References
  1. Allan, E., van Ruijven, J., and Crawley, M. J. 2010. Foliar fungal pathogens and grassland biodiversity. – Ecology 91: 2572–2582.
  2. Allen, W. J., DeVries, A. E., Bologn, N. J., Bickford, W. A., Kowalski, K. P., Meyerson, L. A., and Cronin, J. T. 2020. Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasivePhragmites australis . – Glob. Ecol. Biogeogr. 29: 1199–1211.
  3. Bartoń, K. 2022. MuMIn: Multi-Model Inference. Retrieved from https://CRAN.R-project.org/package=MuMIn
  4. Bebber, D. P. 2015. Range-expanding pests and pathogens in a warming world. – Annu. Rev. Phytopathol. 53: 335–356.
  5. Borenstein, M., Hedges, L., Higgins, J., and Rothstein, H. 2009.Introduction to meta-analysis . New York, NY, USA: John Wiley & Sons.
  6. Burdon, J. J., and Chilvers, G. A. 1982. Host density as a factor in plant-disease ecology. – Annu. Rev. Phytopathol. 20: 143–166.
  7. Burnham, K. P., Anderson, D. R., and Huyvaert, K. P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. – Behav. Ecol. Sociobiol. 65: 23–35.
  8. Cappelli, S. L., Pichon, N. A., Kempel, A., and Allan, E. 2020. Sick plants in grassland communities: a growth-defense trade-off is the main driver of fungal pathogen abundance. – Ecol. Lett. 23: 1349–1359.
  9. Chen, L. F., and Zhou, S. R. 2015. A combination of species evenness and functional diversity is the best predictor of disease risk in multihost communities. – Am. Nat. 186: 755–765.
  10. Chu, C. J. et al . 2019. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. – Ecol. Lett. 22: 245–255.
  11. Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. – Science 230: 895–899.
  12. Delgado-Baquerizo, M., Guerra, C. A., Cano-Diaz, C., Egidi, E., Wang, J. T., Eisenhauer, N., Singh, B. K., and Maestre, F. T. 2020. The proportion of soil-borne pathogens increases with warming at the global scale. – Nat. Clim. Chang. 10: 550–554.
  13. Duplessis, S., Lorrain, C., Peter, B., Figueroa, M., Dodds, P. N., and Aime, M. C. 2021. Host adaptation and virulence in heteroecious rust fungi. – Annu. Rev. Phytopathol. 59: 403–422.
  14. Fick, S. E., and Hijmans, R. J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. – Int. J. Climatol. 37: 4302–4315.
  15. Grace, J. B. 2006. Structural equation modeling and natural systems . Cambridge University Press, Cambridge, UK.
  16. Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J., Holderegger, R., Karrenberg, S., Pluess, A. R., Widmer, A., and Alexander, J. M. 2018. Trait differentiation and adaptation of plants along elevation gradients. –J. Evol. Biol. 31: 784–800.
  17. Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., and Mitchell, C. E. 2017. A multivariate test of disease risk reveals conditions leading to disease amplification. – Proc. R. Soc. B-Biol. Sci. 284: 20171340.
  18. Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., and Mitchell, C. E. 2019. Past is prologue: host community assembly and the risk of infectious disease over time. – Ecol. Lett. 22: 138–148.
  19. Halliday, F. W., and Rohr, J. R. 2019. Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. – Nat. Commun. 10: 5032.
  20. Halliday, F. W., Rohr, J. R., and Laine, A. L. 2020. Biodiversity loss underlies the dilution effect of biodiversity. – Ecol. Lett. 23: 1611–1622.
  21. Halliday, F. W., Jalo, M., and Laine, A. L. 2021. The effect of host community functional traits on plant disease risk varies along an elevational gradient. – eLife 10: e67340.
  22. Hansen, E. M., and Goheen, E. M. 2000 Phellinus weirii and other native root pathogens as determinants of forest structure and process in western North America. – Annu. Rev. Phytopathol. 38: 515–539.
