References:
Agrawal, A.A. (2001) ‘Phenotypic Plasticity in the Interactions and
Evolution of Species’, Science, New Series , 294(5541), pp.
321–326.
Aigaki, T. et al. (1991) ‘Ectopic expression of sex peptide
alters reproductive behavior of female D. melanogaster.’, Neuron ,
7, pp. 557–563.
Andersson, M. (1994) Sexual selection . Princeton: NJ: Princeton
University Press.
Aragón, P. (2009) ‘Conspecific male chemical cues influence courtship
behaviour in the male newt Lissotriton boscai’, Behaviour ,
146(8), pp. 1137–1151. doi:10.1163/156853909X413097.
Arbuthnott, D. et al. (2017) ‘Mate choice in fruit flies is
rational and adaptive’, Nature Communications , 8(1), p. 13953.
doi:10.1038/ncomms13953.
Arnqvist, G. and Rowe, L. (2005) Sexual conflict . Princeton
University Press.
Bateman, A.J. (1948) ‘Intra-sexual selection in Drosophila’,Heredity , 2(3), pp. 349–368. doi:10.1038/hdy.1948.21.
Bates, D. et al. (2015) ‘Fitting Linear Mixed-Effects Models
Using lme4 ’, Journal of Statistical Software , 67(1).
doi:10.18637/jss.v067.i01.
Benjamini, Y. and Hochberg, Y. (1995) ‘Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing’,Journal of the Royal Statistical Society: Series B
(Methodological) , 57(1), pp. 289–300.
doi:10.1111/j.2517-6161.1995.tb02031.x.
Boorman, E. and Parker, G.A. (1976) ‘Sperm (ejaculate) competition inDrosophila melanogaster , and the reproductive value of females to
males in relation to female age and mating status’, Ecological
Entomology , 1(3), pp. 145–155. doi:10.1111/j.1365-2311.1976.tb01217.x.
Botero, C.A. et al. (2015) ‘Evolutionary tipping points in the
capacity to adapt to environmental change’, Proceedings of the
National Academy of Sciences , 112(1), pp. 184–189.
doi:10.1073/pnas.1408589111.
Bradshaw, A.D. (1965) ‘Evolutionary Significance of Phenotypic
Plasticity in Plants’, Advances in Genetics , 13, pp. 115–155.
doi:10.1016/S0065-2660(08)60048-6.
Bretman, A., Fricke, C. and Chapman, T. (2009) ‘Plastic responses of
male Drosophila melanogaster to the level of sperm competition
increase male reproductive fitness’, Proceedings of the Royal
Society B: Biological Sciences , 276(1662), pp. 1705–1711.
doi:10.1098/rspb.2008.1878.
Bretman, A., Gage, M.J.G. and Chapman, T. (2011) ‘Quick-change artists:
male plastic behavioural responses to rivals’, Trends in Ecology
& Evolution , 26(9), pp. 467–473. doi:10.1016/j.tree.2011.05.002.
Brooks, M. et al. (2017) ‘glmmTMB Balances Speed and Flexibility
Among Packages for Zero-inflated Generalized Linear Mixed Modeling’,The R Journal , 9(2), pp. 378–400.
Carazo, P. et al. (2017) ‘Perception costs of reproduction can
magnify sexual selection’, Nature Ecology & Evolution , 1(10),
pp. 1414–1415. doi:10.1038/s41559-017-0312-6.
Chapman, T. (2001) ‘Seminal fluid-mediated fitness traits inDrosophila ’, Heredity , 87, pp. 511–521.
Chapman, T. et al. (2003) ‘The sex peptide of Drosophila
melanogaster: Female post-mating responses analyzed by using RNA
interference’, Proceedings of the National Academy of Sciences ,
100(17), pp. 9923–9928. doi:10.1073/pnas.1631635100.
Chapman, T. and Davies, S.J. (2004) ‘Functions and analysis of the
seminal fluid proteins of male Drosophila melanogaster fruit
flies.’, Peptides , 25(9), pp. 1477–1490.
doi:10.1016/j.peptides.2003.10.023.
