References

Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.Plant Physiol 134(3), 1135-1145. doi: 10.1104/pp.103.034660.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., et al. (2003). Genome-wide insertional mutagenesis ofArabidopsis thaliana . Science 301(5633), 653-657. doi: 10.1126/science.1086391.
Amo, J., Lara, A., Martínez-Martínez, A., Martínez, V., Rubio, F., and Nieves-Cordones, M. (2021). The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants.Plant Cell Environ 44(12), 3589-3605. doi: 10.1111/pce.14189.
Anders, S., Pyl, P.T., and Huber, W. (2014). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics31(2), 166-169. doi: 10.1093/bioinformatics/btu638.
Armengaud, P., Breitling, R., and Amtmann, A. (2004). The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol136(1), 2556-2576. doi: 10.1104/pp.104.046482.
Bader, G.D., and Hogue, C.W.V. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1), 2. doi: 10.1186/1471-2105-4-2.
Bakshi, M., Sherameti, I., Meichsner, D., Thurich, J., Varma, A., Johri, A.K., et al. (2017). Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Front Microbiol 8,1262. doi: 10.3389/fmicb.2017.01262.
Batistič, O., and Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA) - General Subjects 1820(8), 1283-1293. doi: 10.1016/j.bbagen.2011.10.012.
Batistič, O., Waadt, R., Steinhorst, L., Held, K., and Kudla, J. (2010). CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J61(2), 211-222. doi: 10.1111/j.1365-313X.2009.04045.x.
Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.Journal of the Royal Statistical Society: Series B (Methodological) 57(1), 289-300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.Bioinformatics 25(8), 1091-1093. doi: 10.1093/bioinformatics/btp101.
Birkenbihl, R.P., Diezel, C., and Somssich, I.E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol159(1), 266-285. doi: 10.1104/pp.111.192641.
Bütehorn, B., Rhody, D., and Franken, P. (2000). Isolation and Characterisation of Pitef1 Encoding the Translation Elongation Factor EF-1α of the Root Endophyte Piriformospora indica. Plant Biology2(6), 687-692. doi: 10.1055/s-2000-16647.
Conchillo, L.B., Haro, R., and Benito, B. (2021). K+nutrition exchange in Serendipita-Arabidopsis symbiosis: study of the fungal K+ transporters involved. Front. Ecol. Evol. 9, 789371. doi: 10.3389/fevo.2021.789371.
de Bary, A. (1879). ”Die Erscheinung der Symbiose,” in Vortrag auf der Versammlung der Naturforscher und Artze zu Cassel . (Strassburg: Verlag von K.J. Trübner), 1–30.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome biology 3(3),REVIEWS3004-REVIEWS3004. doi: 10.1186/gb-2002-3-3-reviews3004.
Doncheva, N.T., Morris, J.H., Gorodkin, J., and Jensen, L.J. (2019). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. Journal of Proteome Research 18(2), 623-632. doi: 10.1021/acs.jproteome.8b00702.
Dreyer, I. (2021). Nutrient cycling is an important mechanism for homeostasis in plant cells. Plant Physiology 187(4),2246-2261. doi: 10.1093/plphys/kiab217.
Dreyer, I., and Blatt, M.R. (2009). What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci14(7), 383-390. doi: 10.1016/j.tplants.2009.04.001.
Dreyer, I., Poree, F., Schneider, A., Mittelstadt, J., Bertl, A., Sentenac, H., et al. (2004). Assembly of plant Shaker -like Kout channels requires two distinct sites of the channel a-subunit. Biophys J 87(2), 858-872. doi: 10.1529/biophysj.103.037671.
Frerigmann, H., and Gigolashvili, T. (2014). MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis inArabidopsis thaliana . Mol Plant 7(5), 814-828. doi: 10.1093/mp/ssu004.
Frerigmann, H., Pislewska-Bednarek, M., Sánchez-Vallet, A., Molina, A., Glawischnig, E., Gigolashvili, T., et al. (2016). Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products.Mol Plant 9(5), 682-695. doi: 10.1016/j.molp.2016.01.006.
Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen, K.A., et al. (2007). Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with 14-3-3 Protein. The Plant Cell 19(5), 1617-1634. doi: 10.1105/tpc.105.035626.
Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C.A., et al. (2012). GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biology12(1), 116. doi: 10.1186/1471-2229-12-116.
Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., et al. (1998). Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell 94(5), 647-655. doi: 10.1016/S0092-8674(00)81606-2.
Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3), 1105-1114. doi: 10.1104/pp.104.057216.
Glawischnig, E. (2007). Camalexin. Phytochemistry 68(4),401-406. doi: 10.1016/j.phytochem.2006.12.005.
Gullner, G., Komives, T., Király, L., and Schröder, P. (2018). Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions.Frontiers in Plant Science 9(1836). doi: 10.3389/fpls.2018.01836.
Herger, A., Dünser, K., Kleine-Vehn, J., and Ringli, C. (2019). Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Current Biology 29(17), R851-R858. doi: 10.1016/j.cub.2019.07.039.
Hertig, M., Taliaferro, W.H., and Schwartz, B. (1937). The terms symbiosis, symbiont and symbiote. Journal of Parasitology23, 326-329.
Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., et al. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungusPiriformospora indica . Plant Physiol 156(2),726-740. doi: 10.1104/pp.111.176446.
Jogawat, A., Meena, M.K., Kundu, A., Varma, M., and Vadassery, J. (2020). Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. J Exp Bot 71(9), 2752-2768. doi: 10.1093/jxb/eraa028.
Jogawat, A., Vadassery, J., Verma, N., Oelmuller, R., Dua, M., Nevo, E., et al. (2016). PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica , confers salinity stress tolerance in rice plants. Sci Rep 6, 36765. doi: 10.1038/srep36765.
Johnson, J.M., Sherameti, I., Nongbri, P.L., and Oelmüller, R. (2013). ”Standardized Conditions to Study Beneficial and Nonbeneficial Traits in the Piriformospora indica /Arabidopsis thalianaInteraction,” in Piriformospora indica: Sebacinales and Their Biotechnological Applications, eds. A. Varma, G. Kost & R. Oelmüller. (Berlin, Heidelberg: Springer Berlin Heidelberg), 325-343.
Jones, A.M., Xuan, Y., Xu, M., Wang, R.S., Ho, C.H., Lalonde, S., et al. (2014). Border control-a membrane-linked interactome of Arabidopsis.Science 344(6185), 711-716. doi: 10.1126/science.1251358.
Jost, R., Berkowitz, O., and Masle, J. (2007). Magnetic quantitative reverse transcription PCR: A high-throughput method for mRNA extraction and quantitative reverse transcription PCR. BioTechniques43(2), 206-211. doi: 10.2144/000112534.
Kiba, T., and Krapp, A. (2016). Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture. Plant Cell Physiol 57(4), 707-714. doi: 10.1093/pcp/pcw052.
Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8), 907-915. doi: 10.1038/s41587-019-0201-4.
Konishi, M., and Yanagisawa, S. (2013). Arabidopsis NIN-like transcription factors have a central role in nitrate signalling.Nature Communications 4(1), 1617. doi: 10.1038/ncomms2621.
Krouk, G., and Kiba, T. (2020). Nitrogen and Phosphorus interactions in plants: from agronomic to physiological and molecular insights.Curr Opin Plant Biol 57, 104-109. doi: 10.1016/j.pbi.2020.07.002.
Kudla, J., Batistič, O., and Hashimoto, K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell22(3), 541-563. doi: 10.1105/tpc.109.072686.
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., et al. (2018). Advances and current challenges in calcium signaling.New Phytologist 218(2), 414-431. doi: 10.1111/nph.14966.
Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding, Y., et al. (2015). Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol 207(3), 841-857. doi: 10.1111/nph.13411.
Lan, W.-Z., Lee, S.-C., Che, Y.-F., Jiang, Y.-Q., and Luan, S. (2011). Mechanistic Analysis of AKT1 Regulation by the CBL–CIPK–PP2CA Interactions. Molecular Plant 4(3), 527-536. doi: 10.1093/mp/ssr031.
Lee, S.C., Lan, W.-Z., Kim, B.-G., Li, L., Cheong, Y.H., Pandey, G.K., et al. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences 104(40), 15959-15964. doi: 10.1073/pnas.0707912104.
Li, J., Zhong, R., and Palva, E.T. (2017). WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLOS ONE 12(8), e0183731. doi: 10.1371/journal.pone.0183731.
Liu, K.-H., and Tsay, Y.-F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.The EMBO Journal 22(5), 1005-1013. doi: 10.1093/emboj/cdg118.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4), 402-408. doi: 10.1006/meth.2001.1262.
