References
Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KT/KUP
genes in Arabidopsis and the role of root hairs in K+ uptake.Plant Physiol 134(3), 1135-1145. doi:
10.1104/pp.103.034660.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn,
P., et al. (2003). Genome-wide insertional mutagenesis ofArabidopsis thaliana . Science 301(5633), 653-657.
doi: 10.1126/science.1086391.
Amo, J., Lara, A., Martínez-Martínez, A., Martínez, V., Rubio, F., and
Nieves-Cordones, M. (2021). The protein kinase SlCIPK23 boosts
K+ and Na+ uptake in tomato plants.Plant Cell Environ 44(12), 3589-3605. doi:
10.1111/pce.14189.
Anders, S., Pyl, P.T., and Huber, W. (2014). HTSeq—a Python framework
to work with high-throughput sequencing data. Bioinformatics31(2), 166-169. doi: 10.1093/bioinformatics/btu638.
Armengaud, P., Breitling, R., and Amtmann, A. (2004). The
potassium-dependent transcriptome of Arabidopsis reveals a prominent
role of jasmonic acid in nutrient signaling. Plant Physiol136(1), 2556-2576. doi: 10.1104/pp.104.046482.
Bader, G.D., and Hogue, C.W.V. (2003). An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics 4(1), 2. doi: 10.1186/1471-2105-4-2.
Bakshi, M., Sherameti, I., Meichsner, D., Thurich, J., Varma, A., Johri,
A.K., et al. (2017). Piriformospora indica Reprograms Gene
Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not
Compensate for Phosphate Limitation. Front Microbiol 8,1262. doi: 10.3389/fmicb.2017.01262.
Batistič, O., and Kudla, J. (2012). Analysis of calcium signaling
pathways in plants. Biochimica et Biophysica Acta (BBA) - General
Subjects 1820(8), 1283-1293. doi:
10.1016/j.bbagen.2011.10.012.
Batistič, O., Waadt, R., Steinhorst, L., Held, K., and Kudla, J. (2010).
CBL-mediated targeting of CIPKs facilitates the decoding of calcium
signals emanating from distinct cellular stores. Plant J61(2), 211-222. doi: 10.1111/j.1365-313X.2009.04045.x.
Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing.Journal of the Royal Statistical Society: Series B
(Methodological) 57(1), 289-300. doi:
10.1111/j.2517-6161.1995.tb02031.x.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M.,
Kirilovsky, A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher
functionally grouped gene ontology and pathway annotation networks.Bioinformatics 25(8), 1091-1093. doi:
10.1093/bioinformatics/btp101.
Birkenbihl, R.P., Diezel, C., and Somssich, I.E. (2012). Arabidopsis
WRKY33 is a key transcriptional regulator of hormonal and metabolic
responses toward Botrytis cinerea infection. Plant Physiol159(1), 266-285. doi: 10.1104/pp.111.192641.
Bütehorn, B., Rhody, D., and Franken, P. (2000). Isolation and
Characterisation of Pitef1 Encoding the Translation Elongation Factor
EF-1α of the Root Endophyte Piriformospora indica. Plant Biology2(6), 687-692. doi: 10.1055/s-2000-16647.
Conchillo, L.B., Haro, R., and Benito, B. (2021). K+nutrition exchange in Serendipita-Arabidopsis symbiosis: study of the
fungal K+ transporters involved. Front. Ecol.
Evol. 9, 789371. doi: 10.3389/fevo.2021.789371.
de Bary, A. (1879). ”Die Erscheinung der Symbiose,” in Vortrag auf
der Versammlung der Naturforscher und Artze zu Cassel . (Strassburg:
Verlag von K.J. Trübner), 1–30.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione
transferases. Genome biology 3(3),REVIEWS3004-REVIEWS3004. doi: 10.1186/gb-2002-3-3-reviews3004.
Doncheva, N.T., Morris, J.H., Gorodkin, J., and Jensen, L.J. (2019).
Cytoscape StringApp: Network Analysis and Visualization of Proteomics
Data. Journal of Proteome Research 18(2), 623-632. doi:
10.1021/acs.jproteome.8b00702.