Charmantier, A. et al. (2008) ‘Adaptive Phenotypic Plasticity in
Response to Climate Change in a Wild Bird Population’, Science ,
320(5877), pp. 800–803. doi:10.1126/science.1157174.
Chen, P.S. et al. (1988) ‘A male accessory gland peptide that
regulates reproductive behavior of female D. melanogaster’, Cell ,
54(3), pp. 291–298. doi:10.1016/0092-8674(88)90192-4.
Corbel, Q. et al. (2022) ‘Male adaptive plasticity can explain
the evolution of sexual perception costs.’, The American
Naturalist , In press. Available at: hitos://doi.org/10.1086/720404.
Cox, D.R. (1972) ‘Regression Models and Life-Tables’, Journal of
the Royal Statistical Society: Series B (Methodological) , 34(2), pp.
187–202. doi:10.1111/j.2517-6161.1972.tb00899.x.
Cribari-Neto, F. and Zeileis, A. (2010) ‘Beta Regression in R’,Journal of Statistical Software , 34(2), pp. 1–24.
Demmig-Adams, B. et al. (2008) Acclimation. In Behavioral
ecology (Jørgensen S.E. and Fath B.D. eds.) . Oxford: Elsevier.
DeWitt, T.J., Sih, A. and Wilson, D.S. (1998) ‘Costs and limits of
phenotypic plasticity.’, Trends in Ecology & Evolution , 13(2),
pp. 77–81.
Dewsbury, D.A. (1982) ‘Ejaculate Cost and Male Choice’, The
American Naturalist , 119(5), pp. 601–610.
Dow, M.A. and Von Schilcher, F. (1975) ‘Agression and mating success inDrosophila melanogaster .’, Nature , 254, pp. 511–512.
doi:doi:10.1038/254511a0.
Dukas, R. (2020) ‘Natural history of social and sexual behavior in fruit
flies’, Scientific Reports , 10(1), p. 21932.
doi:10.1038/s41598-020-79075-7.
Firman, R.C. and Simmons, L.W. (2011) ‘Experimental evolution of sperm
competitiveness in a mammal’, BMC Evolutionary Biology , 11(1), p.
19. doi:10.1186/1471-2148-11-19.
Fiumera, A.C., Dumont, B.L. and Clark, A.G. (2005) ‘Sperm Competitive
Ability in Drosophila melanogaster Associated With Variation in Male
Reproductive Proteins’, Genetics , 169(1), pp. 243–257.
doi:10.1534/genetics.104.032870.
Fricke, C. et al. (2009) ‘The benefits of male ejaculate sex
peptide transfer in Drosophila melanogaster: Sex peptide and male
reproductive success’, Journal of Evolutionary Biology , 22(2),
pp. 275–286. doi:10.1111/j.1420-9101.2008.01638.x.
Fricke, C. et al. (2010) ‘Sperm competitive ability and indices
of lifetime reproductive success.’, Evolution , 64(9), pp.
2746–2757. doi:10.1111/j.1558-5646.2010.01022.x.
Gage, M.J.G. (1991) ‘Risk of sperm competition directly affects
ejaculate size in the Mediterranean fruit fly’, Animal Behaviour ,
42(6), pp. 1036–1037. doi:10.1016/S0003-3472(05)80162-9.
Gage, M.J.G. (1995) ‘Continuous variation in reproductive strategy as an
adaptive response to population density in the moth Plodia
interpunctella ’, Proceedings of the Royal Society of London.
Series B: Biological Sciences , 261(1360), pp. 25–30.
doi:10.1098/rspb.1995.0112.
Gage, M.J.G. and Baker, R.R. (1991) ‘Ejaculate size varies with
socio-sexual situation in an insect’, Ecological Entomology ,
16(3), pp. 331–337. doi:10.1111/j.1365-2311.1991.tb00224.x.
García-Roa, R., Serra, M. and Carazo, P. (2018) ‘Ageing via perception
costs of reproduction magnifies sexual selection’, Proceedings of
the Royal Society B: Biological Sciences , 285(1892), p. 20182136.
doi:10.1098/rspb.2018.2136.
Gause, G.F. (1947) Problems of evolution . Connecticut Academy of
Arts and Sciences.