  23. Healey, S. P., Raymond, C. L., Lockman, I. B., Hernandez, A. J., Garrard, C., and Huang, C. 2016. Root disease can rival fire and harvest in reducing forest carbon storage. – Ecosphere 7: e01569.
  24. Huang, H. Y., Zhou, L., Chen, J., and Wei, T. Y. 2020. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.8.1. Retrieved from https://github.com/houyunhuang/ggcor
  25. Huber, D. M., and Watson, R. D. 1974. Nitrogen form and plant disease. – Annu. Rev. Phytopathol. 12: 139–165.
  26. Johnson, P. T., Preston, D. L., Hoverman, J. T., and Richgels, K. L. 2013. Biodiversity decreases disease through predictable changes in host community competence. – Nature 494: 230–233.
  27. Kamiya, T., O’Dwyer, K., Nakagawa, S., and Poulin, R. 2014. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. – Ecography 37: 689–697.
  28. Keesing, F., Holt, R. D., and Ostfeld, R. S. 2006. Effects of species diversity on disease risk. – Ecol. Lett. 9: 485–498.
  29. Keesing, F. et al . 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. – Nature 468: 647–652.
  30. Lajeunesse, M. J. 2013. Recovering missing or partial data from studies: a survey of conversions and imputations for meta-analysis . In: Koricheva J, Gurevitch J, Mengersen K. eds. Handbook of meta-analysis in ecology and evolution . Princeton, NJ, USA: Princeton University Press, 195–206.
  31. Lefcheck, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. – Methods Ecol. Evol. 7: 573–579.
  32. Liang, M. X., Liu,. X. B., Gilbert, G. S., Zheng, Y., Luo, S., Huang, F. M., and Yu, S X. 2016. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. – Ecol. Lett. 19: 1448–1456.
  33. Liu, X., Lyu, S. M., Zhou, S. R., and Bradshaw, C. J. A. 2016. Warming and fertilization alter the dilution effect of host diversity on disease severity. – Ecology 97: 1680–1689.
  34. Liu, X., Lyu, S. M., Sun, D. X., Bradshaw, C. J. A, and Zhou, S. R. 2017. Species decline under nitrogen fertilization increases community-level competence of fungal diseases. – Proc. R. Soc. B-Biol. Sci. 284: e20162621.
  35. Liu, X., Ma, Z. Y., Cadotte, M. W., Chen, F., He, J. S., and Zhou, S. R. 2019. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. – New Phytol. 221: 1574–1584.
  36. Liu, X., Chen, L. F., Liu, M., Garcia-Guzman, G., Gilbert, G. S., and Zhou, S. R. 2020. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. – Oikos 129: 457–465.
  37. Liu, X., Lu, Y. W., Zhang, Z. H., and Zhou, S. R. 2020. Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. – Ecol. Res. 35: 162–169.
  38. Liu, X., Zhang, L., Huang, M. J., and Zhou, S. R. 2021. Plant diversity promotes soil fungal pathogen richness under fertilization in an alpine meadow. – J. Plant Ecol. 14: 323–336.
  39. Liu, Y., and He, F. L. 2019. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. – Funct. Ecol. 33: 1211–1222.
  40. Lomolino, M. V. 2001. Elevation gradients of species-density: historical and prospective views. – Glob. Ecol. Biogeogr. 10: 3-13.
  41. Lu, J. Y. 1997. Plant disease diagnosis . Beijing, China: China Agricultural Press.
  42. Mbareche, H., Veillette, M., Bilodeau, G., and Duchaine, C. 2020. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. – PeerJ 8: e8523.
  43. Mitchell, C. E., Tilman, D., and Groth, J. V. 2002. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. – Ecology 83: 1713–1726.
  44. Nakagawa, S., Noble, D. W. A., Senio, A. M., and Lagisz, M. 2017. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. – BMC Biol. 15: 18.
