References:
Agrawal, A.A. (2001) ‘Phenotypic Plasticity in the Interactions and Evolution of Species’, Science, New Series , 294(5541), pp. 321–326.
Aigaki, T. et al. (1991) ‘Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster.’, Neuron , 7, pp. 557–563.
Andersson, M. (1994) Sexual selection . Princeton: NJ: Princeton University Press.
Aragón, P. (2009) ‘Conspecific male chemical cues influence courtship behaviour in the male newt Lissotriton boscai’, Behaviour , 146(8), pp. 1137–1151. doi:10.1163/156853909X413097.
Arbuthnott, D. et al. (2017) ‘Mate choice in fruit flies is rational and adaptive’, Nature Communications , 8(1), p. 13953. doi:10.1038/ncomms13953.
Arnqvist, G. and Rowe, L. (2005) Sexual conflict . Princeton University Press.
Bateman, A.J. (1948) ‘Intra-sexual selection in Drosophila’,Heredity , 2(3), pp. 349–368. doi:10.1038/hdy.1948.21.
Bates, D. et al. (2015) ‘Fitting Linear Mixed-Effects Models Using lme4 ’, Journal of Statistical Software , 67(1). doi:10.18637/jss.v067.i01.
Benjamini, Y. and Hochberg, Y. (1995) ‘Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing’,Journal of the Royal Statistical Society: Series B (Methodological) , 57(1), pp. 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
Boorman, E. and Parker, G.A. (1976) ‘Sperm (ejaculate) competition inDrosophila melanogaster , and the reproductive value of females to males in relation to female age and mating status’, Ecological Entomology , 1(3), pp. 145–155. doi:10.1111/j.1365-2311.1976.tb01217.x.
Botero, C.A. et al. (2015) ‘Evolutionary tipping points in the capacity to adapt to environmental change’, Proceedings of the National Academy of Sciences , 112(1), pp. 184–189. doi:10.1073/pnas.1408589111.
Bradshaw, A.D. (1965) ‘Evolutionary Significance of Phenotypic Plasticity in Plants’, Advances in Genetics , 13, pp. 115–155. doi:10.1016/S0065-2660(08)60048-6.
Bretman, A., Fricke, C. and Chapman, T. (2009) ‘Plastic responses of male Drosophila melanogaster to the level of sperm competition increase male reproductive fitness’, Proceedings of the Royal Society B: Biological Sciences , 276(1662), pp. 1705–1711. doi:10.1098/rspb.2008.1878.
Bretman, A., Gage, M.J.G. and Chapman, T. (2011) ‘Quick-change artists: male plastic behavioural responses to rivals’, Trends in Ecology & Evolution , 26(9), pp. 467–473. doi:10.1016/j.tree.2011.05.002.
Brooks, M. et al. (2017) ‘glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling’,The R Journal , 9(2), pp. 378–400.
Carazo, P. et al. (2017) ‘Perception costs of reproduction can magnify sexual selection’, Nature Ecology & Evolution , 1(10), pp. 1414–1415. doi:10.1038/s41559-017-0312-6.
Chapman, T. (2001) ‘Seminal fluid-mediated fitness traits inDrosophila ’, Heredity , 87, pp. 511–521.
Chapman, T. et al. (2003) ‘The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference’, Proceedings of the National Academy of Sciences , 100(17), pp. 9923–9928. doi:10.1073/pnas.1631635100.
Chapman, T. and Davies, S.J. (2004) ‘Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies.’, Peptides , 25(9), pp. 1477–1490. doi:10.1016/j.peptides.2003.10.023.
Charmantier, A. et al. (2008) ‘Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population’, Science , 320(5877), pp. 800–803. doi:10.1126/science.1157174.
Chen, P.S. et al. (1988) ‘A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster’, Cell , 54(3), pp. 291–298. doi:10.1016/0092-8674(88)90192-4.
Corbel, Q. et al. (2022) ‘Male adaptive plasticity can explain the evolution of sexual perception costs.’, The American Naturalist , In press. Available at: hitos://doi.org/10.1086/720404.
Cox, D.R. (1972) ‘Regression Models and Life-Tables’, Journal of the Royal Statistical Society: Series B (Methodological) , 34(2), pp. 187–202. doi:10.1111/j.2517-6161.1972.tb00899.x.
Cribari-Neto, F. and Zeileis, A. (2010) ‘Beta Regression in R’,Journal of Statistical Software , 34(2), pp. 1–24.
Demmig-Adams, B. et al. (2008) Acclimation. In Behavioral ecology (Jørgensen S.E. and Fath B.D. eds.) . Oxford: Elsevier.
DeWitt, T.J., Sih, A. and Wilson, D.S. (1998) ‘Costs and limits of phenotypic plasticity.’, Trends in Ecology & Evolution , 13(2), pp. 77–81.
Dewsbury, D.A. (1982) ‘Ejaculate Cost and Male Choice’, The American Naturalist , 119(5), pp. 601–610.
