
Author response

We thank the editor and the reviewers for helpful comments. Below is our detailed
response. To summarize the main changes, we have

1. revised the entire manuscript with the Molecular Ecology readership in mind and to
emphasize the biological interpretation of the models and the results as requested
by the editor and reviewer # 1.

2. moved old Figures 1, 3, 4, 6, 8, 9 to Supporting Information and deleted old Figure
7 to reduce the number of figures in the main text as requested by the editor

3. moved old Eqs 1, 5, 6, 7, 9, 10, 11 to Supporting Information and the equation
between old lines 200 and 201 to reduce the number of equations in the main text
as requested by the editor

4. added Fig 1, a simple illustration of the difference between random sweepstakes and
the Wright-Fisher model, as requested by the editor

5. added Fig 2, a simple illustration of how random sweepstakes can speed up fixation
given that fixation occurs, as requested by the editor

6. added legends to the graphs to explain the relevant parameter values for each panel

7. Furthermore, we now explain on line 418 and in each relevant caption that the
trajectories in each panel were obtained under identical conditions

8. The manuscript on the Atlantic cod data analysis (Árnason et al., 2022) became
available on bioRxiv on June 16, 2022; the manuscripts by Chetwyn-Diggle et al and
by Dahmer and Eldon are still not available so we have removed references to them.

Response to Editor

1. We have now had three reviews from experts in the field. All three were
very complementary of your expertise in the field and your knowledge of
the topic, which is highly relevant to the current issue. However, all
of the reviewers, which included theoreticians, thought the manuscript
was dense and difficult to understand for the average reader of Molecular
Ecology. Reviewer 1 thought the paper would be better suited for a mathematical
biology journal and that it would require too many substantial changes
to be suitable for Molecular Ecology. However, if you can transform the
manuscript into work that has broader appeal, I would welcome your resubmission.
A paper that translates some of this theory into a form that is more easily
digestible may be well cited and aid the dissemination of these ideas
to a broader audience. For example, the explanation of the effect of
sweepstakes reproduction on rapid adaptation would benefit from a figure
or box illustrating using a cartoon how this mode of reproduction is different
from the standard fisher-wright model and how it impacts rapid adaptation.
Two of the reviewers pointed out that you rely on unpublished work that
is not even available on a pre-print server, and this needs to be addressed
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and the methods more clearly articulated.
Author response: Thank you for the opportunity to revise the manuscript. We have revised
the manuscript with a broad audience in mind. Specifically we have added Figure 1 to ex-
plain the idea of random sweepstakes and how it is different from the Wright-Fisher model,
and Figure 2 on how random sweepstakes speed up the time to fixation conditional on fixa-
tion. The manuscript (Árnason et al., 2022) became available on bioRxiv on June 16, 2022
(https: // doi. org/ 10. 1101/ 2022. 05. 29. 493887 ); the manuscripts by Chetwyn-
Diggle et al and Dahmer & Eldon are still not available as preprints and so we have removed
them at the recommendation of Reviewer # 2 and # 3.

2. I also strongly recommend that you reduce the number of equations and
figures in the text. Please consider placing some in them in the supplementary.
The figures could be vastly improved. First, there are too many (10 Figures).
Second, the parameters are not explained in the figure legend. Third,
what do all the different line types mean? In Fig 7 what is b? Why not
be more explicit and explain what “eq 4” is instead of constantly referring
to it. There are also frequent short forms in the legends without explanation
(e.g., “resp.”). The figure legends should explain what is going on in
the figures without the need to refer to the text. Figure 10 is not well
explained. Finally, there are many different panels in most of the figures,
and it isn’t clear without careful dissection of the legend what the differences
are. This could be fixed by reducing the panel number and labelling the
panels to clearly identify what the point of the different panels is.
Author response: We have expanded on the explanation of Eq (4); as detailed above we have
moved many of the equations and figures to supplementary material. We have removed old
Figure (7) as it overlaps with Figure S5. We have improved the figure legends. We now
explain on line 418 (as we begin to show the results), and in each relevant caption, that
the different line types and colours are only meant to distinguish between the trajectories; in
each panel the trajectories were obtained under identical conditions. Furthermore, we now
extensively explain the model parameters.

Response to Reviewer # 1

1. Firstly, the presentation is far too technical to be accessible to a typical
Molecular Ecology reader. Even the most important results of the model,
which could be presented very clearly and in plain language, are often
buried in a mass of details that obscure the main messages.
Author response: We have revised the entire manuscript to make it more accessible to the
Molecular Ecology readership; for example starting at line 176 we have added a biological
interpretation of the models of random sweepstakes as in Eq (3). In a simple illustration
we now explain the difference between the Wright-Fisher model and random sweepstakes, see
Fig 1 by line 659. Between lines633 and 638 in § 5 we briefly summarize the main findings
from the simulations.

2. Secondly, I don’t think the authors have made a compelling case that there
are serious problems with the standard theory (as is suggested towards
the end of the paper). At best, the authors have simply raised the possibility
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that their models could be important and deserve further attention by
theoreticians in order to fully explore the theoretical consequences of
sweepstakes reproduction.
Author response: We believe that the results of the analysis of the Atlantic cod data(Árnason
et al., 2022) https: // doi. org/ 10. 1101/ 2022. 05. 29. 493887 ), which we review
in § 4, presents evidence for the conclusion that the ‘standard theory’ (understood here as rep-
resented by the Wright-Fisher model and the Kingman coalescent) is inadequate in explaining
genetic diversity in highly fecund populations. In addition, U-shaped site-frequency spectra,
predicted by multiple-merger coalescents (and not by the Kingman-coalescent even taking pop-
ulation size changes or background selection into account), is observed across domains of life
(Freund et al., 2022). To emphasize this we added the new manuscript of (Freund et al.,
2022) https: // www. biorxiv. org/ content/ 10. 1101/ 2022. 04. 12. 488084v2.
full at line 654. In addition, in the Introduction, starting from line 88, we outline the
biological reasons for why the Wright-Fisher model may be a poor choice for modeling highly
fecund populations.

3. L 27: as I understand it, the evidence for adaptation for human height
(among European populations) is not as strong as once thought. See e.g.,
Berg et al. 2019. Reduced signal for polygenic adaptation of height
in UK Biobank. Elife 8:e39725; Sohail et al. 2019. Polygenic adaptation
on height is overestimated due to uncorrected stratification in genome-wide
association studies. Elife 8
Author response: The critical analyses of (Berg et al., 2019; Sohail et al., 2019) are now
mentioned on line 39

4. L 47: "a shift of the fitness optimum may also be caused by a new mutation".
I do not understand what is meant here. Mutations cause shifts in optima?
It’s not obvious why this should be so.
Author respons: In the classical hitchhiking model the occurrence of a new favorable mutation
is assumed. To avoid confusion, this part of the manuscript at line 59 is deleted.

5. I imagine many evolutionary biologists would disagree with the definition
of rapid adaptation as outlined here. Rapid adaptation is said to mean
that 2𝑁𝑠 > 1, yet for large populations sweeps with very small 𝑠 will
meet this condition. The definition of rapid in such cases would be quite
slow to many.
Author response: On line 66 we state that 2𝑁𝑠 must be at least one hundred (not one!) to
observe rapid adaptation/sweeps.

6. L62-74: I’m not sure how much the tangent into formalism helps in the
introduction. But if you must, things would be easier if you use common
notation that will allow more people to see that these are fairly standard
theoretical results that they have seen before. As far as I can tell,
𝐶2 is the additive genetic variance, which would typically be 𝐺 or 𝑉𝐴.
And 𝑠 = 1/(𝑉𝑃 + 𝑉𝑆), or roughly 1/𝑉𝑆 under weak stabilizing selection,
where 𝑉𝑆 is the width of a Gaussian fitness function and 𝑉𝑃 is the phenotypic
variance. Since 𝑠 has already been used to represent a selection coefficient,
why not gamma, which is often used in its place? Also, the basic prediction
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(exponential decline of the distance to the optimum, over time) is a far
older result than implied here (e.g., you can find it in Lande’s 1976
Evolution paper), though I agree that explicit population genetic models
of the phenomenon or more recent.
Author response: The paragraph beginning at line 68 has been rewritten without using for-
mulas. (Lande, 1976) is now cited.

7. L84: Here is a major question to motivate the paper and future work,
though it is sort of hiding at the end of a paragraph that is pages into
the introduction. A statement like this is something that could be highlighted
in the abstract and then the authors could also give the main punchlines
there (or at least what is currently known). The abstract does mention
that sweepstakes reproduction "may facilitate rapid adaptation", but it
would be nice to specifically see when it should. You could be more specific
about this in the abstract. What are the conditions under which it facilitates
adaptation? Are these conditions likely to occur, or do we currently
lack the key data that would allow us to know one way or the other?
Author response: The paragraph beginning at line 88 has been rewritten without giving the
main punchlines suggested by the reviewer. Our goal in the Introduction was to show how this
project was extended from classical population genetic models of genetic drift and selection
to sweepstakes and selection.

8. The paragraph beginning L 175 is a good example of text that will almost
certainly be inaccessible to most readers of Molecular Ecology. Equations
are fine but they must be unpacked and the biology must be explained in
reference to the model. There is little unpacking in this section (and
most that follow) which severely limits what readers will be able to take
from the paper.
Author response: We have revised § 2 and added clarifications to explain the biological mean-
ing of the equations. In particular, we have expanded on the explanation of Eq (1) and how
it relates to random sweepstakes, so the biological interpretation of Eq (1) and the parameter
𝛼 should now be clear.

9. L303-307. The wording is confusing here. I believe the point is as follows:
IF random sweepstakes reproduction were to facilitate rapid adaptation,
THEN we would need it to increase the number of beneficial mutations that
enter the population in order to offset the decline in fixation probability
that occurs per beneficial mutation under sweepstakes reproduction. Is
this the point or perhaps I have missed it? If this is the point, it’s
unclear if, when or why random sweepstakes would increase the input of
new beneficial variants into the population.
Author response: Yes, this part may have been unclear and we apologize for the confusion;
thank you for pointing this out. We are not saying that random sweepstakes are increasing
the input of beneficial variants, but we agree that it appears random sweepstakes reduce the
probability of fixation. However, our mixture model in Eq (4) of random sweepstakes may
moderate the reduction of the fixation probability (relative to Eq (3) alone). We have revised
the corresponding part between line 388 and line 398.
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10. As a way to conceptualize the issue, perhaps it would be worth clarifying
what exactly is a reasonable model for the rate of adaptation. Most of
the focus of the paper is on the sojourn time of a segregating beneficial
allele, conditional on its fixation. Sweepstakes reproduction can shorten
the fixation time, yet it also reduces the probability of fixation to
begin with. One could come up with a very different model for the rate
of adaptation that would presumably lead to the conclusion that sweepstakes
reproduction decreases the rate of adaptation. We could, for example,
model the rate of adaptation as the product of input of new beneficial
mutations, per generation, and fixation probability of each, as in many
models developed since the 1970s (i.e., “origin-fixation” models; McCandlish
and Stoltzfus 2014 Quarterly Rev Biol.). In the standard version of the
theory, and assuming 1/2𝑁 ≪ 𝑠 ≪ 1, where 𝑠 is the fitness benefit associated
with each beneficial allele an individual inherits, the mutation rate
per generation is 2𝑁𝑢 and the fixation probability is 2𝑠, making the
rate of adaptation 4𝑁𝑢𝑠. Assuming that 2𝑁𝑢 does not systematically differ
between Wright-Fisher and sweepstakes populations, then the main difference
would be the fixation probabilities in each type of population, and so
the sweepstakes population would adapt more slowly. I’m not arguing that
this type of model is the best model for the rate of adaptation (see,
for example, Gillespie’s take in "Why 𝑘 = 4𝑁𝑢𝑠 is silly"). Rather, I’m
simply trying to highlight the ambiguity in exactly how rates of adaptation
are and should be conceptualized. The authors should lay out a clear
case for how they measure the rate of adaptation, and why it is a reasonable
way to do so.
Author response: Thank you for the thoughts. We agree that the phrase ‘rate of adaptation’
is ambiguous as there are (at least) two quantities to consider as the reviewer points out,
the probability of fixation (𝑝𝑁 (1)) Eq (S10) and the time to fixation conditional on fixa-
tion (𝜏𝑁 (1)) Eq (S10). We suggest that considering 𝑝𝑁 (1) and 𝜏𝑁 (1) jointly would give
a more complete picture of the effect of random sweepstakes on positive selection, and by im-
plication on adaptation. In the Durrett-Schweinsberg model of recurrent sweeps(Durrett and
Schweinsberg, 2005a), the selective advantage 𝑠 ∈ (0, 1) of a new advantageous mutation is
independent of the population size, and the probability of fixation of the mutation is approxi-
mately 𝑠, so is not necessarily ≪ 1. Note also that here, as in the Durrett-Schweinsberg model,
we are concerned with one mutation at a time. As we state on line 59 the rate of response to
selection, or the rate of adaptation, is given by the inverse of the time to fixation given that
fixation occurs; in that sense with random sweepstakes on average reducing the conditional
expected time to fixation we come to the conclusion that random sweepstakes facilitates the
response to selection.

11. L327+: Here, where the first major results are presented, the language
is decidedly non-biological. Results are presented in terms of specific
parameter values without reminding readers what biological scenarios the
values correspond to (this is also true of the figure legends, which are
hard going). I believe 𝜀𝑁 = 0 corresponds to a scenario where sweepstakes
are absent, and if so, this is worth highlighting so that it is obvious
what the point of contrast is. If I have misinterpreted this basic result,

v



then all the more reason to help readers along. The same comments apply
to subsequent results and their associated figures, which again emphasize
parameters and mathematical notation rather than biological messages.

Author response: We have revised the presentation of the results to emphasize the biologi-
cal interpretation. Note that we clearly have to state under what conditions (i.e. parameter
values) the results are obtained; and the parameter values chosen should only be understood
as giving an example of the effect of random sweepstakes and recurrent bottlenecks on selec-
tion. In paragraph beginning at line 510 we summarize the simulation results for haploid
populations, and in the paragraph starting at line 556 for diploid populations.