Gendron, C.M. et al. (2014) ‘Drosophila Life Span and
Physiology Are Modulated by Sexual Perception and Reward’,Science , 343(6170), pp. 544–548. doi:10.1126/science.1243339.
Giardina, T.J., Clark, A.G. and Fiumera, A.C. (2017) ‘Estimating mating
rates in wild Drosophila melanogaster females by decay rates of
male reproductive proteins in their reproductive tracts’,Molecular Ecology Resources , 17(6), pp. 1202–1209.
doi:10.1111/1755-0998.12661.
Gilchrist, A.S. and Partridge, L. (1997) ‘Heritability of pre-adult
viability differences can explain apparent heritability of sperm
displacement ability in Drosophila melanogaster .’,Proceedings of the Royal Society B: Biological Sciences , 264, pp.
1271–1275.
Gromko, M.H. and Markow, T.A. (1993) ‘Courtship and remating in field
populations of Drosophila’, Animal Behaviour , 45, pp. 253–262.
Harshman, L.G. and Clark, A.G. (1998) ‘Inference of sperm competition
from broods of field-caught Drosophila ’, Evolution , 52(5),
pp. 1334–1341. doi:10.1111/j.1558-5646.1998.tb02015.x.
Harvanek, Z.M. et al. (2017) ‘Perceptive costs of reproduction
drive ageing and physiology in male Drosophila’, Nature Ecology &
Evolution , 1(6), p. 0152. doi:10.1038/s41559-017-0152.
Hopkins, B.R. et al. (2019) ‘Divergent allocation of sperm and
the seminal proteome along a competition gradient in Drosophila
melanogaster ’, Proceedings of the National Academy of Sciences ,
116(36), pp. 17925–17933. doi:10.1073/pnas.1906149116.
Hurtado-Gonzales, J.L. and Uy, J.A.C. (2010) ‘Intrasexual competition
facilitates the evolution of alternative mating strategies in a colour
polymorphic fish’, BMC Evolutionary Biology , 10(1), p. 391.
doi:10.1186/1471-2148-10-391.
Imhof, M. et al. (1998) ‘Multiple mating in wild Drosophila
melanogaster revisited by microsatellite analysis’, Molecular
Ecology , 7(7), pp. 915–917. doi:10.1046/j.1365-294x.1998.00382.x.
Janicke, T. et al. (2016) ‘Darwinian sex roles confirmed across
the animal kingdom’, Science Advances , 2(2), p. e1500983.
doi:10.1126/sciadv.1500983.
Jones, B. and Clark, A.G. (2003) ‘Bayesian Sperm Competition Estimates’,Genetics , 163(3), pp. 1193–1199.
doi:10.1093/genetics/163.3.1193.
Kokko, H. and Rankin, D.J. (2006) ‘Lonely hearts or sex in the city?
Density-dependent effects in mating systems’, Philosophical
Transactions of the Royal Society B: Biological Sciences , 361(1466),
pp. 319–334. doi:10.1098/rstb.2005.1784.
Levins, R. (1963) ‘Theory of Fitness in a Heterogeneous Environment. II.
Developmental Flexibility and Niche Selection’, The American
Naturalist , 97(893), pp. 75–90.
Liu, H. and Kubli, E. (2003) ‘Sex-Peptide Is the Molecular Basis of the
Sperm Effect in Drosophila melanogaster’, Proceedings of the
National Academy of Sciences of the United States of America , 100(17),
pp. 9929–9933.
Lüdecke, D. et al. (2021) ‘performance: An R Package for
Assessment, Comparison and Testing of Statistical Models’, Journal
of Open Source Software , 6(60), p. 3139. doi:10.21105/joss.03139.
Lüpold, S. et al. (2011) ‘Male Drosophila melanogaster adjust
ejaculate size based on female mating status, fecundity, and age’,Behavioral Ecology , 22(1), pp. 184–191.
doi:10.1093/beheco/arq193.
MacBean, I.T. and Parsons, P.A. (1967) ‘Directional selection for
duration of copulation in Drosophila melanogaster .’,Genetics , 56(2), pp. 233–239. doi:10.1093/genetics/56.2.233.