Dreyer, I. (2021). Nutrient cycling is an important mechanism for
homeostasis in plant cells. Plant Physiology 187(4),2246-2261. doi: 10.1093/plphys/kiab217.
Dreyer, I., and Blatt, M.R. (2009). What makes a gate? The ins and outs
of Kv-like K+ channels in plants. Trends Plant Sci14(7), 383-390. doi: 10.1016/j.tplants.2009.04.001.
Dreyer, I., Poree, F., Schneider, A., Mittelstadt, J., Bertl, A.,
Sentenac, H., et al. (2004). Assembly of plant Shaker -like
Kout channels requires two distinct sites of the channel
a-subunit. Biophys J 87(2), 858-872. doi:
10.1529/biophysj.103.037671.
Frerigmann, H., and Gigolashvili, T. (2014). MYB34, MYB51, and MYB122
distinctly regulate indolic glucosinolate biosynthesis inArabidopsis thaliana . Mol Plant 7(5), 814-828.
doi: 10.1093/mp/ssu004.
Frerigmann, H., Pislewska-Bednarek, M., Sánchez-Vallet, A., Molina, A.,
Glawischnig, E., Gigolashvili, T., et al. (2016). Regulation of
Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB
Transcription Factors and Indole Glucosinolate Conversion Products.Mol Plant 9(5), 682-695. doi:
10.1016/j.molp.2016.01.006.
Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen,
K.A., et al. (2007). Arabidopsis Protein Kinase PKS5 Inhibits the Plasma
Membrane H+-ATPase by Preventing Interaction with
14-3-3 Protein. The Plant Cell 19(5), 1617-1634. doi:
10.1105/tpc.105.035626.
Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O.,
Price, C.A., et al. (2012). GiA Roots: software for the high throughput
analysis of plant root system architecture. BMC Plant Biology12(1), 116. doi: 10.1186/1471-2229-12-116.
Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D.,
Boucherez, J., et al. (1998). Identification and Disruption of a Plant
Shaker-like Outward Channel Involved in K+ Release
into the Xylem Sap. Cell 94(5), 647-655. doi:
10.1016/S0092-8674(00)81606-2.
Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium
transporter AtHAK5 functions in K+ deprivation-induced
high-affinity K+ uptake and AKT1 K+channel contribution to K+ uptake kinetics in
Arabidopsis roots. Plant Physiol 137(3), 1105-1114. doi:
10.1104/pp.104.057216.
Glawischnig, E. (2007). Camalexin. Phytochemistry 68(4),401-406. doi: 10.1016/j.phytochem.2006.12.005.
Gullner, G., Komives, T., Király, L., and Schröder, P. (2018).
Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions.Frontiers in Plant Science 9(1836). doi: 10.3389/fpls.2018.01836.
Herger, A., Dünser, K., Kleine-Vehn, J., and Ringli, C. (2019).
Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall
Sensing. Current Biology 29(17), R851-R858. doi:
10.1016/j.cub.2019.07.039.
Hertig, M., Taliaferro, W.H., and Schwartz, B. (1937). The terms
symbiosis, symbiont and symbiote. Journal of Parasitology23, 326-329.
Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E.,
Lipka, V., et al. (2011). Broad-spectrum suppression of innate immunity
is required for colonization of Arabidopsis roots by the fungusPiriformospora indica . Plant Physiol 156(2),726-740. doi: 10.1104/pp.111.176446.
Jogawat, A., Meena, M.K., Kundu, A., Varma, M., and Vadassery, J.
(2020). Calcium channel CNGC19 mediates basal defense signaling to
regulate colonization by Piriformospora indica in Arabidopsis
roots. J Exp Bot 71(9), 2752-2768. doi:
10.1093/jxb/eraa028.
Jogawat, A., Vadassery, J., Verma, N., Oelmuller, R., Dua, M., Nevo, E.,
et al. (2016). PiHOG1, a stress regulator MAP kinase from the root
endophyte fungus Piriformospora indica , confers salinity stress
tolerance in rice plants. Sci Rep 6, 36765. doi:
10.1038/srep36765.