12. L356: B has already been used to in the Brownian motion term in eq. (1)
Author response: We have moved this equation (now Eq (S3)) to Supplementary material at
the request of the editor to reduce the number of equations in the main text, and now use 𝑊𝑡

to denote Brownian motion.

13. L497: "fix certain important problems" Like what exactly? It is not
obvious from the paper how problematic standard models are. This is not
simply an issue of noting that models make simplifying assumptions. You
would also have to make a clear argument for why their assumptions are
problematic in a way that the new sweepstakes models are not. It would
also have to be clear how much of a difference it makes and that most
species are likely to have attributes that make the standard models (whatever
they are) inappropriate for describing their evolution.
Author response: As we explain in point # 2 and line 595, the ‘standard theory’, understood as
representing either the Wright-Fisher model and the Kingman coalescent, or the Schweinsberg
model(Schweinsberg, 2003) and the Beta(2−𝛼, 𝛼)-coalescent, does not explain the population
genomic data of Atlantic cod at all, see (Árnason et al., 2022). However, we agree that the
phrase ‘certain problems’ is unclear. The problems we are referring to relate to the assumption
of the Schweinsberg model(Schweinsberg, 2003) of unbounded fecundity, and the coalescent
timescale of the Schweinsberg model; these problems are discussed at line 243 and line 246.
We have now revised the text at line 629 and explicitly refer to the two problems mentioned.
In this context we are not concerned with ‘most species’ but with highly fecund populations as
stated in the Abstract and on line 90. However, U-shaped site-frequency spectra as predicted
by multiple-merger coalescents are observed across domains of life(Freund et al., 2022), as we
now state on line 654.

14. L502: Yes, but fixation probabilities also decline, so can you really
conclude that sweepstakes facilitate rapid adaptation? Increased failure
to adapt is another outcome of sweepstakes.
Author response: see our response to Comment #10.

15. L506+: showing that your model is consistent with genomic data does not
seem to prove that sweepstakes reproduction is the cause of rapid adaptation.
Or maybe I am missing some step in the chain of logic.
Author response: We are not saying that sweepstakes reproduction causes adaptation, but that
sweepstakes reproduction, in this case involving strong positive selection, facilitates adapta-
tion since a new beneficial mutation sweeps to fixation in log(𝑁) time, on average, given
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that it fixes. Here one may understand the Durrett-Schweinsberg model of recurrent sweeps as
approximating sweepstakes reproduction even though it does not explicitly incorporate high
fecundity (understood as excess reproductive capacity in the absence of selection). Clearly the
occurrence of beneficial mutations that with a probability that is independent of the popula-
tion size sweep to fixation in log(𝑁) time (the Durrett-Schweinsberg model) is what drives
rapid adaptation. We have clarified the text at line 643.

Response to Reviewer # 2

1. The authors highlight, in a simulation-augmented review, recent as well
as ongoing work on modelling and combining sources of sweepstake reproduc-
tion, via high fecundity-high mortality scenarios (type-III survivorship)
with or without selection acting as well as as via so-called selection
sweepstakes, where positive selection acts on a faster timescale than
non-selective neutral evolution. I find the topics picked interesting
for a broad audience, both for applied and more theoretical geneticists,
and each aspect is generally described well. However, the review would
read better with a framework at the end of the introduction explaining
the structure and purpose of the following sections, and I object to presenting
unpublished results in detail in Section 2. I will explain these points
in detail below.
Author response: We have added an outline of the paper at line 156. We have removed
references to the unpublished work of Chetwyn-Diggle et al, and of Dahmer and Eldon.

2. As I see it, Section 2 introduces the models of random sweepstakes later
used to assess the interplay between selection and random sweepstakes
(two corrections to Schweinsberg’s reproduction model whose genealogies
are approximated by a Beta coalescent to make this reproduction model
more biologically realistic). Then, the authors use these models to assess
the impact of random sweepstakes on the allele trajectories under positive
selection, including scenarios with additional bottlenecks and looking
at diploid variants of said models, in Section 3. This is followed up
by Section 4, which, somewhat unlinked to the sections before, presents
selective sweep- stakes, the corresponding coalescent model and a review
of the results of a recent preprint [Arnason et al 2022] finding strong
evidence that selective sweepstakes shape the genetic diversity in Atlantic
cod. The purpose of each section does only become clear after thorough
reading, which in my opinion makes understanding the paper unnecessarily
complex. I’d suggest that the authors add a roadmap for the following
sections, so saying something like ”We want to assess how positive, monogenic
selection works when acting on a population undergoing random sweepstake
repro- duction. In Sect. 2, we introduce the models of random sweepstakes
we want to use for this. Section 3 then reviews previous studies going
into that direction and assesses positive selection under various scenarios
of random sweepstake reproduction. We follow this up by a further section
presenting a model of selective sweepstakes, where selection alone is
responsible for sweepstake reproduction”. Additionally, Section 3 would
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in my opinion benefit from adding further sub- sections or paragraphs
with headlines that include each scenario. Finally, as indicated in my
roadmap draft, the authors should clarify that their main results will
look at (essentially) monogenic selection.
Author response: Thank you for suggesting a roadmap; we have added one at line 156. In it
we state that selection is taken as acting at a single site. We have added subsection titles to
§ 3.

3. I fully agree that the adjustment to Schweinsberg’s model are reasonable
and I do look forward to the mathematical analysis and derivation of the
coa- lescent limits announced for the two upcoming papers (Dahmer and
Eldon, Chetwyn-Diggle, Eldon and Etheridge). Both the formulation of
these mod- els as well as the reasons behind these adjustments are well-placed
within this review and should clearly remain. However, I strongly object
to explic- itly present results from these upcoming papers (the mentioned
coalescent limits) without them being available as a preprint or manuscript.
Unless the actual results can be scrutinized by the readers, they should
not be ex- plicitly stated. I welcome mentioning the two planned papers
in the text, though, but without stating the results.
Author response: We agree and have removed references to the two papers, they are now
referred to as “planned future work” (e.g. line 278).

4. Line 43: The term ’rapid selection’ or ’rapid adaptation’ is also used
in the context of selection models yielding Bolthausen-Sznitman coalescent
genealogies. One or two sentences highlighting similarities and differences
to your definition including 1-2 links to the literature (or appropriate
review paper) would be appreciated
Author response: We believe the reviewer is referring to (Desai et al., 2013; Neher and Hal-
latschek, 2013) whose ideas for the effect of selection in a haploid population are made rig-
orous in (Schweinsberg, 2017). In this context we would also like to mention (Etheridge and
Penington, 2022) who work with diploid populations where selection acts on pairs of gene
copies (genotypes) rather than directly on gene copies (allelic types) as in haploid populations,
and obtain the Kingman-coalescent. We briefly refer to these papers at line 573, describe the
selection models as accumulations of positive mutations, and then say how our models are
different in focusing on one mutation at a time.

5. Line 63: please add assumptions on LD between loci for these results
Author response: Done at line 73

6. Line 114: Rather say that a signif. proportion of all survivors comes
from these winners?
Author response: Done!

7. Line 151: The double bracket “))” should be avoided
Author response: fixed! The text has been moved to Supporting Information.

8. L 151: Say ”Correspondingly, when looking at genealogies backwards in
time,”? Author response: Done! at line 212
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9. L183: This is a bit technical, can you rephrase with less details in
words? e.g. ”Given N large enough, if each (haploid) individual has
on average more than 1 offspring, the model essentially ensures that there
will be enough juveniles to sample from”?
Author response: Done! at line 193

10. L 209: I’d emphasise further that this indeed is specific to Schweinsberg’s
model - other approaches, e.g. via modified Moran models as in [4] (used
in [3]), may lead to less problematic scalings (𝑁𝛼 ). Not saying at all
that these models are better, just that this issue is somewhat model-specific.
Author response: Is indeed! Done at line 283

11. L 272++: In this and the next paragraph, in my opinion you should also
discuss (Der et al., 2011).
Author response: the nice work of (Der et al., 2011) is now briefly mentioned at line 347 on
line 366; note that the main text has a limit on total number of words (8000 we believe); in
addition, we are asked to aim our discussion towards a broad audience, and the work of (Der
et al., 2011) is quite technical. However the reviewer is right that the approach of (Der et al.,
2011) might be applicable; in § S1 we briefly discuss the framework of Der et al. (2011)

12. L 289: Only for 𝛾 close to 0 the same issues than for Schweinsberg’s
model w. 𝛼 close to 1 should appear. This is in my opinion not necessarily
the case.
Author response: when identifying limiting generators one simply applies the appropriate
timescaling to identify a limit, however that may require applying an unrealistic timescale,
and one would want to work with a model where particular parameter values or timescalings
do not cause problems.

13. L 294: Please elaborate a bit, e.g. recite/summarise one essential or
representing result from (Eldon and Stephan, 2018)
Author response: we have added further clarifications at line 371

14. L 326: Note here that the simulations are based on your own code and
point to your code availability section
Author response: Done at line 418

15. L 355 : Is the viability weight again 𝑒𝑠 ? In any case, state/repeat
it here
Author response: yes, and done at line 438; at line 440 we do state that how weights are
assigned has already been described

16. L 446 : Make a bit of a segue here, e.g. that also selection alone may
cause sweepstakes, to be modelled by specific multiple merger coalescents,
which you will now describe. I would also again point to the Bolthausen-Sznitman
coalescent as another model to capture a different kind of selective sweepstakes,
more akin to clonal interference resp. pooling of many positively selected
mutations. Quick mentioning of the model and its biological basis, telling
that you don’t focus on it and a pointer to the literature (or to your
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introduction if you referenced there) is sufficient.
Author response: Done at line 573;

17. L 506 : typo, should be ”selective”
Author response: Nice catch! Fixed at line 643

18. L 511 : Which new models?
Author response: clarified at line 648

19. Fig 1-8: Please provide a colour legend/description
Author response: Now clarified at line 418; for each panel the trajectories shown are obtained
under identical conditions; in some panels the trajectories crisscross and using the same color
and line type for all of them might make it hard to distinguish between them

Response to Reviewer # 3

1. Overall, the manuscript is well written, and mostly well explained, and
is of interest for this special issue of Mol Ecol. The authors present
convincing theoretical evidence for the potential importance of sweepstake
reproduction to fasten adaptation. My main comments before the publication
of the manuscript can be recommended are as follows: 1) the readability
of the manuscript can be improved to target a biological audience (at
times reorder some parts of the arguments), and 2) an in depth description
of some results regarding analysis of cod data should be included if these
are essential in part 4. Please find below the detailed suggestions as
they come.
Author response: We have revised the manuscript with biologists in mind; the cod manuscript
(Árnason et al., 2022) became available on bioRxiv on June 16, 2022 (https: // doi. org/
10. 1101/ 2022. 05. 29. 493887 ) and we refer the interested reader to it

2. 1) In my opinion the authors overstate in the abstract the significance
of their work on fitting selective sweeps to cod data because as far as
I can see the manuscript Arnsasson et al. 2022 is not yet published or
even available on BioRxiv? (see abstract lines 12-14 and part 4). If
this paper provides key novel evidence, it should be 1) available for
readers, and 2) I would suggest the authors to give more details on the
results. For example, what genome size of cod, how many genomes were
sequenced, which type of sweep detection was done, how many sweeps are
found, what are the size of the sweep regions, how was the demographic
history inferred,... Without such details we have to accept the conclusions
of the authors on this important question. Such details could be given
as a box focusing on cod data analysis for example. Similarly, the papers
Dahmer and Eldon and Chetwyn-Diggle et al. are also not available nor
published. If some results are important, these should be explicitly
written and the papers available. For these three unpublished studies,
the authors should tone down the claims in this review as these results
cannot be assessed by the readers. If the results are unpublished, they
should be remove from the reference list.
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Author response: see our response to Comment #1; unfortunately the doi for the manuscript
does not show up in the reference list, however bioRxiv does have a search engine, and we
claim any internet search engine worth its salt would have found the cod manuscript as it
became available on bioRxiv on June 16, 2022; we now provide a brief overview of the analy-
sis and the results ; unfortunately the Dahmer & Eldon and the Chetwyn-Diggle et al papers
are not yet available so we have removed them from the reference list, and refer to them as
“planned future publications”

3. 2) Section 2: the argument and description are not easy to follow for
a biological readership. I would suggest to move the lines 175-187 at
the beginning of part 2 to give first some intuition on the reproduction
mechanism, and then move to diffusion and coalescent description. Line
183: it would be nice to give a biological intuition to this property
from the Schweinsberg 2003 model. Lines 206-208: Does this mean that
the model is unrealistic in its fundamental description or incomplete
to explain diversity in natural populations?
Author response: we have rearranged § 2 as suggested, there is also an additional clarification
at line 98; the relevant property of the Schweinsberg model is now explained at line 193; in
particular, we claim that not allowing for small families only (alpha > 2) as we do in Eq (4)
leads to Eq (2) with the exponent 1/(alpha - 1) which makes the original Schweinsberg model
incomplete in describing genetic variation

4. 3) Part 3: I may have missed the biological explanation of the definition
of sudden random bottlenecks. If I understand correctly, the bottleneck
lasts one generation, but can happen at any generation? How do we measure
the strength and severity of bottleneck which are the important parameters
defining genetic drift, if the time (length) of population reduction is
a stochastic process? If I understand correctly, every simulation/trajectory
shown does not exhibit the same bottleneck model, which would make difficult
to compare between trajectories and likely adds some variance in the process?
Would it not be easier to have a fixed time and severity of the bottleneck
for all simulations?
Author response: A bottleneck can happen in any generation. At the start of a generation
we toss a coin with probability 𝑏 of a bottleneck, and if a bottleneck happens we sample a
fixed number 𝐵 of individuals to survive the bottleneck and produce juveniles, so for fixed
values of 𝑏 and 𝐵 the fixation trajectories experience the same intensity and severity of a
bottleneck effect and so are fully comparable. In our framework your idea of a fixed time for
a bottleneck would correspond to changing the carrying capacity denoted by 𝑁 , and we have
elected to keep 𝑁 fixed. In a way our model corresponds to (Eldon and Wakeley, 2006) which
can be seen as a model of randomly occurring bottlenecks with immediate recovery; in our
framework how quickly a population recovers from a bottlenck depends on the reproduction
parameters 𝛼 and the upper bound 𝑢(𝑁). We have added an exaplanation at line 448