Mazzi, D. et al. (2009) ‘Sexual conflict over the duration of
copulation in Drosophila montana: why is longer better?’, BMC
Evolutionary Biology , 9(1), p. 132. doi:10.1186/1471-2148-9-132.
Midi, H., Rana, S. and Imon, R.A.H.M. (2009) ‘The Performance of Robust
Weighted Least Squares in the Presence of Outliers and Heteroscedastic
Errors’, 8(7), pp. 351–361.
Midi, H., Rana, S. and Imon, R.A.H.M. (2013) ‘On a Robust Estimator in
Heteroscedastic Regression Model in the Presence of Outliers’,Proceedings of the World Congress on Engineering , 1.
R Core Team (2020) R: A language and environment for statistical
computing. Vienna, Austria. Available at: https://www.R-project.org/.
Ravi Ram, K. and Wolfner, M.F. (2007) ‘Seminal influences: Drosophila
Acps and the molecular interplay between males and females during
reproduction’, Integrative and Comparative Biology , 47(3), pp.
427–445. doi:10.1093/icb/icm046.
Rebar, D., Barbosa, F. and Greenfield, M.D. (2019) ‘Female reproductive
plasticity to the social environment and its impact on male reproductive
success’, Behavioral Ecology and Sociobiology , 73(4), p. 48.
doi:10.1007/s00265-019-2661-4.
Reed, T.E. et al. (2010) ‘Phenotypic plasticity and population
viability: the importance of environmental predictability’,Proceedings of the Royal Society B: Biological Sciences ,
277(1699), pp. 3391–3400. doi:10.1098/rspb.2010.0771.
Schnakenberg, S.L., Siegal, M.L. and Bloch Qazi, M.C. (2012) ‘Oh, the
places they’ll go: Female sperm storage and sperm precedence inDrosophila melanogaster .’, Spermatogenesis , 2(3), pp.
224–235. doi:10.4161/spmg.21655.
Schoenfeld, D. (1982) ‘Partial residuals for the proportional hazards
regression model’, Biometrika , 69(1), pp. 239–241.
doi:10.1093/biomet/69.1.239.
Shifferman, E.M. (2012) ‘It’s all in your head: the role of quantity
estimation in sperm competition’, Proceedings of the Royal Society
B: Biological Sciences , 279, pp. 833–840.
Simmons, L.W. and Fitzpatrick, J.L. (2012) ‘Sperm wars and the evolution
of male fertility’, REPRODUCTION , 144(5), pp. 519–534.
doi:10.1530/REP-12-0285.
Singh, S.R., Singh, B.N. and Hoenigsberg, H.F. (2002) ‘Female remating,
sperm competition and sexual selection in Drosophila’, Genetics
and Molecular Research , p. 38.
Sirot, L.K., Wolfner, M.F. and Wigby, S. (2011) ‘Protein-specific
manipulation of ejaculate composition in response to female mating
status in Drosophila melanogaster ’, Proceedings of the
National Academy of Sciences , 108(24), pp. 9922–9926.
doi:10.1073/pnas.1100905108.
Smithson, M. and Verkuilen, J. (2006) ‘A better lemon squeezer?
Maximum-likelihood regression with beta-distributed dependent
variables.’, Psychological Methods , 11(1), pp. 54–71.
doi:10.1037/1082-989X.11.1.54.
Soto-Yéber, L. et al. (2018) ‘The behavior of adult Drosophila in
the wild’, PLOS ONE . Edited by M. Louis, 13(12), p. e0209917.
doi:10.1371/journal.pone.0209917.
delBarco-Trillo, J. and Ferkin, M.H. (2004) ‘Male mammals respond to a
risk of sperm competition conveyed by odours of conspecific males’,Nature , 431(7007), pp. 446–449. doi:10.1038/nature02845.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis.Springer-Verlag New York.
Wigby, S. et al. (2009) ‘Seminal Fluid Protein Allocation and
Male Reproductive Success’, Current Biology , 19(9), pp. 751–757.
doi:10.1016/j.cub.2009.03.036.
Yasui, Y. (1998) ‘The “genetic benefits” of female multiple mating
reconsidered’, Trends in Ecology & Evolution , 13(6), pp.
246–250.