Johnson, J.M., Sherameti, I., Nongbri, P.L., and Oelmüller, R. (2013).
”Standardized Conditions to Study Beneficial and Nonbeneficial Traits in
the Piriformospora indica /Arabidopsis thalianaInteraction,” in Piriformospora indica: Sebacinales and Their
Biotechnological Applications, eds. A. Varma, G. Kost & R. Oelmüller.
(Berlin, Heidelberg: Springer Berlin Heidelberg), 325-343.
Jones, A.M., Xuan, Y., Xu, M., Wang, R.S., Ho, C.H., Lalonde, S., et al.
(2014). Border control-a membrane-linked interactome of Arabidopsis.Science 344(6185), 711-716. doi:
10.1126/science.1251358.
Jost, R., Berkowitz, O., and Masle, J. (2007). Magnetic quantitative
reverse transcription PCR: A high-throughput method for mRNA extraction
and quantitative reverse transcription PCR. BioTechniques43(2), 206-211. doi: 10.2144/000112534.
Kiba, T., and Krapp, A. (2016). Plant Nitrogen Acquisition Under Low
Availability: Regulation of Uptake and Root Architecture. Plant
Cell Physiol 57(4), 707-714. doi: 10.1093/pcp/pcw052.
Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019).
Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nature Biotechnology 37(8), 907-915.
doi: 10.1038/s41587-019-0201-4.
Konishi, M., and Yanagisawa, S. (2013). Arabidopsis NIN-like
transcription factors have a central role in nitrate signalling.Nature Communications 4(1), 1617. doi:
10.1038/ncomms2621.
Krouk, G., and Kiba, T. (2020). Nitrogen and Phosphorus interactions in
plants: from agronomic to physiological and molecular insights.Curr Opin Plant Biol 57, 104-109. doi:
10.1016/j.pbi.2020.07.002.
Kudla, J., Batistič, O., and Hashimoto, K. (2010). Calcium signals: the
lead currency of plant information processing. Plant Cell22(3), 541-563. doi: 10.1105/tpc.109.072686.
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U.,
et al. (2018). Advances and current challenges in calcium signaling.New Phytologist 218(2), 414-431. doi: 10.1111/nph.14966.
Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding,
Y., et al. (2015). Mutualistic root endophytism is not associated with
the reduction of saprotrophic traits and requires a noncompromised plant
innate immunity. New Phytol 207(3), 841-857. doi:
10.1111/nph.13411.
Lan, W.-Z., Lee, S.-C., Che, Y.-F., Jiang, Y.-Q., and Luan, S. (2011).
Mechanistic Analysis of AKT1 Regulation by the CBL–CIPK–PP2CA
Interactions. Molecular Plant 4(3), 527-536. doi:
10.1093/mp/ssr031.
Lee, S.C., Lan, W.-Z., Kim, B.-G., Li, L., Cheong, Y.H., Pandey, G.K.,
et al. (2007). A protein phosphorylation/dephosphorylation network
regulates a plant potassium channel. Proceedings of the National
Academy of Sciences 104(40), 15959-15964. doi:
10.1073/pnas.0707912104.
Li, J., Zhong, R., and Palva, E.T. (2017). WRKY70 and its homolog WRKY54
negatively modulate the cell wall-associated defenses to necrotrophic
pathogens in Arabidopsis. PLOS ONE 12(8), e0183731. doi:
10.1371/journal.pone.0183731.
Liu, K.-H., and Tsay, Y.-F. (2003). Switching between the two action
modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.The EMBO Journal 22(5), 1005-1013. doi:
10.1093/emboj/cdg118.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene
expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 25(4), 402-408. doi:
10.1006/meth.2001.1262.
Lorkovic, Z.J., Lehner, R., Forstner, C., and Barta, A. (2005).
Evolutionary conservation of minor U12-type spliceosome between plants
and humans. RNA 11(7), 1095-1107. doi:
10.1261/rna.2440305.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol 15(12), 550. doi: 10.1186/s13059-014-0550-8.