5. A key question in part 3 is to understand what is the Ne.s selection coefficient?
Can the authors give a formulae or provide some intuition (scaling difference
between census size and Ne)? They give the value of s which is very high,
but do not provide Ne.s though this is the relevant factor (as stated

xi



in the introduction lines 54-55). It is thus difficult to compare these
results to a Wright-Fisher model with selection as the definition of Ne
under the beta-coalescent is not trivial.
Author response: We claim (to be verified in a planned future publication) that the effective
size 𝑁𝑒 (the coalescent timescale) of our mixture model in Eq (4) is of order O(𝑁) where we
take 𝑁 as the population size, so 𝑁𝑒𝑠 would be ≫ 100 or more than sufficient for detection
of sweeps as stated on line 66; however, note that keeping the cutoff at 𝑁 and taking 𝛼 > 2
the model behaves like a Wright-Fisher model (in allowing only small families with high
probability) without changing the effective size, so 𝑁𝑒𝑠 would then be comparable between
models with and without random sweepstakes; in addition, we compute viability weights for
the juveniles based on 𝑠, not 𝑁𝑒𝑠 (see at line 403 and Eq (S11) in § S3)

6. At the end of this part, it would be nice to get ideas how these new results
on dominance and/or bottlenecks are important / relevant for studying
genome data in different species?
Author response: We have added a brief discussion at line 485

7. 4) Part 4: Besides my criticism in point 1 above regarding the results
in Arnasson et al., I am confused by the arguments invoked here that selective
sweeps explain patterns of diversity in the cod data. Do the authors
mean selective sweeps in addition to a neutral sweepstake reproduction,
or selective sweeps under a neutral Kingman coalescent model?
Author response: Selective sweepstakes is understood here as the mechanism invoked in (Williams,
1975) to describe the evolution of highly fecund populations; the idea is that in every gen-
eration individuals in a highly fecund population produce a huge number of juveniles and
thereby introduce lots of new variation into the population through recombination and muta-
tion, some of this new variation will be highly fit and survive to reproductive stage. In a way
this is a form of fluctuating selection, where regularly new variants become the fittest types.
To our knowledge there is no rigorous mathematical formulation of selective sweepstakes.
However, one may view the Durrett-Schweinsberg model of recurrent sweeps of a new muta-
tion each time arising in a population evolving according to the classical Moran model as a
first approximation of selective sweepstakes, where new variants regularly sweep through the
population evolving according to the Wright-Fisher (or the Moran) model. High fecundity in
the sense of excess reproductive capacity in the absence of selection, as formulated for example
in Eq (1) or Eq (4), is not incorporated into the Durrett-Schweinsberg model. Thus, the
resulting coalescent derived from the Durrett-Schweinsberg model is the Kingman-coalescent
“interrupted” by multiple mergers due to selective sweeps. Thus, what one would like to do
is deriving a coalescent from a population model explicitly incorporating high fecundity and
random sweepstakes as formulated in Eq (4) (or something similar) and experiencing recur-
rent positive mutations as in the Durrett-Schweinsberg model. Thus the resulting coalescent
from such a model might be a mixture of Xi-coalescents (simultaneous multiple merger coa-
lescents) due to random sweepstakes and due to sweeps. This is discussed in (Árnason et al.,
2022) and we refer the interested reader to it.

8. Do the authors mean that selection is pervasive in the genome?
Author response: Yes, the analysis of the Atlantic cod data strongly indicates that positive
selection is pervasive in the genome(Árnason et al., 2022).
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9. Is it possible to disentangle between selection under sweepstake and selection
under the Kingman model with complex demography?
Author response: Short answer: we don’t know. Long answer: This is a key question mo-
tivating further investigation of models of random and selective sweepstakes; in (Árnason
et al., 2022) there is extensive analysis of neutral Kingman-coalescent with complex demog-
raphy, but we simply don’t have the coalescent models to rigorously investigate this question.
Deriving these models is a hard mathematical task.

10. Are these patterns robust to variation in recombination in the genome
or even variation in mutation rate along the genome? If I understand
correctly, would the authors expect that the genome-wide SFS in cod genomes
is U-shaped because there are many (how many?) selective sweeps in the
genome, and each has a limited amount of LD around it (is recombination
is very high)? Or could one expect that few selective sweeps are sufficient
if there is low recombination, as recombination efficiency should be decreased
under the high fecundity model? Some pointer to key statistics, expectations
versus observations in data would be great here.
Author response: These questions are addressed in (Árnason et al., 2022); the U-shaped SFS
is consistently observed across the genome, and across coding, non-coding regions etc. The
Durrett-Schweinsberg model necessarily assumes high recombination, and linkage disequilib-
rium statistics do indicate that there is high recombination in Atlantic cod. We argue that
the pervasive U-shaped site-frequency spectra are due to many sweeps in the genome; it is
difficult to give a precise estimate of the number of sweeps since the multiple-merger coalescent
we fit to the data (Eq (S6)) has only one composite parameter for the strength of selection,
the mutation rate, and the recombination rate(Durrett and Schweinsberg, 2005a). However,
it appears that sweeps are pervasive in the genome and occur frequently relative to the coales-
cent timescale. On page 17 in (Árnason et al., 2022) there is discussion about the number of
sweeps. There it is argued that each sweep, due to high recombination, may only affect a few
percent of a chromosome, and each chromosome may be affected by a sweep every 23-50 years
(recall that each sweep takes only log(𝑁) generations on average to complete).

11. 5) The final comment regards lines 513-514 on framing analyses of sweepstake
signatures in the genomic context and widen the scope of applicability
beyond cod data. Maybe mentioning several species where sweepstake occur
could help to point to directions of species with high/low recombination
and pathogens/parasites or other organisms than cod, some examples were
proposed in Tellier and Lemaire 2014, while the Menardo et al. 2020,
and Jensen papers on viruses do not deal with species undergoing recombination.
Along those lines, maybe the part 4 /conclusion could speculate on the
distribution of selective sweeps along the genome if we are in a random
sweepstake, or selective sweeps. My guess is that selective sweeps will
occur preferentially in coding regions (or affecting regulatory regions),
while random sweepstakes could occur anywhere in the genome especially
in non-coding regions for species with large genome (and large proportions
of non-coding DNA). Would this be a good expectation? Can one use the
SFS of coding versus non-coding (or synonymous versus non-synonymous sites)
to disentangle these hypotheses? Furthermore it seems essential to test
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variation in recombination along the genome and correlation with LD of
sweeps / signatures of random sweepstake. Could the authors provide some
recommendations for testing the theory: number of samples, methods to
be used, which species and expectations are expected (to extend the early
predictions of Tellier and Lemaire 2014?). This can be also done as a
Box for example.
Author response: Random sweepstakes do affect the whole genome. Figure 5 on page 23 in
(Árnason et al., 2022) shows estimates of the parameter of the Durrett-Schweinsberg coales-
cent for introns, exons, etc, and there is a clear difference in the estimates depending on which
parts of the data are analyzed; however we recall that it is a composite parameter. As we
don’t have a model of recurrent selective sweeps in a background of random sweepstakes it is
difficult for us to make any predictions. Providing recommendations for how to test the theory
appears outside the scope of our work; there are a number of methods available for comparing
complicated models (e.g. ABC-based methods or for example the diCal2 package if one has
phased data, and a recent SMC- and neural networks-based approach on bioRxiv https:
// www. biorxiv. org/ content/ 10. 1101/ 2022. 09. 28. 508873v1 ) The analysis in
(Árnason et al., 2022) is extensive so one option might be to check the approach there. At line
103 we do list some highly fecund species that are candidates for sweepstakes reproduction.
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Sweepstakes reproduction facilitates rapid
adaptation in highly fecund populations

Bjarki Eldon1

Wolfgang Stephan2

Running title: Sweepstakes reproduction facilitates adaptation

Abstract 1

Adaptation enables natural populations to survive in a changing environment. 2

Understanding the mechanics of adaptation is therefore crucial for learning about the 3

evolution and ecology of natural populations, and for better conservation and man- 4

agement of natural resources such as fish stocks. In this review we focus on the impact 5

of random sweepstakes on selection in highly fecund haploid and diploid populations 6

partitioned into two genetic types, with one type conferring selective advantage. For 7

the diploid populations we incorporate various dominance mechanisms. Furthermore, 8

we assume that the populations may experience recurrent bottlenecks. In random 9

sweepstakes the distribution of individual recruitment success is highly skewed, re- 10

sulting in a huge variance in the number of offspring contributed by the individuals 11

present in any given generation. Using extensive computer simulations, we investi- 12

gate the joint effects of random sweepstakes, recurrent bottlenecks, and dominance 13

mechanisms on selection. In our framework, bottlenecks allow random sweepstakes to 14

have an effect on the time to fixation, and in diploid populations the effect of random 15

sweepstakes depends on the dominance mechanism. We also analyze selective sweep- 16

stakes which are well approximated by recurrent selective sweeps of strongly beneficial 17
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allelic types arising by mutation. We demonstrate that both types of sweepstakes re- 18

production may facilitate rapid adaptation (as defined based on the average time to 19

fixation of a type conferring selective advantage conditioned on fixation of the type). 20

However, whether random sweepstakes cause rapid adaptation depends also on their 21

interactions with environmental factors (such as bottlenecks) and genetic mechanisms 22

(e.g. dominance mechanisms). Finally, we review a case study in which a model of 23

recurrent selective sweeps is shown to essentially explain population genomic data 24

of the highly fecund Atlantic cod, with implications for studying the evolution and 25

ecology of highly fecund populations across domains of life. 26

Keywords : adaptation, high fecundity, recruitment dynamics, offspring number distri- 27

bution, sweepstakes reproduction, natural selection 28

1 Introduction 29

Many instances from the natural world show that evolutionary adaptation may occur quite 30

rapidly. Well-known examples of rapid adaptation in response to environmental changes 31

include color variation in guppies (Reznick, 2011), field mice (Vignieri et al., 2010) and 32

peppered moth (Cook et al., 2012), insecticide resistance in Drosophila (Daborn et al., 33

2002), beak size changes in Darwin’s finches(Grant and Grant, 2020), and limb develop- 34

ment in Anolis lizards (Losos, 2009). The genetic architecture underlying these phenotypic 35

traits ranges from a few genes of major effect as in the peppered moth (van’t Hof et al., 36

2011) to highly polygenic systems of very small effects at individual sites such as human 37

height (Turchin et al., 2012), although the effects of polygenic adaptation on human height 38

appear to be overestimated (Berg et al., 2019; Sohail et al., 2019). 39
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Mirroring this wide range of genetic architectures the evolutionary genetic models that 40

have been proposed describe adaptation at a single locus (or very few loci) to polygenic 41

adaptation involving numerous sites. Best known are the models for single loci. Clearly, 42

very strong positive directional selection at a single locus may explain fast adaptation, 43

such as in the case of peppered moth (Haldane, 1924). Haldane’s deterministic model has 44

been extended in several directions to make it suitable for data analysis. The extension 45

proposed by (Maynard Smith and Haigh, 1974) for studying genetic hitchhiking (selective 46

sweeps) is most valuable. 47

On the other hand, polygenic adaptation caused by a large number of weakly selected 48

loci of small effects is not nearly as well studied as the case of strong positive selection 49

leading to selective sweeps (Stephan, 2019). Interest of population geneticists in this type 50

of selection was only very recently evoked by (Pritchard et al., 2010) and (Pritchard and 51

Di Rienzo, 2010). These authors predicted that – in contrast to selective sweeps – allele 52

frequencies may change by small amounts when a large number of genetic loci of minor 53

effect sizes govern a phenotypic trait, but it was unclear whether such polygenic selection 54

can explain rapid adaptation defined as follows. 55

How do we quantify ‘rapid adaptation’? To define rapid adaptation, we assume that 56

a population is at equilibrium when a sudden change of the fitness optimum occurs (e.g. 57

due to a sudden shift in the environment) such that the optimum is placed to another 58

value. If a trait is controlled by a single gene, the rate of response to selection may be 59

quantified by the inverse of the time to fixation of a selected type given that it will go 60

to fixation. For a diploid random-mating population of size 𝑁 (assuming no dominance) 61

evolving according to the Wright-Fisher model, the mean time to fixation (conditional on 62
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fixation), taking 𝑠 > 0 as the selective advantage of the genotype homozygous for the 63

beneficial type relative to the homozygous wild type, is approximately 4 ln(2𝑁𝑠)/𝑠 if 2𝑁𝑠 64

is sufficiently large (van Herwaarden and van der Wal, 2002). For rapid adaptation to 65

occur 2𝑁𝑠 must be at least 100 (i.e. of about the same order of magnitude as necessary 66

for the detection of hard selective sweeps; (Stephan, 2019)). 67

In the case of polygenic evolution rapid adaptation may be defined in a similar way. 68

In this case the response of a phenotypic trait to selection may be quantified by the rate 69

at which the population mean of the trait reaches the new fitness optimum after a sudden 70

environmental shift. Using deterministic population genetic models of polygenic adapta- 71

tion that have been analyzed in the past ten years (in particular, the deterministic model 72

of (de Vladar and Barton, 2014), this rate can be calculated (assuming linkage equilib- 73

rium). Jain and Stephan (2015, 2017a,b) and Stephan (2016) developed formulas for the 74

case when the effect sizes of the alleles at most loci are large relative to a scaled muta- 75

tion rate such that directional selection at each of those loci is very strong, and for the 76

opposite parameter range in which most loci involved have small effects and hence exert 77

weak selection. While the first case is closely related to monogenic adaptation discussed 78

above (Jain and Stephan, 2017b), in the second case the new optimum is approached ex- 79

ponentially (already derived by Lande (1976)), if the shift of the optimum is not too large 80

relative to the equilibrium genetic variance. Importantly, if the effect sizes of the loci are 81

exponentially distributed, the equilibrium variance is proportional to the number of loci 82