Dow, M.A. and Von Schilcher, F. (1975) ‘Agression and mating success inDrosophila melanogaster .’, Nature , 254, pp. 511–512. doi:doi:10.1038/254511a0.
Dukas, R. (2020) ‘Natural history of social and sexual behavior in fruit flies’, Scientific Reports , 10(1), p. 21932. doi:10.1038/s41598-020-79075-7.
Firman, R.C. and Simmons, L.W. (2011) ‘Experimental evolution of sperm competitiveness in a mammal’, BMC Evolutionary Biology , 11(1), p. 19. doi:10.1186/1471-2148-11-19.
Fiumera, A.C., Dumont, B.L. and Clark, A.G. (2005) ‘Sperm Competitive Ability in Drosophila melanogaster Associated With Variation in Male Reproductive Proteins’, Genetics , 169(1), pp. 243–257. doi:10.1534/genetics.104.032870.
Fricke, C. et al. (2009) ‘The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster: Sex peptide and male reproductive success’, Journal of Evolutionary Biology , 22(2), pp. 275–286. doi:10.1111/j.1420-9101.2008.01638.x.
Fricke, C. et al. (2010) ‘Sperm competitive ability and indices of lifetime reproductive success.’, Evolution , 64(9), pp. 2746–2757. doi:10.1111/j.1558-5646.2010.01022.x.
Gage, M.J.G. (1991) ‘Risk of sperm competition directly affects ejaculate size in the Mediterranean fruit fly’, Animal Behaviour , 42(6), pp. 1036–1037. doi:10.1016/S0003-3472(05)80162-9.
Gage, M.J.G. (1995) ‘Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella ’, Proceedings of the Royal Society of London. Series B: Biological Sciences , 261(1360), pp. 25–30. doi:10.1098/rspb.1995.0112.
Gage, M.J.G. and Baker, R.R. (1991) ‘Ejaculate size varies with socio-sexual situation in an insect’, Ecological Entomology , 16(3), pp. 331–337. doi:10.1111/j.1365-2311.1991.tb00224.x.
García-Roa, R., Serra, M. and Carazo, P. (2018) ‘Ageing via perception costs of reproduction magnifies sexual selection’, Proceedings of the Royal Society B: Biological Sciences , 285(1892), p. 20182136. doi:10.1098/rspb.2018.2136.
Gause, G.F. (1947) Problems of evolution . Connecticut Academy of Arts and Sciences.
Gendron, C.M. et al. (2014) ‘Drosophila Life Span and Physiology Are Modulated by Sexual Perception and Reward’,Science , 343(6170), pp. 544–548. doi:10.1126/science.1243339.
Giardina, T.J., Clark, A.G. and Fiumera, A.C. (2017) ‘Estimating mating rates in wild Drosophila melanogaster females by decay rates of male reproductive proteins in their reproductive tracts’,Molecular Ecology Resources , 17(6), pp. 1202–1209. doi:10.1111/1755-0998.12661.
Gilchrist, A.S. and Partridge, L. (1997) ‘Heritability of pre-adult viability differences can explain apparent heritability of sperm displacement ability in Drosophila melanogaster .’,Proceedings of the Royal Society B: Biological Sciences , 264, pp. 1271–1275.
Gromko, M.H. and Markow, T.A. (1993) ‘Courtship and remating in field populations of Drosophila’, Animal Behaviour , 45, pp. 253–262.
Harshman, L.G. and Clark, A.G. (1998) ‘Inference of sperm competition from broods of field-caught Drosophila ’, Evolution , 52(5), pp. 1334–1341. doi:10.1111/j.1558-5646.1998.tb02015.x.
Harvanek, Z.M. et al. (2017) ‘Perceptive costs of reproduction drive ageing and physiology in male Drosophila’, Nature Ecology & Evolution , 1(6), p. 0152. doi:10.1038/s41559-017-0152.
Hopkins, B.R. et al. (2019) ‘Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster ’, Proceedings of the National Academy of Sciences , 116(36), pp. 17925–17933. doi:10.1073/pnas.1906149116.
Hurtado-Gonzales, J.L. and Uy, J.A.C. (2010) ‘Intrasexual competition facilitates the evolution of alternative mating strategies in a colour polymorphic fish’, BMC Evolutionary Biology , 10(1), p. 391. doi:10.1186/1471-2148-10-391.
Imhof, M. et al. (1998) ‘Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis’, Molecular Ecology , 7(7), pp. 915–917. doi:10.1046/j.1365-294x.1998.00382.x.
Janicke, T. et al. (2016) ‘Darwinian sex roles confirmed across the animal kingdom’, Science Advances , 2(2), p. e1500983. doi:10.1126/sciadv.1500983.
Jones, B. and Clark, A.G. (2003) ‘Bayesian Sperm Competition Estimates’,Genetics , 163(3), pp. 1193–1199. doi:10.1093/genetics/163.3.1193.