Ma, Q., Tang, R.-J., Zheng, X.-J., Wang, S.-M., and Luan, S. (2015). The
calcium sensor CBL7 modulates plant responses to low nitrate inArabidopsis . Biochemical and Biophysical Research
Communications 468(1), 59-65. doi: 10.1016/j.bbrc.2015.10.164.
Maierhofer, T., Diekmann, M., Offenborn, J.N., Lind, C., Bauer, H.,
Hashimoto, K., et al. (2014). Site- and kinase-specific
phosphorylation-mediated activation of SLAC1, a guard cell anion channel
stimulated by abscisic acid. Sci Signal 7(342), ra86.
doi: 10.1126/scisignal.2005703.
Malka, S.K., and Cheng, Y. (2017). Possible Interactions between the
Biosynthetic Pathways of Indole Glucosinolate and Auxin. Frontiers
in Plant Science 8(2131). doi: 10.3389/fpls.2017.02131.
Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E.,
Colot, V., et al. (2013). Nuclear retention of the transcription factor
NLP7 orchestrates the early response to nitrate in plants. Nat
Commun 4, 1713. doi: 10.1038/ncomms2650.
Mensah, R.A., Li, D., Liu, F., Tian, N., Sun, X., Hao, X., et al.
(2020). Versatile Piriformospora indica and Its Potential
Applications in Horticultural Crops. Horticultural Plant Journal6(2), 111-121. doi: 10.1016/j.hpj.2020.01.002.
Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G.D.
(2010). Enrichment Map: A Network-Based Method for Gene Set Enrichment
Visualization and Interpretation. PLOS ONE 5(11),e13984. doi: 10.1371/journal.pone.0013984.
Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D.,
Werck-Reichhart, D., et al. (2010). Innate immune responses activated in
Arabidopsis roots by microbe-associated molecular patterns. Plant
Cell 22(3), 973-990. doi: 10.1105/tpc.109.069658.
Monaghan, J., Xu, F., Xu, S., Zhang, Y., and Li, X. (2010). Two Putative
RNA-Binding Proteins Function with Unequal Genetic Redundancy in the
MOS4-Associated Complex Plant Physiology 154(4),1783-1793. doi: 10.1104/pp.110.158931.
Mravec, J., Skůpa, P., Bailly, A., Hoyerová, K., Křeček, P., Bielach,
A., et al. (2009). Subcellular homeostasis of phytohormone auxin is
mediated by the ER-localized PIN5 transporter. Nature459(7250), 1136-1140. doi: 10.1038/nature08066.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth
and bio assays with tobacco tissue cultures. Physiologia
Plantarum 15(3), 473-497. doi:
10.1111/j.1399-3054.1962.tb08052.x.
Nolte, H., MacVicar, T.D., Tellkamp, F., and Krüger, M. (2018). Instant
Clue: A Software Suite for Interactive Data Visualization and Analysis.Scientific Reports 8(1), 12648. doi:
10.1038/s41598-018-31154-6.
Nongbri, P.L., Johnson, J.M., Sherameti, I., Glawischnig, E., Halkier,
B.A., and Oelmuller, R. (2012). Indole-3-acetaldoxime-derived compounds
restrict root colonization in the beneficial interaction between
Arabidopsis roots and the endophyte Piriformospora indica. Mol
Plant Microbe Interact 25(9), 1186-1197. doi:
10.1094/MPMI-03-12-0071-R.
Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K. (2003). A novel domain in
the protein kinase SOS2 mediates interaction with the protein
phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100(20),11771-11776. doi: 10.1073/pnas.2034853100.
Oñate-Sánchez, L., and Vicente-Carbajosa, J. (2008). DNA-free RNA
isolation protocols for Arabidopsis thaliana , including seeds and
siliques. BMC Res Notes 1, 93. doi:
10.1186/1756-0500-1-93.
Pérez-Alonso, M.-M., Guerrero-Galán, C., Scholz, S.S., Kiba, T.,
Sakakibara, H., Ludwig-Müller, J., et al. (2020). Harnessing symbiotic
plant–fungus interactions to unleash hidden forces from extreme plant
ecosystems. Journal of Experimental Botany 71(13),3865-3877. doi: 10.1093/jxb/eraa040.