  45. Nguyen, N. H., Song, Z. W., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., and Kennedy, P. G. 2015. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. – Fungal Ecol. 20: 241-248.
  46. Oksanen, J. et al . 2020. vegan: Community Ecology Package. R package version 2.5.7. Retrieved from https://CRAN.R-project.org/package=vegan
  47. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team. 2021. nlme: Linear and Nonlinear Mixed Effects Models. Retrieved from https://CRAN.R-project.org/package=nlme
  48. R Development Core Team. 2021. R: A language and environment for statistical computing. Version 4.1.1. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
  49. Rohatgi, A. 2020. WebPlotDigitizer (Version 4.4). Retrieved from https://automeris.io/WebPlotDigitizer
  50. Romero, F., Cazzato, S., Walder, F., Vogelgsang, S., Bender, S. F., and van der Heijden, M. G. A. 2021. Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. – New Phytol. 234, 1553–1556.
  51. Rosenberg, M. S., Rothstein HR, and Gurevitch J. 2013. Effect sizes: conventional choices and calculations . In: Koricheva J, Gurevitch J, Mengersen K. eds. Handbook of meta-analysis in ecology and evolution . Princeton, NJ, USA: Princeton University Press, 61–71.
  52. Roslin, T. et al . 2017. Higher predation risk for insect prey at low latitudes and elevations. – Science, 356: 742–744.
  53. Rottstock, T., Joshi, J., Kummer, V., and Fischer, M. 2014. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. – Ecology 95: 1907–1917.
  54. Rowe, R. J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. – Ecography 32: 411–422.
  55. Roy, B. A., Gusewell, S., and Harte, J. 2004. Response of plant pathogens and herbivores to a warming experiment. – Ecology 85: 2570–2581.
  56. Siebold, M., and Tiedemann, A. 2013. Effects of experimental warming on fungal disease progress in oilseed rape. – Glob. Change Biol. 19: 1736–1747.
  57. Stukenbrock, E. H., McDonald, B. A. 2008. The origins of plant pathogens in agro-ecosystems. – Annu. Rev. Phytopathol. 46: 75–100.
  58. Tedersoo, L. et al . 2014. Global diversity and geography of soil fungi. – Science 346: 1078–1078.
  59. Tedersoo, L., and Lindahl, B. 2016. Fungal identification biases in microbiome projects. – Env. Microbiol. Rep. 8: 774–779.
  60. Tellenbach, C., Grünig, C. R., and Sieber, T. N. 2010. Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. – Appl. Environ. Microb. 76: 5764–5772.
  61. Wei, J. C. 1979. Fungal Identification Manual . Shanghai Science and Technology Press, Shanghai, China.
  62. van Agtmaal, M., Straathof, A., Termorshuizen, A., Teurlincx, S., Hundscheid, M., Ruyters, S., Busschaert, P., Lievens, B., and de Boer, W. 2017. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. – Appl. Soil Ecol. 121: 152–160.
  63. Veresoglou, S. D., Barto, E. K., Menexes, G., and Rillig, M. C. 2013. Fertilization affects severity of disease caused by fungal plant pathogens. – Plant Pathol. 62: 961–969.
  64. Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. – J. Stat. Softw. 36: 1–48.
  65. Xiao, Y., Liu, X., Zhang, L., Song, Z. P., and Zhou, S. R. 2021. The allometry of plant height explains species loss under nitrogen addition. – Ecol. Lett. 24: 553–562.
  66. Zhang, R. 2009. Survey and identification of the alpine grassland’s major fungal diseases in Gannan region of Gansu province. Master thesis, Gansu Agricultural University, Lanzhou, Gansu, China.
  67. Zhu, J. T., Zhang, Y. J., Yang, X., Chen, N., Li, S. P., Wang, P. D., Jiang, L. 2020. Warming alters plant phylogenetic and functional community structure. – J. Ecol. 108: 2406–2415.
Table 1. All abbreviations and their corresponding annotations in the main text.