(with small effects) governing the trait. Thus, if the number of loci is sufficiently large, 83

rapid adaptation through polygenic selection may occur. Yet, in populations of finite size 84

(in particular bottlenecks) simulations based on the classical Wright-Fisher model suggest 85
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that genetic drift slows down the speed of polygenic adaptation to some extent(John and 86

Stephan, 2020). 87

Here we extend a population genetic model of adaptation with Wright-Fisher drift to 88

models of genetic reproduction that strongly deviate from the standard model of genetic 89

drift. In particular, we consider the impact of random sweepstakes on adaptation in highly 90

fecund populations. In random sweepstakes the distribution of individual recruitment 91

success is assumed to be highly skewed. In contrast to the Wright-Fisher model, this 92

results in a huge variance in individual recruitment success (the number of offspring). We 93

investigate here in which way and to what extent this type of genetic drift affects polygenic 94

adaptation. 95

Natural highly fecund populations are diverse and widely found(Eldon, 2020). By 96

‘high fecundity’ we refer to the ability of organisms to produce numbers of juveniles (po- 97

tential offspring) at least on the order of the census population size. The evolution of a 98

population over one generation is seen as each individual (or pair of individuals in diploid 99

populations) independently producing a random number of juveniles according to a given 100

model (i.e. probability distribution, see e.g. Eq (4) or Eq (1)); from the total pool of juve- 101

niles a given number of them is sampled (uniformly at random and without replacement) 102

to form a new set of reproducing individuals. These include broadcast spawners such as 103

the Antarctic limpet (N. concinna), Atlantic cod, Japanese sardines, crop-infesting fungi, 104

and corals (Agrios, 2010; Árnason, 2004; Árnason and Halldórsdóttir, 2015; Barfield et al., 105

2022; Niwa et al., 2016; Vendrami et al., 2021). Even viruses may be classified as being 106

highly fecund (Irwin et al., 2016; Timm and Yin, 2012). Broadcast spawners produce huge 107

numbers of juveniles to counter the high mortality among them (i.e. Type III survivorship). 108
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A central question regarding highly fecund populations is if the recruitment dynamics, or 109

the distribution of individual recruitment success (the offspring number distribution) may 110

be characterized by ‘sweepstakes reproduction’, or a highly skewed offspring number distri- 111

bution. In this context it is important to understand how sweepstakes reproduction comes 112

about. The Wright-Fisher model may be viewed as a model of high fecundity, where every 113

individual produces a huge number of potential offspring (e.g. gametes), or at least an 114

order of magnitude larger than the population size (see e.g. (Der et al., 2011)). Then, as- 115

suming the population size is much smaller than the number of juveniles produced by each 116

individual, sampling juveniles uniformly and without replacement to form a new genera- 117

tion of individuals is well approximated by the surviving offspring sampling a parent with 118

replacement, the sampling mechanism of the Wright-Fisher model. This mechanism does 119

not lead to sweepstakes reproduction, since the number of surviving offspring from any 120

given individual will be negligible relative to a large total population size. High fecundity 121

cannot on its own produce sweepstakes reproduction. The key ingredient for sweepstakes 122

reproduction is a mechanism that turns high fecundity into a skewed offspring number 123

distribution, or a skewed individual recruitment success. An important open question in 124

evolution and ecology is to infer sweepstakes reproduction in highly fecund populations, 125

and to identify the actual mechanism of sweepstakes reproduction given evidence of it. 126

Since broadcast spawners characterized by Type III survivorship are highly fecund, 127

it is plausible that the reproductive output among broadcast spawning individuals may 128

be skewed, in the sense that occasionally, at any given time, a significant proportion of 129

surviving offspring come from a few parents. The skew in reproductive output generated 130

in this way without involving selection has been named ‘sweepstakes reproduction’, and 131
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has been claimed to ‘play a major role in shaping marine biodiversity’(Hedgecock, 1994; 132

Hedgecock and Pudovkin, 2011). We will refer to this type of sweepstakes reproduction 133

in a highly fecund population as ‘random sweepstakes’(Árnason et al., 2022). Broadcast 134

spawning and Type III survivorship combine to generate the possibility for a few lucky 135

individuals to produce a significant number of surviving juveniles through chance matching 136

of reproduction with favorable environmental conditions, thus being a mechanism turning 137

high fecundity into sweepstakes reproduction. 138

Sweepstakes reproduction may also be generated through natural selection. In this 139

mechanism juveniles produced at any given time are seen as having to pass through inde- 140

pendent selective filters during development from earliest juvenile stage to reproductive 141

age, with the result that the genetic constitution of the surviving juveniles is, on average, 142

different from that of non-surviving juveniles(Williams, 1975). New recombined genotypes 143

are continuously generated and carried to high frequency in a population chasing an ever- 144

changing optimum. We will refer to this type of sweepstakes reproduction as ‘selective 145

sweepstakes’, in which natural selection acts as the mechanism turning high fecundity into 146

sweepstakes reproduction(Árnason et al., 2022). 147

Recruitment dynamics of natural populations, in particular the distribution of individ- 148

ual recruitment success, are central to the mechanisms shaping genetic diversity. Improved 149

understanding of recruitment dynamics is therefore required for illuminating the ecology, 150

population connectivity, local adaptation, and resilience of natural populations, for better 151

conservation and management of fish stocks, and for much needed further development of 152

population and evolutionary genetic theory(Botsford et al., 2001; Cowen and Sponaugle, 153

2009; Eldon, 2020; Fu and Li, 1999; Gagnaire et al., 2015; Grant et al., 2016; Selkoe et al., 154
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2016; Wakeley, 2004). 155

Here we use simulations to investigate how random sweepstakes and recurrent bottle- 156

necks (in a highly fecund population) affects positive selection when acting at a single 157

site. In § 2 population models of random sweepstakes are introduced. In § 3 the simu- 158

lation results are presented and discussed. A case study of population genomic data of 159

Atlantic cod(Árnason et al., 2022), which found a good fit of the data to a population 160

model of recurrent sweeps(Durrett and Schweinsberg, 2005a), seen as approximating se- 161

lective sweepstakes, is reviewed in § 4. A brief conclusion listing the main results from 162

the simulations and important remaining follow-up projects is presented in § 5. In Sup- 163

porting Information we give a brief summary of the mathematical formulation of random 164

sweepstakes, and some further examples of the effect of random sweepstakes, recurrent 165

bottlenecks, and dominance mechanisms on selection. 166

2 Modeling random sweepstakes 167

A natural model of random sweepstakes describes the probability distribution of the 168

random number of juveniles, or potential offspring, contributed by each individual (see 169

Eq (1)) in any given generation. From the pool of juveniles a given number is sampled 170

without replacement to form a new set of reproducing individuals(Schweinsberg, 2003). 171

The probability distribution for the random number of juveniles produced by a given 172

individual in the Schweinsberg (2003) model is given by 173

lim
𝑥→∞

𝐶𝑥𝛼P (𝑋1 ≥ 𝑥) = 1 (1)
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where 𝐶 > 0 is a constant of proportionality (i.e. ensuring that the limit in Eq (1) is one) 174

and 𝛼 > 0 is a constant determining the skewness of the distribution (Schweinsberg, 175

2003). The formulation in Eq (1) should be understood as specifying how the probability 176

of producing at least 𝑥 juveniles behaves for very large 𝑥 (at least on the order of the pop- 177

ulation size). In a population evolving according to Eq (1) most individuals will produce 178

few (relative to the population size) number of juveniles and so a few surviving offspring; 179

occasionally however a single individual (the probability of two or more individuals each 180

producing a large number of juveniles will be negligible in a large population) will produce 181

a large (relative to the population size) number of juveniles and so a significant number 182

of surviving offspring (illustrated in Figure 1b; in Figure 1a we illustrate for comparison 183

the evolution of a haploid population over one generation according to the Wright-Fisher 184

model). The model described in Eq (1) therefore corresponds well to random sweepstakes 185

occurring in a broadcast spawner evolving according to Type III survivorship; individuals 186

must have the capacity to produce huge numbers of juveniles to counter the high mortality 187

among the juveniles, and once in a while a lucky individual matches reproduction with 188

favorable environmental conditions so a significant fraction of the lucky individual’s juve- 189

niles survive. How often such large families occur, and how large they will be, depends 190

on the value of 𝛼 in Eq (1) or (3) determining the skewness of the probability distribution 191

for the number of juveniles produced by any given individual; the smaller 𝛼 is the higher 192

the chance of producing many juveniles. From the total pool of juveniles, assuming there 193

are enough of them (at least 𝑁 of them in a haploid population of size 𝑁), which is almost 194

guaranteed in a large population provided each individual produces more than one juve- 195

nile on average(Schweinsberg, 2003), we then sample 𝑁 juveniles uniformly at random 196

9



and without replacement to form a new set of reproducing individuals. The parameter 𝛼 197

in Eq (1) is the quantity determining how quickly the probability of producing at least 𝑥 198

juveniles decays as 𝑥 increases. In the case 0 < 𝛼 < 2 large families occur often enough and 199

are large enough to affect the evolution of the population. That means that the ancestral 200

process (the process tracking the random ancestral relations of sampled gene copies) is in 201

the domain of attraction of a particular example of a multiple-merger coalescent (which, 202

in contrast to the Kingman-coalescent, admits mergers of at least three ancestral lineages) 203

generally referred to as the Beta(2 − 𝛼, 𝛼)-coalescent(Schweinsberg, 2003). 204

Population genetic models incorporating random sweepstakes are in fundamental ways 205

different from the classical Wright-Fisher model. For example, the frequency process of 206

a genetic type segregating in a population evolving according to random sweepstakes is 207

in the domain of attraction of a jump diffusion where the process, in addition to evolving 208

according to the well known Wright-Fisher diffusion, admits discontinuous jumps(Birkner 209

and Blath, 2009). The jumps correspond to the occurrence of large families involving a 210

number of copies of the type being tracked (a brief overview of the mathematical formula- 211

tion is given in § S1). Correspondingly, when looking at genealogies of samples, models of 212

random sweepstakes are in the domain of attraction of multiple-merger coalescent models 213

(a coalescent is a probabilistic description of the random ancestral relations of a sample 214

of gene copies from an arbitrarily large hypothetical population evolving according to a 215

given model)(Berestycki, 2009; Eldon and Wakeley, 2006; Huillet and Möhle, 2011, 2013; 216

Möhle, 2011; Pitman, 1999; Sagitov, 1999; Sargsyan and Wakeley, 2008; Schweinsberg, 217

2003), where a random number of ancestral lineages of a sample of gene copies merges 218

at any given time(Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 219
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2000). Coalescent theory provides a framework for the development of powerful inference 220

methods(Wakeley, 2007). Multiple-merger coalescent processes predict patterns of popu- 221

lation genetic data that are different from predictions of the classical Wright-Fisher model 222

and similar models(Birkner et al., 2013b; Blath et al., 2016). To identify random sweep- 223

stakes in natural populations one can therefore apply coalescent-based inference to popu- 224

lation genetic data(Birkner and Blath, 2008; Birkner et al., 2011, 2013c; Eldon, 2011, 2016; 225

Eldon et al., 2015; Freund and Siri-Jégousse, 2021; Koskela, 2018; Koskela and Berenguer, 226

2019). In contrast to multiple merger coalescents, the gene genealogy of a sample from a 227

population evolving according to the Wright-Fisher model, or similar model (where ‘simi- 228

lar’ refers to certain conditions on the offspring number distribution(Möhle and Sagitov, 229

2001; Sagitov, 1999)) is described by the Kingman-coalescent, in which no more than two 230

ancestral lineages merge each time(Berestycki, 2009; Kingman, 1982a,b,c; Tajima, 1983). 231

Intuitively one would expect a multiple-merger coalescent to describe gene genealogies 232

under random sweepstakes, since whenever a large family occurs, it will involve a number 233

of the ancestral lineages with non-negligible probability in a large population. Correspond- 234

ingly, looking forward in time, a number of copies of the genetic type being tracked will 235

be involved in the large family event, leading to a jump in the type frequency process. Fig- 236

ure 1 records a simple illustration of the difference between the Wright-Fisher model and 237

random sweepstakes for haploid populations. The occational occurrence of a large family 238

as shown in Figure 1(b) can induce jumps in the frequency of the type being tracked. Our 239

aim is to investigate, given that a population evolves according to random sweepstakes, 240

how does that affect the fate of advantageous mutations, and by implication adaptation 241

(Figure 2). 242
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Even though the model in Eq (1) seems natural, it has two main drawbacks. One is that 243

individuals are assumed to be able to produce arbitrarily many juveniles. Although some 244

organisms are extremely fecund, the assumption of unbounded fecundity is unrealistic. 245

The second assumption involves the scaling of time used to pass to continuous-time limit 246

process as population size tends to infinity In passing to a coalescent limit (in probability 247

theory this means convergence in a certain sense, in our case in terms of finite-dimensional 248

distributions), one scales time with a quantity usually denoted 𝑐𝑁 , which is the probability 249

that two distinct gene copies sampled at the same time derive from the same parental copy 250

in the previous generation. For a haploid population of size 𝑁 evolving according to the 251

Wright-Fisher model, 𝑐𝑁 = 1/𝑁 (so that 𝑁 generations correspond to one coalescent time 252

unit). In the random sweepstakes model given in Eq (1) with 1 < 𝛼 < 2, we have 𝑐𝑁 ∝ 253

𝑁1−𝛼. This means that, for estimates of 𝛼 close to one (e.g. (Árnason and Halldórsdóttir, 254

2015)), an unrealistically high population size is required to recover the observed genetic 255

variation(Eldon, 2020). To see this, we consider the expected number of segregating sites 256