Pérez-Alonso, M.M., Ortiz-García, P., Moya-Cuevas, J., Lehmann, T.,
Sánchez-Parra, B., Björk, R.G., et al. (2021). Endogenous
indole-3-acetamide levels contribute to the crosstalk between auxin and
abscisic acid, and trigger plant stress responses in Arabidopsis
thaliana . J Exp Bot 72(2), 459-475. doi:
10.1093/jxb/eraa485.
Peškan-Berghöfer, T., Shahollari, B., Giong, P.H., Hehl, S., Markert,
C., Blanke, V., et al. (2004). Association of Piriformospora
indica with Arabidopsis thaliana roots represents a novel system
to study beneficial plant–microbe interactions and involves early plant
protein modifications in the endoplasmic reticulum and at the plasma
membrane. Physiologia Plantarum 122(4), 465-477. doi:
10.1111/j.1399-3054.2004.00424.x.
Pirayesh, N., Giridhar, M., Ben Khedher, A., Vothknecht, U.C., and
Chigri, F. (2021). Organellar calcium signaling in plants: An update.Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1868(4), 118948. doi: 10.1016/j.bbamcr.2021.118948.
Pivato, M., and Ballottari, M. (2021). Chlamydomonas reinhardtiicellular compartments and their contribution to intracellular calcium
signalling. J Exp Bot 72(15), 5312-5335. doi:
10.1093/jxb/erab212.
Prasad, D., Verma, N., Bakshi, M., Narayan, O.P., Singh, A.K., Dua, M.,
et al. (2018). Functional Characterization of a Magnesium Transporter of
Root Endophytic Fungus Piriformospora indica . Front
Microbiol 9, 3231. doi: 10.3389/fmicb.2018.03231.
Ragel, P., Ródenas, R., García-Martín, E., Andrés, Z., Villalta, I.,
Nieves-Cordones, M., et al. (2015). The CBL-Interacting Protein Kinase
CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis
Roots Plant Physiology 169(4), 2863-2873. doi:
10.1104/pp.15.01401.
Rodriguez, R.J., Redman, R.S., and Henson, J.M. (2004). The Role of
Fungal Symbioses in the Adaptation of Plants to High Stress
Environments. Mitigation and Adaptation Strategies for Global
Change 9(3), 261-272. doi: 10.1023/b:Miti.0000029922.31110.97.
Rodríguez-Navarro, A., and Ramos, J. (1984). Dual system for potassium
transport in Saccharomyces cerevisiae . Journal of
bacteriology 159(3), 940-945. doi:
10.1128/jb.159.3.940-945.1984.
Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., et al.
(2012). Identification and Characterization of ANAC042, a Transcription
Factor Family Gene Involved in the Regulation of Camalexin Biosynthesis
in Arabidopsis. Molecular Plant-Microbe Interactions®25(5), 684-696. doi: 10.1094/mpmi-09-11-0244.
Schliebner, I., Pribil, M., Zuhlke, J., Dietzmann, A., and Leister, D.
(2008). A Survey of Chloroplast Protein Kinases and Phosphatases in
Arabidopsis thaliana. Curr Genomics 9(3), 184-190. doi:
10.2174/138920208784340740.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage,
D., et al. (2003). Cytoscape: A Software Environment for Integrated
Models of Biomolecular Interaction Networks. Genome Research13(11), 2498-2504. doi: 10.1101/gr.1239303.
Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant
root cell response to nutrient deprivation. Proc Natl Acad Sci U S
A 101(23), 8827-8832. doi: 10.1073/pnas.0401707101.
Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., et
al. (2014). The beneficial fungus Piriformospora indica protects
Arabidopsis from Verticillium dahliae infection by downregulation
plant defense responses. BMC Plant Biol 14, 268. doi:
10.1186/s12870-014-0268-5.
Tang, R.-J., Wang, C., Li, K., and Luan, S. (2020). The CBL–CIPK
Calcium Signaling Network: Unified Paradigm from 20 Years of
Discoveries. Trends in Plant Science 25(6), 604-617.
doi: 10.1016/j.tplants.2020.01.009.
Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T.W.,
Gaudinier, A., et al. (2015). An Arabidopsis gene regulatory network for
secondary cell wall synthesis. Nature 517(7536),571-575. doi: 10.1038/nature14099.
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et
al. (2004). MAPMAN: a user-driven tool to display genomics data sets
onto diagrams of metabolic pathways and other biological processes.Plant Journal 37(6), 914-939. doi:
10.1111/j.1365-313X.2004.02016.x.
Thor, K. (2019). Calcium—Nutrient and Messenger. Frontiers in
Plant Science 10(440). doi: 10.3389/fpls.2019.00440.
Tong, T., Li, Q., Jiang, W., Chen, G., Xue, D., Deng, F., et al. (2021).
Molecular Evolution of Calcium Signaling and Transport in Plant
Adaptation to Abiotic Stress. International Journal of Molecular
Sciences 22(22), 12308.
Vadassery, J., and Oelmüller, R. (2009). Calcium signaling in pathogenic
and beneficial plant microbe interactions: what can we learn from the
interaction between Piriformospora indica and Arabidopsis
thaliana . Plant Signaling & Behavior 4(11), 1024-1027.
doi: 10.4161/psb.4.11.9800.
Vadassery, J., Ranf, S., Drzewiecki, C., Mithöfer, A., Mazars, C.,
Scheel, D., et al. (2009). A cell wall extract from the endophytic
fungus Piriformospora indica promotes growth of Arabidopsis
seedlings and induces intracellular calcium elevation in roots.Plant J 59(2), 193-206. doi:
10.1111/j.1365-313X.2009.03867.x.
Varma, A., Savita, V., Sudha, Sahay, N., Butehorn, B., and Franken, P.
(1999). Piriformospora indica, a cultivable
plant-growth-promoting root endophyte. Appl Environ Microbiol65(6), 2741-2744. doi: 10.1128/AEM.65.6.2741-2744.1999.
Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A.,
et al. (1998). Piriformospora indica , gen. et sp. nov., a new
root-colonizing fungus. Mycologia 90(5), 896-903. doi:
10.1080/00275514.1998.12026983.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer,
M., et al. (2005). The endophytic fungus Piriformospora indicareprograms barley to salt-stress tolerance, disease resistance, and
higher yield. Proc Natl Acad Sci U S A 102(38),13386-13391. doi: 10.1073/pnas.0504423102.
Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R.,
Chao, P., et al. (2010). The GeneMANIA prediction server: biological
network integration for gene prioritization and predicting gene
function. Nucleic Acids Res 38(Web Server issue),W214-220. doi: 10.1093/nar/gkq537.
Weiss, M., Waller, F., Zuccaro, A., and Selosse, M.A. (2016).
Sebacinales - one thousand and one interactions with land plants.New Phytol 211(1), 20-40. doi: 10.1111/nph.13977.
Wittstock, U., and Burow, M. (2010). Glucosinolate breakdown in
Arabidopsis: mechanism, regulation and biological significance.The Arabidopsis Book 8, e0134-e0134. doi:
10.1199/tab.0134.
Xu, L., Wu, C., Oelmüller, R., and Zhang, W. (2018). Role of
Phytohormones in Piriformospora indica -Induced Growth Promotion
and Stress Tolerance in Plants: More Questions Than Answers. Front
Microbiol 9, 1646. doi: 10.3389/fmicb.2018.01646.
Yang, Y., Wu, Y., Ma, L., Yang, Z., Dong, Q., Li, Q., et al. (2019). The
Ca2+ Sensor SCaBP3/CBL7 Modulates Plasma Membrane
H+-ATPase Activity and Promotes Alkali Tolerance in
Arabidopsis. Plant Cell 31(6), 1367-1384. doi:
10.1105/tpc.18.00568.
Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., et al. (2020).
Differential Phosphorylation of the Transcription Factor WRKY33 by the
Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates
Camalexin Biosynthesis in Arabidopsis. The Plant Cell32(8), 2621-2638. doi: 10.1105/tpc.19.00971.