells formed marked intracellular vacuoles. (B) PAS-stained cultured tumor cells (× 1000). Some tumor cells showed granular to diffuse positive staining. (C) Flow cytometry analysis of cultured tumor cells. Tumor cells were positive for CD71 (transferrin receptor), CD99, CD36, GPA, and blood group A antigen.
Figure 2. Detection of the RCC1-LCK fusion. (A) Gel image showing the amplified fragment. RCC1-LCK , reverse transcriptase PCR product obtained with the primer combination, RCC1-123F, and LCK-396R (band size, 239 bp). GAPDH , cDNA of the glyceraldehyde-3-phosphate dehydrogenase gene (band size, 142 bp) was amplified as a control. M, size marker; N, healthy volunteer as a negative control; P, patient leukemic cells from left humerus tumor samples. (B) Partial chromatogram showing the junction of theRCC1 and LCK genes. cDNA sequences showing the fusion ofRCC1 exon 2 and LCK exon 2. (C) Schematic representation of fusion transcripts in this case. Chromosomal organization of theRCC1 gene (exons, white boxes) and LCK (exons, black boxes). The positions of translation initiation sites (ATG) and stop codons (TGA) are indicated. Exons are not to scale. Arrows, primer positions. Below, schematic showing the composition of hybrid transcripts.