Kokko, H. and Rankin, D.J. (2006) ‘Lonely hearts or sex in the city? Density-dependent effects in mating systems’, Philosophical Transactions of the Royal Society B: Biological Sciences , 361(1466), pp. 319–334. doi:10.1098/rstb.2005.1784.
Levins, R. (1963) ‘Theory of Fitness in a Heterogeneous Environment. II. Developmental Flexibility and Niche Selection’, The American Naturalist , 97(893), pp. 75–90.
Liu, H. and Kubli, E. (2003) ‘Sex-Peptide Is the Molecular Basis of the Sperm Effect in Drosophila melanogaster’, Proceedings of the National Academy of Sciences of the United States of America , 100(17), pp. 9929–9933.
Lüdecke, D. et al. (2021) ‘performance: An R Package for Assessment, Comparison and Testing of Statistical Models’, Journal of Open Source Software , 6(60), p. 3139. doi:10.21105/joss.03139.
Lüpold, S. et al. (2011) ‘Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age’,Behavioral Ecology , 22(1), pp. 184–191. doi:10.1093/beheco/arq193.
MacBean, I.T. and Parsons, P.A. (1967) ‘Directional selection for duration of copulation in Drosophila melanogaster .’,Genetics , 56(2), pp. 233–239. doi:10.1093/genetics/56.2.233.
Mazzi, D. et al. (2009) ‘Sexual conflict over the duration of copulation in Drosophila montana: why is longer better?’, BMC Evolutionary Biology , 9(1), p. 132. doi:10.1186/1471-2148-9-132.
Midi, H., Rana, S. and Imon, R.A.H.M. (2009) ‘The Performance of Robust Weighted Least Squares in the Presence of Outliers and Heteroscedastic Errors’, 8(7), pp. 351–361.
Midi, H., Rana, S. and Imon, R.A.H.M. (2013) ‘On a Robust Estimator in Heteroscedastic Regression Model in the Presence of Outliers’,Proceedings of the World Congress on Engineering , 1.
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria. Available at: https://www.R-project.org/.
Ravi Ram, K. and Wolfner, M.F. (2007) ‘Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction’, Integrative and Comparative Biology , 47(3), pp. 427–445. doi:10.1093/icb/icm046.
Rebar, D., Barbosa, F. and Greenfield, M.D. (2019) ‘Female reproductive plasticity to the social environment and its impact on male reproductive success’, Behavioral Ecology and Sociobiology , 73(4), p. 48. doi:10.1007/s00265-019-2661-4.
Reed, T.E. et al. (2010) ‘Phenotypic plasticity and population viability: the importance of environmental predictability’,Proceedings of the Royal Society B: Biological Sciences , 277(1699), pp. 3391–3400. doi:10.1098/rspb.2010.0771.
Schnakenberg, S.L., Siegal, M.L. and Bloch Qazi, M.C. (2012) ‘Oh, the places they’ll go: Female sperm storage and sperm precedence inDrosophila melanogaster .’, Spermatogenesis , 2(3), pp. 224–235. doi:10.4161/spmg.21655.
Schoenfeld, D. (1982) ‘Partial residuals for the proportional hazards regression model’, Biometrika , 69(1), pp. 239–241. doi:10.1093/biomet/69.1.239.
Shifferman, E.M. (2012) ‘It’s all in your head: the role of quantity estimation in sperm competition’, Proceedings of the Royal Society B: Biological Sciences , 279, pp. 833–840.
Simmons, L.W. and Fitzpatrick, J.L. (2012) ‘Sperm wars and the evolution of male fertility’, REPRODUCTION , 144(5), pp. 519–534. doi:10.1530/REP-12-0285.
Singh, S.R., Singh, B.N. and Hoenigsberg, H.F. (2002) ‘Female remating, sperm competition and sexual selection in Drosophila’, Genetics and Molecular Research , p. 38.
Sirot, L.K., Wolfner, M.F. and Wigby, S. (2011) ‘Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster ’, Proceedings of the National Academy of Sciences , 108(24), pp. 9922–9926. doi:10.1073/pnas.1100905108.
Smithson, M. and Verkuilen, J. (2006) ‘A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables.’, Psychological Methods , 11(1), pp. 54–71. doi:10.1037/1082-989X.11.1.54.
Soto-Yéber, L. et al. (2018) ‘The behavior of adult Drosophila in the wild’, PLOS ONE . Edited by M. Louis, 13(12), p. e0209917. doi:10.1371/journal.pone.0209917.
delBarco-Trillo, J. and Ferkin, M.H. (2004) ‘Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males’,Nature , 431(7007), pp. 446–449. doi:10.1038/nature02845.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis.Springer-Verlag New York.
Wigby, S. et al. (2009) ‘Seminal Fluid Protein Allocation and Male Reproductive Success’, Current Biology , 19(9), pp. 751–757. doi:10.1016/j.cub.2009.03.036.
Yasui, Y. (1998) ‘The “genetic benefits” of female multiple mating reconsidered’, Trends in Ecology & Evolution , 13(6), pp. 246–250.