Lorkovic, Z.J., Lehner, R., Forstner, C., and Barta, A. (2005). Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11(7), 1095-1107. doi: 10.1261/rna.2440305.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12), 550. doi: 10.1186/s13059-014-0550-8.
Ma, Q., Tang, R.-J., Zheng, X.-J., Wang, S.-M., and Luan, S. (2015). The calcium sensor CBL7 modulates plant responses to low nitrate inArabidopsis . Biochemical and Biophysical Research Communications 468(1), 59-65. doi: 10.1016/j.bbrc.2015.10.164.
Maierhofer, T., Diekmann, M., Offenborn, J.N., Lind, C., Bauer, H., Hashimoto, K., et al. (2014). Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal 7(342), ra86. doi: 10.1126/scisignal.2005703.
Malka, S.K., and Cheng, Y. (2017). Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. Frontiers in Plant Science 8(2131). doi: 10.3389/fpls.2017.02131.
Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E., Colot, V., et al. (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4, 1713. doi: 10.1038/ncomms2650.
Mensah, R.A., Li, D., Liu, F., Tian, N., Sun, X., Hao, X., et al. (2020). Versatile Piriformospora indica and Its Potential Applications in Horticultural Crops. Horticultural Plant Journal6(2), 111-121. doi: 10.1016/j.hpj.2020.01.002.
Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G.D. (2010). Enrichment Map: A Network-Based Method for Gene Set Enrichment Visualization and Interpretation. PLOS ONE 5(11),e13984. doi: 10.1371/journal.pone.0013984.
Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., et al. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22(3), 973-990. doi: 10.1105/tpc.109.069658.
Monaghan, J., Xu, F., Xu, S., Zhang, Y., and Li, X. (2010). Two Putative RNA-Binding Proteins Function with Unequal Genetic Redundancy in the MOS4-Associated Complex  Plant Physiology 154(4),1783-1793. doi: 10.1104/pp.110.158931.
Mravec, J., Skůpa, P., Bailly, A., Hoyerová, K., Křeček, P., Bielach, A., et al. (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature459(7250), 1136-1140. doi: 10.1038/nature08066.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3), 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
Nolte, H., MacVicar, T.D., Tellkamp, F., and Krüger, M. (2018). Instant Clue: A Software Suite for Interactive Data Visualization and Analysis.Scientific Reports 8(1), 12648. doi: 10.1038/s41598-018-31154-6.
Nongbri, P.L., Johnson, J.M., Sherameti, I., Glawischnig, E., Halkier, B.A., and Oelmuller, R. (2012). Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol Plant Microbe Interact 25(9), 1186-1197. doi: 10.1094/MPMI-03-12-0071-R.
Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K. (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100(20),11771-11776. doi: 10.1073/pnas.2034853100.
Oñate-Sánchez, L., and Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana , including seeds and siliques. BMC Res Notes 1, 93. doi: 10.1186/1756-0500-1-93.
Pérez-Alonso, M.-M., Guerrero-Galán, C., Scholz, S.S., Kiba, T., Sakakibara, H., Ludwig-Müller, J., et al. (2020). Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems. Journal of Experimental Botany 71(13),3865-3877. doi: 10.1093/jxb/eraa040.
Pérez-Alonso, M.M., Ortiz-García, P., Moya-Cuevas, J., Lehmann, T., Sánchez-Parra, B., Björk, R.G., et al. (2021). Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis thaliana . J Exp Bot 72(2), 459-475. doi: 10.1093/jxb/eraa485.
Peškan-Berghöfer, T., Shahollari, B., Giong, P.H., Hehl, S., Markert, C., Blanke, V., et al. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum 122(4), 465-477. doi: 10.1111/j.1399-3054.2004.00424.x.
Pirayesh, N., Giridhar, M., Ben Khedher, A., Vothknecht, U.C., and Chigri, F. (2021). Organellar calcium signaling in plants: An update.Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1868(4), 118948. doi: 10.1016/j.bbamcr.2021.118948.
Pivato, M., and Ballottari, M. (2021). Chlamydomonas reinhardtiicellular compartments and their contribution to intracellular calcium signalling. J Exp Bot 72(15), 5312-5335. doi: 10.1093/jxb/erab212.
Prasad, D., Verma, N., Bakshi, M., Narayan, O.P., Singh, A.K., Dua, M., et al. (2018). Functional Characterization of a Magnesium Transporter of Root Endophytic Fungus Piriformospora indica . Front Microbiol 9, 3231. doi: 10.3389/fmicb.2018.03231.