(see Eq (S12) in § S5) of a sample of size 𝑛 of a non-recombining contiguous chromosome 257

segment of length 𝐿, E[𝐵(𝑛)] denotes the expected tree size (i.e. the expected size of the 258

random gene genealogy connecting the 𝑛 sampled gene copies under a given population 259

model) with time measured in coalescent time units, and 𝜇 the per site per generation 260

mutation rate. We can safely take E [𝐵(𝑛)] = O(1), and then we obtain (see § S5), 261

assuming we observe 𝑚 segregating sites, 262

𝑁 ≈
(
1
𝜇

𝑚

𝐿

) 1
𝛼−1

. (2)

Assuming around one percent of sites are segregating, i.e. 𝑚/𝐿 ≈ 0.01, and 𝜇 of order 263
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O(10−8) as for Pacific cod(Canino et al., 2010), we see that for estimates of 𝛼 close to one 264

it would be difficult to recover the observed amount of genetic variation without requiring 265

an unrealistically large population size. 266

To address the assumption of the Schweinsberg (2003) model regarding unbounded 267

fecundity, one can apply an upper bound on the number of juveniles produced by an 268

individual(Eldon and Stephan, 2018). Suppose 𝑋1 denotes the random number of juve- 269

niles produced by a given individual, consider the mass function (i.e. the probability of 270

producing 𝑥 juveniles) 271

P (𝑋1 = 𝑥) = 1{1≤𝑥≤𝑢(𝑁)}
(
1
𝑥𝛼

− 1
(1 + 𝑥)𝛼

)
(1 + 𝑢(𝑁))𝛼

(1 + 𝑢(𝑁))𝛼 − 1
, (3)

where 𝑢(𝑁) is an increasing positive function of 𝑁 and representing an upper bound on 272

the number of juveniles a given individual can produce. The parameter 𝛼 > 0 determines 273

how the probability of producing 𝑥 juveniles decreases with increasing 𝑥. The smaller 𝛼 274

is the higher the probability of producing many juveniles, and 1{𝐴} := 1 if 𝐴 holds, and 275

zero otherwise. The model in Eq (3) is a variant of the model in Eq (1). The behaviour 276

of the model with respect to varying 𝛼 and 𝑢(𝑁) is being rigorously investigated for a 277

planned future publication. The model in Eq (3), or some variant of it, in addition to 278

modeling random sweepstakes (as 𝛼 decreases the probability of producing many juveniles 279

increases) can also serve as a natural, realistic, and a mathematically tractable alternative 280

to the Wright-Fisher model (as 𝛼 increases the probability of producing many juveniles 281

decreases). 282

In order to address the second drawback of the Schweinsberg (2003) model regard- 283

ing the scaling of time we consider a simple variant of the model in Eq (3). A similar 284
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approach is also adopted in (Eldon and Wakeley, 2006; Huillet and Möhle, 2013), where 285

convergence to coalescents are obtained with less problematic scalings of time. Suppose 286

with probability 𝜀𝑁 all current 𝑁 individuals produce juveniles according to Eq (3) with 287

with 𝛼 ‘small’, or an increased probability of producing many juveniles, with probability 288

1 − 𝜀𝑁 we take 𝛼 ‘large’ (representing a decreased probability of producing many juve- 289

niles); in both cases we suppose the cutoff 𝑢(𝑁) is proportional to the population size as 290

population size 𝑁 increases, e.g. taking 𝑢(𝑁) = 𝐾𝑁 for some finite constant 𝐾 > 0. The 291

advantages of this approach are twofold. One is that in this model ordinary reproduction 292

(in which each individual produces a small number, relative to the population size, of ju- 293

veniles with high probability) occurs most of the time. Occasionally (i.e. with probability 294

𝜀𝑁), however, reproduction matches favorable environmental conditions, each individual 295

produces juveniles according to Eq (3) with smaller 𝛼, or with an increased probability of 296

producing many juveniles. In this way random sweepstakes can be modelled to be strong 297

enough to impact the evolution of the population without being the overwhelming force. 298

We also claim that the second advantage of the mixture model regards the scaling of time 299

(recall Eq (2)) required to pass to a coalescent limit (this is also being investigated in a 300

planned future work). Now we describe the mixture model we use for the simulations. 301

Let 𝐿 (𝛼, 𝑢(𝑁)) denote the law (probability distribution) of the number of juveniles with 302

mass function as in Eq (3), and take 𝛼1 ∈ (0, 2) and 𝛼2 ≥ 2 as fixed. The quantity 𝛼1 303

represents an increased probability of producing many juveniles, and 𝛼2 a decreased prob- 304

ability of doing so. Assuming the cutoff 𝑢(𝑁) is at most of order 𝑁 , i.e. we assume the 305

fecundity is high enough to impact the evolution of the population, but not necessarily an 306

unbounded fecundity, we will write the mixture-model as , where 𝑋1, . . . , 𝑋𝑁 denote the 307
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random number of juveniles produced by the current 𝑁 individuals, 308

𝑋1, . . . , 𝑋𝑁 ∼


𝐿 (𝛼2, 𝑢(𝑁)) with probability 1 − 𝜀𝑁

𝐿 (𝛼1, 𝑢(𝑁)) with probability 𝜀𝑁

(4)

i.e. the 𝑋1, . . . , 𝑋𝑁 are independent and identically distributed as specified in Eq (4). The 309

meaning of Eq (4) is as just described, that with probability 1−𝜀𝑁 the number of juveniles 310

is distributed according to Eq (3) with 𝛼 = 𝛼2 (a decreased probability of producing many 311

juveniles) , and with probability 𝜀𝑁 we take 𝛼 = 𝛼1 (i.e. reproduction matches favorable 312

environmental conditions and every individual produces juveniles with an increased prob- 313

ability of producing many juveniles). Similarly one can keep 𝛼 fixed between one and 314

two and randomize the cutoff 𝑢(𝑁); however we will restrict ourselves to the model in 315

Eq (4). The model in Eq (4) is a natural way of formulating random sweepstakes in a 316

broadcast spawner; most of the time individuals produce a small (relative to the popula- 317

tion size) number of juveniles (𝛼 = 𝛼2 ≥ 2); occasionally (with probability 𝜀𝑁) favorable 318

environmental conditions match reproduction so that there is a higher chance of produc- 319

ing a larger number of juveniles (𝛼 = 𝛼1 ∈ (0, 2)). Models corresponding to Eq (4) 320

for diploid (or polyploid) populations would necessarily involve simultaneous multiple- 321

merger coalescent processes where at least two distinct groups of ancestral lineages could 322

merge at a time(Birkner et al., 2013a, 2018; Blath et al., 2016; Koskela and Berenguer, 323

2019; Möhle and Sagitov, 2003; Sagitov, 2003; Schweinsberg, 2000). The Beta(2 − 𝛼, 𝛼)- 324

coalescent based on the original population model of random sweepstakes (see Eq (1); 325

Schweinsberg (2003)) for both haploid and diploid (Birkner et al., 2018) populations has 326

been implemented in the state-of-the-art simulation package msprime(Baumdicker et al., 327
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2021). 328

3 The impact of random sweepstakes on selection 329

The impact of selection on the evolution of a population can be measured in at least 330

two ways. One is with the probability of fixation, denoted 𝑝𝑁 (𝑦) (see Eq (S10) in § S2 in 331

Supporting Information), of the beneficial type (the type conferring a selective advantage) 332

from a given number 𝑦 of copies of the type, and another is with the time to fixation 333

conditional on fixation of the beneficial type denoted 𝜏𝑁 (𝑦) (see § S2). The quantity 334

𝑝𝑁 (1) is the probability of fixation of the beneficial type when starting from one copy of 335

the type, and 𝜏𝑁 (1) is the expected time to fixation of the beneficial type conditional on 336

fixation the type and starting with one copy of the beneficial type. We are interested in 337

investigating the effect of random sweepstakes on 𝑝𝑁 (1) and 𝜏𝑁 (1) under a simple model 338

of viability selection. The fixation probability can inform about adaptation, including 339

the occurrence of resistance to antibiotics, and about loss of genetic variation(Patwa and 340

Wahl, 2008). The expected time 𝜏𝑁 (1) is well defined since we consider a finite population, 341

so that the boundaries (0, 𝑁) will be reached in finite time almost surely. The expected 342

time can inform about the rate of adaptation given that it will occur. 343

As we have discussed (§ 2), models of random sweepstakes admit jumps in the genetic 344

type frequency. This means that classical diffusion techniques (Feller, 1951; Kimura, 1957) 345

are not applicable. Nevertheless, some mathematical results have been obtained on the 346

impact of random sweepstakes on selection(Der et al., 2012, 2011; Foucart, 2013). One 347

way to approach this problem might be to identify the limiting generators (as population 348

size tends to infinity) of the forward-in-time process and then work with the generators as 349
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done by Der et al. (2011) who introduce generalized Wright-Fisher models (see § S1). Con- 350

sider the following simple model of random sweepstakes. Suppose a population evolves 351

according to a discrete-time Moran model (i.e. one randomly picked individual produces 352

offspring, and an equivalent amount of individuals perish to keep the population size con- 353

stant). The distribution of the random number of offspring (𝑉) produced by the parent 354

at any given time is 355

P (𝑉 = 𝑣) = 1{𝑣=1} (1 − 𝜀𝑁 ) + 1{𝑣=⌊𝜓𝑁⌋}𝜀𝑁 . (5)

In Eq (5) (as in Eq (4)) 𝜀𝑁 can be understood as the probability of matching reproduc- 356

tion with favorable environmental conditions, and when that happens the parent produces 357

⌊𝜓𝑁⌋ surviving offspring. Each time as many individuals as produced perish to keep the 358

population size 𝑁 constant, and 0 < 𝜓, 𝜀𝑁 < 1(Eldon and Wakeley, 2006). Viewing time 359

in units of O(𝑁𝛾) generations for some 𝛾 ∈ (0, 2], it can be shown that the model is in 360

the domain of attraction of a Λ-coalescent , indeed for 𝛾 = 2 the limiting coalescent is a 361

mixture of the Kingman-coalescent and a multiple-merger coalescent (Eldon and Wakeley, 362

2006). The model in Eq (5) is unrealistic in assuming that exactly the same fraction (𝜓) 363

of the population is replaced in each sweepstakes event, but it is among the simplest mod- 364

els of random sweepstakes, and its simplicity does facilitate some mathematical results 365

to be obtained(Der et al., 2012; Eldon and Freund, 2018; Matuszewski et al., 2018). In 366

particular, fixation probabilities under selection are studied for generalized Wright-Fisher 367

processes(Der et al., 2011). Assuming random sweepstakes according to Eq (5) in a frame- 368

work involving selection, conditions on the strength of selection can be identified under 369

which fixation of the fitter of two genetic types is assured(Der et al., 2012). The results 370

17



on assured fixation are limit results as population size 𝑁 → ∞(Der et al., 2012). The 371

results of a simulation study of the effect of random sweepstakes on selection in a finite 372

haploid population, based on the model in Eq (3) and not on the mixture model in Eq (4), 373

indicate that fixation is anything but given in a finite population evolving according to 374

random sweepstakes , i.e. the fixation probability is clearly decreased as 𝛼 tends to one, 375

the distribution of the number of juveniles is highly skewed, and individuals are allowed 376

to produce numbers of juveniles an order of magnitude larger than the population size 377

(Eldon and Stephan, 2018). 378

3.1 Haploid populations 379

Assuming a haploid population of constant size 𝑁 evolving by random sweepstakes ac- 380

cording to Eq (3) under a simple model of viability selection, simulation results indicate 381

that both 𝑝𝑁 (1) and 𝜏𝑁 (1) are much smaller under random sweepstakes than under ordi- 382

nary (i.e. individuals produce small number, relative to the population size, of juveniles 383

with high probability) reproduction(Eldon and Stephan, 2018). That is, the chance of fix- 384

ation is significantly smaller under random sweepstakes, and the expected time to fixation 385

when fixation happens is shorter under random sweepstakes. One must view these results 386

in the context of the expected number of beneficial mutations in the whole population 387

over a period of time. The mixture model in Eq (4) may moderate the reduction in the 388

probability of fixation due to random sweepstakes relative to Eq (3), the model in (Eldon 389

and Stephan, 2018). Thus, if the number of beneficial variants that occur in the population 390

before the most recent common ancestor of the whole population is reached is sufficiently 391

large that a somewhat smaller chance of fixation of any one of them due to random sweep- 392
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stakes will not significantly alter their overall effect, then one would expect that random 393

sweepstakes would affect the evolution of the population when new beneficial mutations 394

arise. Figure 2(b) records a simple illustration of the effect of random sweepstakes on 395

selection through the fixation of an advantageous type (for comparison Figure 2(a) illus- 396

trates fixation in a haploid population evolving according to the Wright-Fisher model). 397

398

To investigate the impact of random sweepstakes acting through Eq (4) on selection 399

we model selection as follows. Suppose a haploid population of constant size 𝑁 evolves 400

in discrete generations. In every generation all 𝑁 current individuals independently con- 401

tribute juveniles according to Eq (4). The population is partitioned into two genetic types, 402

one conferring viability weight one, and the other viability weight 𝑒−𝑠. Throughout we 403

start with the fitter type in one copy. Juveniles inherit the type of the parent, we exclude 404

mutation. Given a pool of 𝑆𝑁 juveniles we sample independent exponentials each with the 405

rate of the viability weight of a given juvenile. That is, if there are 𝑆𝑦 juveniles with viability 406

weight one, and 𝑆𝑁−𝑦 juveniles (𝑆𝑦 + 𝑆𝑁−𝑦 = 𝑆𝑁) with viability weight 𝑒−𝑠, we sample 𝑆𝑦 in- 407

dependent exponentials with rate one each, and 𝑆𝑁−𝑦 independent exponentials with rate 408

𝑒−𝑠. The 𝑁 juveniles with the smallest exponentials survive to form the next generation 409

of reproducing individuals. This is a way to let selection influence the viability of each 410

juvenile, and has been applied in a previous investigation on the effects of random sweep- 411

stakes on selection(Eldon and Stephan, 2018). In the present work we model random 412

sweepstakes based on Eq (4), whereas earlier (Eldon and Stephan, 2018) we kept both 413

𝛼 and the cutoff 𝑢(𝑁) fixed. In Figures 3– 4 (see also Figures S1– S5 in Supplementary 414