Ragel, P., Ródenas, R., García-Martín, E., Andrés, Z., Villalta, I., Nieves-Cordones, M., et al. (2015). The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots  Plant Physiology 169(4), 2863-2873. doi: 10.1104/pp.15.01401.
Rodriguez, R.J., Redman, R.S., and Henson, J.M. (2004). The Role of Fungal Symbioses in the Adaptation of Plants to High Stress Environments. Mitigation and Adaptation Strategies for Global Change 9(3), 261-272. doi: 10.1023/b:Miti.0000029922.31110.97.
Rodríguez-Navarro, A., and Ramos, J. (1984). Dual system for potassium transport in Saccharomyces cerevisiae . Journal of bacteriology 159(3), 940-945. doi: 10.1128/jb.159.3.940-945.1984.
Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., et al. (2012). Identification and Characterization of ANAC042, a Transcription Factor Family Gene Involved in the Regulation of Camalexin Biosynthesis in Arabidopsis. Molecular Plant-Microbe Interactions®25(5), 684-696. doi: 10.1094/mpmi-09-11-0244.
Schliebner, I., Pribil, M., Zuhlke, J., Dietzmann, A., and Leister, D. (2008). A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana. Curr Genomics 9(3), 184-190. doi: 10.2174/138920208784340740.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research13(11), 2498-2504. doi: 10.1101/gr.1239303.
Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101(23), 8827-8832. doi: 10.1073/pnas.0401707101.
Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., et al. (2014). The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol 14, 268. doi: 10.1186/s12870-014-0268-5.
Tang, R.-J., Wang, C., Li, K., and Luan, S. (2020). The CBL–CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. Trends in Plant Science 25(6), 604-617. doi: 10.1016/j.tplants.2020.01.009.
Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W., Gaudinier, A., et al. (2015). An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536),571-575. doi: 10.1038/nature14099.
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.Plant Journal 37(6), 914-939. doi: 10.1111/j.1365-313X.2004.02016.x.
Thor, K. (2019). Calcium—Nutrient and Messenger. Frontiers in Plant Science 10(440). doi: 10.3389/fpls.2019.00440.
Tong, T., Li, Q., Jiang, W., Chen, G., Xue, D., Deng, F., et al. (2021). Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. International Journal of Molecular Sciences 22(22), 12308.
Vadassery, J., and Oelmüller, R. (2009). Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana . Plant Signaling & Behavior 4(11), 1024-1027. doi: 10.4161/psb.4.11.9800.
Vadassery, J., Ranf, S., Drzewiecki, C., Mithöfer, A., Mazars, C., Scheel, D., et al. (2009). A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots.Plant J 59(2), 193-206. doi: 10.1111/j.1365-313X.2009.03867.x.
Varma, A., Savita, V., Sudha, Sahay, N., Butehorn, B., and Franken, P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol65(6), 2741-2744. doi: 10.1128/AEM.65.6.2741-2744.1999.
Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., et al. (1998). Piriformospora indica , gen. et sp. nov., a new root-colonizing fungus. Mycologia 90(5), 896-903. doi: 10.1080/00275514.1998.12026983.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., et al. (2005). The endophytic fungus Piriformospora indicareprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38),13386-13391. doi: 10.1073/pnas.0504423102.
Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue),W214-220. doi: 10.1093/nar/gkq537.
Weiss, M., Waller, F., Zuccaro, A., and Selosse, M.A. (2016). Sebacinales - one thousand and one interactions with land plants.New Phytol 211(1), 20-40. doi: 10.1111/nph.13977.
Wittstock, U., and Burow, M. (2010). Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance.The Arabidopsis Book 8, e0134-e0134. doi: 10.1199/tab.0134.
Xu, L., Wu, C., Oelmüller, R., and Zhang, W. (2018). Role of Phytohormones in Piriformospora indica -Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 9, 1646. doi: 10.3389/fmicb.2018.01646.
Yang, Y., Wu, Y., Ma, L., Yang, Z., Dong, Q., Li, Q., et al. (2019). The Ca2+ Sensor SCaBP3/CBL7 Modulates Plasma Membrane H+-ATPase Activity and Promotes Alkali Tolerance in Arabidopsis. Plant Cell 31(6), 1367-1384. doi: 10.1105/tpc.18.00568.
Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., et al. (2020). Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis. The Plant Cell32(8), 2621-2638. doi: 10.1105/tpc.19.00971.