Information) we show examples of excursions to fixation for several scenarios. We do not 415
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aim for precise estimates of 𝜏𝑁 (1) or 𝑝𝑁 (1) (Eq (S10)), but rather to see main trends in 416

how random sweepstakes modeled through Eq (4) affect 𝜏𝑁 (1) and 𝑝𝑁 (1). In the Figures 417

the scale of the abscissa (horizontal axis) may vary between subplots. In each panel the 418

colours and line types are only meant to distinguish between the trajectories; for any given 419

panel the trajectories shown were all obtained under identical conditions. The C++ code 420

written for the simulations is freely available on github (see § 6.1). 421

The size of natural populations changes in time, in particular there may be randomly 422

occurring bottlenecks (sharp reduction in population size). For example, bottlenecks have 423

been suggested to be an important factor in the evolution of resistance of pathogenic 424

bacteria to antibiotics (Mahrt et al., 2021). We model bottlenecks as follows. Suppose 425

there is a fixed upper bound on the population size, i.e. the total number of individuals in 426

the population cannot be more than some fixed number 𝑁 . We can think of this number 427

as the carrying capacity of the environment. In any given generation a bottleneck occurs 428

with a fixed probability. Should a bottleneck occur we sample a fixed number (denoted 429

𝑁𝑏) of individuals uniformly at random that will survive the bottleneck (the remaining 430

individuals, the ones not surviving the bottleneck, are discarded). We then check if any 431

of the surviving individuals contain the beneficial type; if not we stop since the beneficial 432

type is then lost from the population. On the other hand, if the beneficial type is fixed 433

among the surviving individuals we stop and record a fixation of the type. If the beneficial 434

type is present among the surviving individuals but has not fixed, the surviving individuals 435

produce juveniles according to the given model (Eq (4)). If the total number of juveniles is 436

less than 𝑁 all the juveniles are assumed to survive, in this way we allow the population to 437

recover from the bottleneck. Otherwise we assign a viability weight (weight one to the fit 438
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type and weight 𝑒−𝑠 to the wild type for haploid populations; for diploid populations see 439

Eq (S11)) to each juvenile and sample 𝑁 of them as described above. Write 𝐵 for the event 440

a bottleneck occurs in a given generation, 𝐵𝑐 the event a bottleneck does not occur in a 441

given generation , and define 1{𝐵} := 1 if 𝐵 occurs, and zero otherwise. Denoting 𝑁𝑡 the 442

population size at time 𝑡, we take 𝑁𝑡+1 = min(𝑆𝑀 , 𝑁), where 𝑆𝑀 denotes the total number of 443

juveniles produced by 𝑀 = 1{𝐵}𝑁𝑏 + 1{𝐵𝑐}𝑁𝑡 individuals. Thus, viability selection comes 444

into effect only when the total number of juveniles exceeds 𝑁 . This way of modeling 445

bottlenecks is somewhat similar to the model in Eq (5) (see (Eldon and Wakeley, 2006)). 446

The model in Eq (5) can be seen as a model of an instantaneous bottleneck followed by 447

immediate recovery of the population. A bottleneck can happen in any generation. At the 448

start of a generation we toss a coin with probability 𝑏 of a bottleneck, and if a bottleneck 449

happens we sample a fixed number 𝐵 of individuals to survive the bottleneck and produce 450

juveniles. Thus, our model corresponds to the model in Eq (5) (Eldon and Wakeley, 451

2006) which can be seen as a model of randomly occurring bottlenecks with immediate 452

recovery; in our framework how quickly a population recovers from a bottlenck depends 453

on the reproduction parameters 𝛼 and the upper bound 𝑢(𝑁) on the number of juveniles 454

an individual (or a parent pair in diploid populations) can produce (see Eq 3). 455

In Figure 3 we investigate the effects of randomly occurring bottlenecks on the evo- 456

lution of a haploid population evolving according to Eq (4). To recall the mechanism 457

described in Eq (4), individuals produce a small number (relative to the population size) 458

of juveniles most of the time (with probability 1 − 𝜀𝑁) but with a chance (represented by 459

𝜀𝑁), when reproduction matches favorable conditions, of producing an increased number 460

of juveniles, with carrying capacity 𝑁 = 106, 𝛼1 = 0.75 (representing an increased proba- 461
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bility of producing many juveniles according to Eq (3)), 𝛼2 = 3 (representing a decreased 462

probability of producing many juveniles), cutoff 𝑢(𝑁) = 𝑁 (each individual can produce 463

at most 𝑢(𝑁) juveniles), and selection strength 𝑠 = 0.5 throughout. The parameters that 464

vary as shown in Figure 3 are 𝜀𝑁 (the probability of matching reproduction with favorable 465

environmental conditions, so that individuals have a higher chance of producing many ju- 466

veniles, i.e. 𝛼 = 𝛼1 in Eq (3)), bottleneck size 𝐵 (the number of individuals surviving a 467

bottleneck), and 𝑏 the probability of a bottleneck in a given generation. Bottlenecks 468

clearly affect the probability of fixation; the top row shows the excursions to fixation for 469

102 experiments, but the remaining panels all show excursions for 103 experiments except 470

for panel (j), where there are over 16000 experiments. We emphasize that we are interested 471

in uncovering broad trends in how random sweepstakes and bottlenecks affect selection, 472

and we are not aiming for precise estimates of 𝜏𝑁 (1) and 𝑝𝑁 (1) (Eq (S10)). Figure 3 shows 473

that if bottlenecks on average occur frequently (high probability of a bottleneck) the prob- 474

ability of fixation of the advantageous type (𝑝𝑁 (1), Eq (S10)) is reduced. We claim a lower 475

𝑝𝑁 (1) would be expected from a high frequency of bottlenecks, since then a bottleneck 476

will occur with high probability while the beneficial type is still in low frequency (we always 477

start with the beneficial type in one copy), and so there is a good chance of losing the 478

type through a bottleneck. Furthermore, if bottlenecks occur frequently but are not too 479

severe the time to fixation is increased if the random sweepstakes are not too severe (top 480

two rows); if random sweepstakes occur with high probability (𝜀𝑁 = 0.1, bottom two rows) 481

they clearly cancel out the effect of bottlenecks on the time to fixation. We estimate that 482

strong random sweepstakes as given by the scenario in Figure 3(g-l) reduce the probability 483

of fixation roughly tenfold compared to the case of weak sweepstakes Figure 3(a-f). 484
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The fixation trajectory (or a part of it) of a beneficial type in a haploid population has 485

been described with a logistic differential equation (LDE; (Kaplan et al., 1989; Stephan 486

et al., 1992); see Eq (S13) in § S6). See (Schweinsberg and Durrett, 2005) for another 487

approach to describe fixation trajectories. Figure S1 in § S2 gives examples of trajectories 488

well approximated by a LDE even in the presence of (moderated with 𝑢(𝑁) = 𝑁) random 489

sweepstakes (Figure S1b). Frequent recurrent bottlenecks (Figure 3d–f, j–l) clearly cause 490

significant deviations from the logistic curve; even less frequently occurring bottlenecks 491

(Figure 3a–c,g–i) generate notable deviations from the LDE. The trajectory a given muta- 492

tion travels towards fixation may inform about the shape of the site-frequency spectrum of 493

a sample. There is pervasive U-shape of the site-frequency spectrum in genomic data from 494

Atlantic cod(Árnason et al., 2022), and the mutations at observed segregating sites may 495

represent mutations traveling along a fixation trajectory on their way to fixation. The tra- 496

jectories of a completely dominant fit type (the heterozygote is as fit as the homozygote for 497

the fit type, see Eq (S11) in § S3) are characterized by an extended time with the fit type at 498

high frequency (Fig 4). This type of a trajectory indicates that mutations that we pick up 499

in a sample showing a U-shaped site-frequency spectrum may either be mutations under 500

positive selection traveling on this kind of a trajectory, or other mutations hitchhiking with 501

a positive mutation; this may explain the excess (relative to predictions of the Kingman- 502

coalescent) of mutations in high frequency in the right tail of a U-shaped site-frequency 503

spectrum. Forward-in-time simulations (using SLiM(Haller and Messer, 2016)) of strongly 504

beneficial dominant or semi-dominant positive mutations arising in a population evolving 505

according to the Wright-Fisher model yielded site-frequency spectrum matching quite well 506

the observed spectra from Atlantic cod(Árnason et al., 2022). Taken together, we believe 507
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that these results show that knowledge of the shape of fixation trajectories may inform 508

about the footprint of selection in data. 509

To summarize the simulation results for haploid populations and focusing on the time 510

to fixation (𝜏𝑁 (1) in Eq S9) frequently occurring bottlenecks increase 𝜏𝑁 (1) relative to in- 511

frequently occurring bottlenecks when random sweepstakes occur infrequently (Figure 3a- 512

f). Increasing the frequency of random sweepstakes (Figure 3g-l) counteracts the effect 513

of bottlenecks on 𝜏𝑁 (1). In the absence of bottlenecks random sweepstakes as modelled 514

in Eq (4) with a bound on the number of juveniles have little effect on 𝜏𝑁 (1) (Figure S1). 515

In the complete absence of random sweepstakes (Figure S2), increasing the frequency of 516

bottlenecks (Figure S2d-f) increases 𝜏𝑁 (1), however this depends on the severity of the 517

bottleneck. Bottlenecks thus allow random sweepstakes to have an effect on 𝜏𝑁 (1). The 518

upper bound (𝑢(𝑁) in Eq (3)) for the number of juveniles produced by any individual 519

remains fixed at the carrying capacity. This means that when a bottleneck occurs the pop- 520

ulation size becomes smaller than the cutoff, thus increasing the chance for individuals 521

to produce a large number of juveniles relative to the population size. This is consistent 522

with previous simulation results for haploid populations of fixed size, where it was seen 523

that taking the cutoff larger than the population size shortened 𝜏𝑁 (1) (Eldon and Stephan, 524

2018). 525

3.2 Diploid populations 526

In addition to haploid populations we consider the effect of random sweepstakes and ran- 527

domly occurring bottlenecks on selection in diploid populations. To this end we consider 528

a diploid population of maximum size 2𝑁 diploid individuals (the carrying capacity). In 529
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any given generation the current diploid individuals arbitrarily form pairs, and the pairs 530

then independently produce juveniles according to Eq (4). The juveniles are assigned gene 531

copies following Mendel’s laws, i.e. each diploid juvenile receives one gene copy from each 532

diploid parent. The genotype of each given juvenile then determines the viability weight 533

as described in Eq S11 in § S3. We then proceed as previously described for haploid 534

populations. Diploidy gives us an opportunity to investigate the joint effects of dominance 535

mechanisms, random sweepstakes, and randomly occurring bottlenecks on 𝑝𝑁 (1) and 536

𝜏𝑁 (1) (Eq (S10)). We will consider complete dominance and incomplete dominance of 537

the fit type as well as the case with the fit type being recessive (see Eq (S12) in § S3). In 538

all cases the optimal genotype is the homozygous 1/1 type. In the complete dominance 539

case it makes sense to consider 1/1 as the optimal type, since heterozygotes contain the 0 540

type, so while there are heterozygotes in the population there is always a chance of a 0/0 541

type. 542

In Fig 4 we compare the effects of random sweepstakes and randomly occurring bot- 543

tlenecks on 𝑝𝑁 (1) and 𝜏𝑁 (1) defined in Eq (S10) in the case of complete dominance of 544

the beneficial type (Eq (S12)). Random sweepstakes (𝜀𝑁 = 0.1, bottom two rows) reduce 545

𝑝𝑁 (1) (Eq (S10)) only slightly. The effect of random sweepstakes on 𝜏𝑁 (1) is particularly 546

noticeable in the case of a ‘weak’ bottleneck (bottleneck size 104, right column). The case 547

of the beneficial type showing incomplete dominance as defined in Eq (S12) is investigated 548

in §S3.2, see Figure S4. 549

In the case of the beneficial type being recessive (Figure S5 in § S3.3) without ran- 550

dom sweepstakes (𝜀𝑁 = 0 in Eq (4)), the time to fixation is longer if the bottlenecks 551

are weak (more individuals surviving a bottleneck) (Figure S5b,d). The main effect of 552
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random sweepstakes is to shorten 𝜏𝑁 (1), while bottlenecks tend to increase 𝜏𝑁 (1). Fur- 553

thermore, there is a clear qualitative difference in the excursions to fixation depending on 554

the dominance mechanism (Figures S3– S5). 555

To summarize the simulation results for diploid populations and focusing on 𝜏𝑁 (1), 556

the effect of random sweepstakes depends on the dominance mechanism. In the absence 557

of bottlenecks (Figure S3) random sweepstakes have negligible effect on 𝜏𝑁 (1) when the fit 558

type is incompletely dominant (Figure S3a,b), but clearly reduce 𝜏𝑁 (1) when the fit type is 559

either completely dominant (Figure S3c,d), or recessive (Figure S3e,f). When the fit type 560

is dominant (Figure 4), increasing the frequency of bottlenecks increases 𝜏𝑁 (1) in the ab- 561

sence of random sweepstakes (Figure 4a-d); introducing random sweepstakes (Figure 4e-h) 562

largely negates the effect of bottlenecks on 𝜏𝑁 (1). Introducing frequently occuring bottle- 563

necks to a population with an incompletely dominant fit type (Figure S4) increases 𝜏𝑁 (1) 564

in the absence of random sweepstakes (Figure S4c-d) relative to less frequently occur- 565

ing bottlenecks (Figure S4a-b); and again introducing random sweepstakes (Figure S4e-h) 566

largely nullifies the effect of bottlenecks on 𝜏𝑁 (1). Similarly one can compare the effects of 567

random sweepstakes and bottlenecks on 𝜏𝑁 (1) when the fit type is recessive (Figure S5). 568

As in the the case of haploid populations, bottlenecks allow random sweepstakes to have 569

an effect on 𝜏𝑁 (1) since the cutoff (𝑢(𝑁) in Eq (3)) remains fixed at the carrying capacity, 570

so is larger than the population size when a bottleneck occurs. 571

4 Selective sweepstakes 572

We have discussed the effect of random sweepstakes on selection. Now we turn our focus 573

on selection in the absence of random sweepstakes, and discuss possible footprint of se- 574
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lection in data. For example, models of selection in haploid populations, where positive 575

mutations have accumulated, and incorporating a form of clonal, or Hill-Robertson inter- 576

ference(Hill and Robertson, 1966), can lead to multiple-merger gene genealogies(Desai 577

et al., 2013; Neher and Hallatschek, 2013; Schweinsberg, 2017). In contrast, underdomi- 578

nance of the fit type in a diploid population with two types, where the heterozygote is less 579

fit than both homozygotes, results in the Kingman-coalescent describing the gene geneal- 580

ogy of a sample of the fit type(Etheridge and Penington, 2022). Here, we do not focus on 581

these models. We will be concerned with a model of selection that focuses on one selec- 582

tively advantageous mutation at a time corresponding to our simulations of the evolution 583

of a selectively advantageous type always starting in one copy. 584

Selective sweepstakes are a form of sweepstakes reproduction in which, in contrast to 585

random sweepstakes, natural selection plays a key role. In selective sweepstakes juveniles 586

are seen as having to pass through independent selective filters as they go through the 587

different developmental stages on their way to reproductive age(Williams, 1975). We are 588

not aware of a mathematical model precisely for selective sweepstakes. One may, however, 589

view selective sweepstakes as being well approximated by models of recurrent selective 590

sweeps(Coop and Ralph, 2012; Durrett and Schweinsberg, 2004, 2005b). 591

The Durrett-Schweinsberg model (Durrett and Schweinsberg, 2004, 2005b) of recurrent 592

selective sweeps (see Fig S6), each time from a new and strongly beneficial mutation, has 593

been shown to explain population genomic data of Atlantic cod(Árnason et al., 2022). 594

Furthermore, current models of random sweepstakes based on Eq (1) (Birkner et al., 595

2018; Schweinsberg, 2003), in addition to the Kingman coalescent incorporating complex 596

demography and background selection, do not explain the Atlantic cod data(Árnason 597
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et al., 2022). To better understand the importance of this result we now briefly describe 598

the Durrett-Schweinsberg model(Durrett and Schweinsberg, 2004, 2005b). Consider a 599

haploid population of constant size 2𝑁 evolving according to the continuous-time Moran 600

model, i.e. at exponentially distributed times a single individual contributes a single 601

offspring, and another individual is removed to keep the population size constant. A new 602

beneficial mutation occurs on a chromosome with rate proportional to 1/𝑁 , where with 603

probability 𝑆 > 0 (independent of 𝑁) the new mutation will sweep to fixation in log(𝑁) 604

time units on average. Viewing time in 𝑁 time units the gene genealogy of a neutral site on 605

a chromosome converges (as 𝑁 → ∞) to a coalescent, which is a mixture of the Kingman 606

coalescent and a multiple-merger coalescent (see Eq (S6)). 607

However, even though the Durrett-Schweinsberg model (see § S4) , essentially explains 608

the U-shape (Fig 5) of the site-frequency spectrum of Atlantic cod, there are certain lim- 609

itations to the model. It is essentially a haploid model, where selection acts directly on 610

individual chromosomes rather than pairs of chromosomes in diploid individuals. Fur- 611

thermore, in order to obtain a non-trivial coalescent (see Eq (S6) in § S1) , the advantage 612

of the beneficial mutation must be of order O(1) to lead to log(𝑁) as the order of the av- 613

erage time it takes to sweep to fixation. Viewing time on the scale of 𝑁 time units a sweep 614

then generates instantaneous (multiple) mergers in the genealogy. However, to avoid an 615

instantaneous merger of all the lineages, some lineages must be allowed to escape a sweep 616

through recombination. This is a key element of the model. The short duration (on av- 617

erage) relative to the coalescent timescale of a sweep means that one must assume very 618

high recombination rates in order to allow an escape during a sweep. Despite these limi- 619

tations, the exceptionally good fit of the Durrett-Schweinsberg model to the Atlantic cod 620
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data shows that models of recurrent and pervasive selective sweeps, and multiple-merger 621

coalescent models, are relevant for explaining genetic diversity in highly fecund natural 622

populations. Indeed, related models of incomplete sweeps also lead to multiple-merger 623

coalescents, with similar predictions of genetic diversity(Coop and Ralph, 2012). 624

5 Conclusion 625

We have discussed adaptation in natural populations with a focus on highly fecund pop- 626

ulations evolving according to sweepstakes reproduction. We have discussed two quite 627

different mechanisms that turn high fecundity into skewed individual recruitment success. 628

We have suggested new models of random sweepstakes that address the assumption of un- 629

bounded fecundity and the timescale issue and the related problem of recovering observed 630

amount of genetic variation discussed above. Finally, we have used simulations to identify 631

the main trends in how random sweepstakes affect fixation of a beneficial type under a 632

simple model of viability selection with randomly occurring bottlenecks. The main impact 633

of random sweepstakes is to reduce the time to fixation conditional on fixation (compared 634

to ordinary reproduction). This suggests that random sweepstakes facilitate rapid adapta- 635

tion. Yet, as in the case of polygenic selection mentioned in Introduction, our one-locus 636

model predicts that bottlenecks may increase the time to fixation (conditional on fixation) 637

and thus limit the speed of adaptation. 638

We give examples of fixation trajectories to understand how a mutation sweeps to fix- 639

ation, to try to understand how selection in diploid populations affects genetic diversity, 640

and to learn about likely dominance mechanisms of new mutations in natural popula- 641

tions(Nanjundiah, 1993; Orr, 2010). 642
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The fact that a model seen as approximating selective sweepstakes (see § 4) essentially 643

explains population genomic data of a highly fecund population indicates that sweepstakes 644

reproduction also facilitates rapid adaptation through selective sweepstakes. Under the 645

Durrett-Schweinsberg model a beneficial mutation sweeps to fixation with a probability of 646

order O(1) independent of the population size, and the duration of a sweep is (on average) 647

only of order log(𝑁) time units(Durrett and Schweinsberg, 2005b). The variants of the 648

Schweinsberg model(Schweinsberg, 2003) we study here, see Eq (3) and Eq (4), have yet to 649

be compared to data; they may be shown to give as good or even better fit than the Durrett- 650

Schweinsberg model. Extending these models of random and selective sweepstakes to the 651

genomic scale, i.e. to several chromosomes, remains an important future task, not least 652

since U-shaped site-frequency spectra as predicted by multiple-merger coalescents and not 653

by the Kingman-coalescent are observed across domains of life(Freund et al., 2022). A 654

rigorous mathematical verification of our simulation results is also an important follow- 655

up project. However, our answer to our main question is that sweepstakes reproduction 656

facilitates rapid adaptation where we have defined ‘rapid adaptation’ based on the time 657

to fixation of a beneficial type given that it does so. 658
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(a)
generation 𝑖 ◦ ◦ ◦ ◦ ◦ ◦

generation 𝑖 + 1 ◦

AA

◦

OO

◦

AA

◦

]]

◦

OO

◦

OO

(b)
generation 𝑗

many offspring• ◦ . . . ◦

generation 𝑗 + 1 • . . . •

OO

◦

OO

. . . ◦

OO

Figure 1: A simple illustration of the difference between the Wright-Fisher model (a) and
a model of random sweepstakes (b), with the arrows indicating the parent of the surviving
offspring. In (a) a haploid population evolves according to the Wright-Fisher model, where
each individual (gene copy) produces at most a small (relative to the population size)
number of surviving offspring; in (b) a single randomly picked individual contributes a
large (relative to the population size) number of surviving offspring (indicated with filled
circles), while all other individuals contribute the remaining number of offspring according
to the Wright-Fisher model.

659
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(a)

generation 0
one copy of fit type and 𝑁 − 1 copies of wild type• ◦ . . . ◦

· · ·

generation 𝑗
two copies of fit type and 𝑁 − 2 copies of wild type• • ◦ . . . ◦

· · ·

generation 𝑇𝑁
𝑁 copies of fit type• . . . •

(b)

generation 0
one copy of fit type and 𝑁 − 1 copies of wild type• ◦ . . . ◦

· · ·

generation 𝑖
𝑚 copies of fit type and 𝑁 − 𝑚 copies of wild type• . . . • ◦ . . . ◦

generation 𝑖 + 1
𝑚 + 𝑘 copies of fit type and 𝑁 − 𝑚 − 𝑘 copies of wild type• . . . • • . . . • ◦ . . . ◦

· · ·

generation 𝑇 ′
𝑁

𝑁 copies of fit type•. . .•

Figure 2: Random sweepstakes and fixation of an advantageous type starting in one copy.
In (a) the population is assumed to evolve according to the Wright-Fisher (or similar)
model, so that the number of copies of the fit type increases in small (relative to the
population size) amount between generations. In (b) the population evolves according to
random sweepstakes, and the number of copies of the fit type can increase by a signifi-
cant amount between generations when an individual carrying the fit type produces many
juveniles. On average, one would then expect, with 𝑇 ′

𝑁
denoting the time to fixation (con-

ditional on fixation) under random sweepstakes and 𝑇𝑁 under the Wright-Fisher model,
𝑇 ′
𝑁
< 𝑇𝑁 .
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𝜀𝑁 = 10−6, 𝐵 = 102, 𝑏 = 0.01 𝜀𝑁 = 10−6, 𝐵 = 103, 𝑏 = 0.01 𝜀𝑁 = 10−6, 𝐵 = 104, 𝑏 = 0.01
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Figure 3: Random sweepstakes and recurrent bottlenecks in a haploid population. The
caption is on the following page.
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The caption for Figure 3: Examples of excursions to fixation of a type conferring a 660

selective advantage in a haploid population of maximum size 𝑁 = 106 evolving accord- 661

ing to random sweepstakes as in Eq (4). The mechanism described in Eq (4) is that 662

occasionally, or with probability 𝜀𝑁 , reproduction matches favorable conditions so that 663

individuals have a higher chance of producing many juveniles. Most of the time however, 664

or with probability 1 − 𝜀𝑁 , individuals have a lower chance of producing many juveniles. 665

Here we take 𝛼1 = 0.75 representing increased probability of producing many juveniles, 666

𝛼2 = 3 representing decreased probability of producing many juveniles. Furthermore, we 667

take the cutoff 𝑢(𝑁) = 𝑁 (each individual can produce at most 𝑢(𝑁) juveniles), strength 668

of selection 𝑠 = 0.5 throughout, and with 𝜀𝑁 the probability of having a higher chance 669

of producing many juveniles (i.e. the probability of 𝛼 = 𝛼1), the number 𝐵 of individuals 670

surviving a bottleneck, and the probability 𝑏 a bottleneck occurs in any given generation 671

as shown. In any given generation the current individuals produce juveniles according 672

to Eq (3) with 𝛼 = 𝛼1 with probability 𝜀𝑁 , and with 𝛼 = 𝛼2 with probability 1 − 𝜀𝑁 , see 673

Eq (4). Results from 102 (a,b,c), 16394 (j), otherwise from 103 experiments. The scale of 674

the time (horizontal) axis may differ between the subplots. In each panel the trajectories, 675

shown as the frequency of the fit type as a function of time, were obtained under identical 676

conditions. 677
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Figure 4: Complete dominance and fixation trajectories. The caption is on the following
page.
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Caption for Figure 4: Examples of excursions to fixation of the genotype (1/1) homozy- 678

gous for the type at a single locus conferring selective advantage in a diploid population 679

evolving according to Eq (4). The mechanism described by Eq (4) is that occasionally 680

(with probability 𝜀𝑁) individuals have a higher chance of producing many juveniles, but 681

most of the time (with probability 1− 𝜀𝑁) individuals produce a small number (relative to 682

the population size) number of juveniles with high probability, and experiencing randomly 683

occurring bottlenecks, with carrying capacity 2𝑁 = 106, 𝛼1 = 0.75 representing a higher 684

chance of producing many juveniles, 𝛼2 = 3 representing a lower chance of producing 685

many juveniles, cutoff 𝑢(𝑁) = 2𝑁 meaning that each parent pair produces at most 𝑢(𝑁) 686

juveniles, strength of selection 𝑠 = 0.5 throughout, with 𝜀𝑁 , the number 𝐵 of individuals 687

surviving a bottleneck, and the probability 𝑏 of a bottleneck in any given generation as 688

shown. Here we consider the case of complete dominance of the beneficial type with the 689

heterozygote as fit as the homozygote for the fit type with weight one, and the homozygote 690

for the wild type least fit with weight 𝑒−4𝑠 (see Eq S10) in § S3. Results shown from 691

40 experiments (a, b, e) and otherwise from 102 experiments. The scale of the time 692

(horizontal) axis may differ between the subplots. In each panel the trajectories shown 693

were obtained under identical conditions. The excursions are shown as 𝑛2(𝑡)/𝑛(𝑡), where 694

𝑛2(𝑡) is the number of copies of the homozygous 1/1 type at time 𝑡, and 𝑛(𝑡) is the total 695

number of gene copies in the population at time 𝑡. 696
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Figure 5: Recurrent sweeps predict U-shaped site-frequency spectrum. Logits (i.e. log(𝑥) −
log(1 − 𝑥) for 0 < 𝑥 < 1) of the exact normalized expected branch length spectrum
as a function of the logits of allele frequency, where 𝑓 (𝑖; 𝑛) := E [𝐵𝑖 (𝑛)] /E [𝐵(𝑛)], the
normalized expected branch lengths supporting 𝑖 ∈ {1, . . . , 𝑛− 1} leaves corresponding to
the size of a derived mutation (the number of times a derived mutation is observed in the
sample), with sample size 𝑛 = 100 and the parameter C from Eq (S6), the multiple-merger
coalescent derived from the Durrett-Schweinsberg model of recurrent sweeps(Durrett and
Schweinsberg, 2005a) as shown. The abscissa corresponds to a derived allele frequency
(relative size of a mutation, logit scale), and the ordinate (vertical axis) corresponds to the
expected number of derived mutations of a given size relative to the expected number of
segregating sites (also on logit scale). The expected values were computed exactly using
recursions(Birkner et al., 2013b).
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S1 Mathematical formulation of random sweepstakes

We recall the formulation in Eq (S9). Consider a haploid (i.e. where an ‘individual’ corre-
sponds to a gene copy) population of constant size 𝑁 gene copies, and let 𝑋1, . . . , 𝑋𝑁 de-
note the independent and identically distributed random number of juveniles contributed
by the current 𝑁 individuals in any given generation. Let 𝛼 > 0 be a constant, and sup-
pose the distribution of the random number of juveniles produced by a given individual
behaves like

lim
𝑥→∞

𝐶𝑥𝛼P (𝑋1 ≥ 𝑥) = 1 (S1)

where 𝐶 > 0 is a constant of proportionality (i.e. ensuring that the limit in Eq (S9) is one)
(Schweinsberg, 2003). The formulation in Eq (S1) should be understood as specifying
how the probability of producing at least 𝑥 juveniles behaves for very large 𝑥 (at least on
the order of the population size).

In addition to randomizing on 𝛼 as in Eq (4), one can randomize on the cutoff 𝑢(𝑁)
(recall Eq (3)). Suppose 𝑢1(𝑁)/𝑁 ̸→ 0 (i.e. 𝑢1(𝑁) is at least of order 𝑁), and 𝑢2(𝑁)/𝑁 → 0

1



as 𝑁 tends to infinity. Suppose

𝑋1, . . . , 𝑋𝑁 ∼
{
𝐿 (𝛼, 𝑢2(𝑁)) with probability 1 − 𝜀𝑁

𝐿 (𝛼, 𝑢1(𝑁)) with probability 𝜀𝑁
(S2)

We claim (to be verified in a planned future publication) that scalings of 𝜀𝑁 can be identi-
fied so that gene genealogies of a sample from a population evolving according to Eq (S2)
can be described by non-trivial coalescents as population size tends to infinity.

Random sweepstakes make predictions about genetic diversity that differ significantly
from predictions of the Wright-Fisher model and the Kingman-coalescent(Birkner et al.,
2013; Blath et al., 2016); for example multiple-merger coalescents derived from models
of random sweepstakes can be distinguished from the extended (time-changed) Kingman-
coalescent incorporating population growth(Eldon et al., 2015; Koskela, 2018; Koskela
and Berenguer, 2019). The mathematical formulation of random sweepstakes is reviewed
in (Birkner and Blath, 2009). Briefly, and without going into technical details, the process
{𝑌𝑡 ; 𝑡 ≥ 0} tracking the frequency going forward in time of a given genetic type in a
population evolving according to random sweepstakes is the solution of the stochastic
differential equation (where 𝑌𝑡− denotes the state of the process just before time 𝑡)

d𝑌𝑡 =
√︁
𝑌𝑡−(1 − 𝑌𝑡−)d𝑊𝑡 + jumps (S3)

In Eq (S3) 𝑊𝑡 ≡ {𝑊𝑡 ; 𝑡 ≥ 0} denotes standard Brownian motion, and ‘jumps’ refer to a
stochastic process governing the discontinuous changes in the type frequency generated by
random sweepstakes (Birkner and Blath, 2009). Eq (S3) is a key formulation of random
sweepstakes and in a nutshell shows why models of random sweepstakes are essential
for understanding genetic diversity in highly fecund populations. A type frequency in a
population evolving according to the Wright-Fisher model is a Wright-Fisher diffusion, or
the (unique) solution of the SDE

d𝑌𝑡 =
√︁
𝑌𝑡−(1 − 𝑌𝑡−)d𝑊𝑡 (S4)

Equation (S3) describes the evolution of a type frequency in a population evolving accord-
ing to a model similar to the one in Eq (S8). The coalescent corresponding to Eq (S3) is a
(multiple-merger) Λ-coalescent (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999)
with Λ-measure of the form Λ = 𝛿0 + Λ0, where Λ0 is a finite measure without an atom at
zero. The corresponding rate at which a given group of 𝑘 out of 𝑛 ≥ 2 lineages merge is

𝜆𝑛,𝑘 = 1{𝑘=2} +
∫ 1

0
𝑥𝑘−2(1 − 𝑥)𝑛−𝑘Λ(𝑑𝑥) (S5)

The coalescent in Eq (S5) is a mixture of the Kingman-coalescent (the ‘1{𝑘=2}’ part, and a
multiple-merger coalescent. The Durrett-Schweinsberg model of recurrent sweeps leading
to a multiple-merger coalescent (see Eq (S6)) is of this form(Durrett and Schweinsberg,
2005a), the model of random sweepstakes investigated in (Eldon and Wakeley, 2006) (see
Eq 5) can also lead to a coalescent of the form in Eq (S5), and more general versions of
Eq (5) investigated by Huillet and Möhle (2013). The rate at which a given group of 𝑘

out of 𝑛 ≥ 2 lineages merge in the multiple-merger coalescent derived from the Durrett-
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Schweinsberg model of recurrent sweeps is given by

𝜆𝑛,𝑘 = 1{𝑘=2} + 2C𝐵(𝑘, 𝑛 − 𝑘 + 1), 2 ≤ 𝑘 ≤ 𝑛 (S6)

(see Example 2.4 inDurrett and Schweinsberg (2005a)). In (S6) 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)/Γ(𝑎+
𝑏) is the beta function, and C > 0 is a composite parameter reflecting the strength of
mutation, selection, and recombination (Durrett and Schweinsberg, 2004, 2005b). Val-
ues of C between six and ten roughly give the best fit of the model to the Atlantic cod
data(Árnason et al., 2022).

To further understand the effect of random sweepstakes on selection Der et al. (2011)
propose a generalised Wright-Fisher model. Let {𝑌𝑡} denote the number of copies of a
given type at time 𝑡 in a haploid population of size 𝑁 and suppose (Der et al., 2011)

E [𝑌𝑡+1 |𝑌𝑡] = 𝑌𝑡

Var [𝑌𝑡+1 |𝑌𝑡] =
𝑁Var[𝑌𝑡+1 |{𝑌𝑡 = 1}]

𝑁 − 1
𝑌𝑡

(
1 − 𝑌𝑡

𝑁

) (S7)

i.e. {𝑌𝑡} is restricted to being a martingale. Der et al. (2011) derive bounds on the fixation
probability and time to absorption (i.e. of a type either fixing or being lost from a popu-
lation) for processes described by Eq (S7). For comparison with the model of evolution
described by Eq (S7), the transition probability for a type frequency in our framework
(Eq (3)) in the haploid case, in the absence of selection and bottlenecks, is

P (𝑌𝑡+1 = 𝑦 |𝑌𝑡 = 𝑗) = E

(𝑆 𝑗

𝑦

) (𝑆𝑁− 𝑗

𝑁−𝑦
)(𝑆 𝑗+𝑆𝑁− 𝑗

𝑁

)  (S8)

in a haploid population of fixed size 𝑁 partitioned into two types where 𝑆 𝑗 is the random
number of juveniles produced by 𝑗 individuals of the type we are tracking, and 𝑆𝑁− 𝑗

denotes the random number of juveniles produced by the 𝑁 − 𝑗 individuals of the other
type. Applying continuum techniques would require identifying an operator 𝐺 acting on
a test function 𝑢 with

𝐺𝑢 = lim
𝑁→∞

𝑁 (𝑃𝑁 − 𝐼)𝑢𝑁 (S9)

(Der et al., 2011) where 𝑃𝑁 is the transition probability matrix corresponding to Eq (S8).
Our model in Eq (3) resembles the power-law processes studied by Der et al. (2011).
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S2 Examples of trajectories for a haploid population

Write 𝑇𝑘 (𝑦) := min {𝑡 ≥ 0 : 𝑌𝑡 = 𝑘,𝑌0 = 𝑦} for the first time we see 𝑘 copies of the beneficial
type when starting with 𝑦 copies. Then we consider the quantities

𝑝𝑁 (1) := P (𝑇𝑁 (1) < 𝑇0(1)) ,
𝜏𝑁 (1) := E [𝑇𝑁 (1) |𝑇𝑁 (1) < 𝑇0(1)] .

(S10)

In this section we give examples of trajectories to fixation of an advantageous type
in a haploid population of constant size evolving according to Eq (4). The biological
interpretation of Eq (4) is that most of the time (with probability 1 − 𝜀𝑁) individuals
produce juveniles with a small probability of producing many (𝛼 = 𝛼2 in Eq (3)), but
once in a while (with probability 𝜀𝑁) reproduction matches favorable conditions so that
individuals produce juveniles with a higher probability of producing many juveniles (𝛼 =

𝛼1).
Recall that 𝜀𝑁 is the probability of individuals producing juveniles according to Eq (3)

with 𝛼 = 𝛼1, i.e. with a higher probability of producing many juveniles. The case 𝜀𝑁 = 0
corresponds to the absence of random sweepstakes, i.e. only small (relative to the popu-
lation size) families occur with high probability since then 𝛼 = 𝛼2 = 3; the case 𝜀𝑁 > 0
corresponds to the presence of random sweepstakes (𝛼 = 𝛼1 in Eq (3)); the value 𝜀𝑁 = 0.1
as well as the value 𝛼1 = 0.75 were chosen to give an example of ‘strong’ effect of random
sweepstakes; the smaller the value of 𝛼 in Eq (3) the higher the chance of producing many
juveniles; with 𝑢(𝑁) = 𝑁 , i.e. each individual can produce at most 𝑁 juveniles.

S2.1 Random sweepstakes without bottlenecks

In this section we give examples of trajectories to fixation for a haploid population of
constant size evolving according to Eq (4) without recurrent bottlenecks. The interpre-
tation from the particular scenario considered in Figure S1 is that the effect of random
sweepstakes on the time to fixation (𝜏𝑁 (1)) is negligible.
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a bwithout random sweepstakes (𝜀𝑁 = 0) with random sweepstakes (𝜀𝑁 = 0.1)

Figure S1: Random sweepstakes without bottlenecks. Examples of excursions to fixation
of the type conferring a selective advantage in a haploid population of fixed size 𝑁 = 106

and evolving according to Eq (4) with 𝜀𝑁 = 0 (a; absence of random sweepstakes) and 0.1
(b; presence of random sweepstakes) with cutoff 𝑢(𝑁) = 𝑁 i.e. individuals can produce at
most 𝑁 juveniles (see Eq (3)), 𝛼1 = 0.75 representing increased probability of producing
many juveniles, 𝛼2 = 3 ( representing decreased probability of producing many juveniles),
and strength of selection 𝑠 = 0.5, i.e. juveniles with the wild type have viability weight 𝑒−𝑠,
juveniles with the beneficial type have viability weight one, with 606 trajectories (a) and 61
(b) out of 103 experiments. Equation (4) means that in any given generation the current
individuals produce juveniles according to Eq (3) with 𝛼 = 𝛼1 with probability 𝜀𝑁 , and
according to 𝛼 = 𝛼2 with probability 1−𝜀𝑁 ; thus in (a) 𝛼 = 𝛼2 all the time since 𝜀𝑁 = 0. In
each experiment we start with the beneficial type in one copy. The excursions are shown
as 𝑛1(𝑡)/𝑛(𝑡), where 𝑛1(𝑡) is the number of copies of the beneficial type at time 𝑡, and 𝑛(𝑡)
is the total number of gene copies at time 𝑡. In each panel the different line types and
colours are only meant to distinguish between the trajectories; in (a) all the trajectories
were obtained under identical conditions, and the same goes for (b).
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S2.2 Recurrent bottlenecks without large families

Figure S2 shows examples of excursions for a haploid population evolving according to
Eq (3) with 𝛼 = 3, i.e. individuals produce small families with high probability (so the
evolution of the population is effectively the same is if it was evolving according to the
Wright-Fisher model), and bottlenecks of increasing size from left to right occur randomly
with probability 0.01 in any given generation in the top row (showing the excursions
from 102 experiments), and 0.1 in the bottom row (showing the excursions from 104

experiments). The effects of randomly occurring bottlenecks on 𝑝𝑁 (1) (the probability
of fixation of the beneficial type when starting with the type in one copy, Eq (S10)) and
𝜏𝑁 (1) (the average time to fixation conditional on fixation, Eq (S10)) are evident. If the
probability of a bottleneck is ‘small’ (0.01; top row in Fig S2) varying the size of the
bottleneck does little to change 𝜏𝑁 (1). High probability of a bottleneck (0.1; bottom row
in Fig S2) reduces 𝑝𝑁 (1), and if the bottleneck is not too severe it can drastically increase
𝜏𝑁 (1).
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Figure S2: Recurrent bottlenecks without large families. Examples of excursions to fix-
ation of a type conferring a selective advantage in a haploid population of maximum
size 𝑁 = 106 evolving according to Eq (3) with 𝛼 = 3 (i.e. each individual produces a
small number, relative to the population size, of juveniles with high probability), cutoff
𝑢(𝑁) = 𝑁 , and strength of selection 𝑠 = 0.5 throughout; bottlenecks of size 𝐵 as shown
and with probability of a bottleneck in any given generation (𝑏) as shown. Results from
102 (a,b,c) experiments, otherwise from 104 experiments. The scale of the abscissa (time
axis) may differ between the subplots. In each panel the excursions shown were all ob-
tained under identical conditions.
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S3 Diploid populations and dominance mechanisms

In this section we investigate the effect of various dominance mechanisms on selection in a
diploid population evolving according to Eq (4), where most of the time (with probability
1 − 𝜀𝑁) the current parent pairs independently produce a small number (relative to the
population size) of juveniles with high probability (since then 𝛼 in Eq (3) is increased);
occasionally reproduction matches favorable environmental conditions and the current
parent pairs have a higher chance of producing a larger number of juveniles (since then 𝛼

in Eq (3) is decreased).
The genotype of each given juvenile determines the viability weight according to

𝑤 = exp
(
−𝑠 (𝑧0 − 𝑧(𝑔))2

)
(S11)

where 𝑧0 is the optimal trait value, 𝑧(𝑔) is the trait value of a juvenile with genotype 𝑔,
and 𝑠 ≥ 0 the strength of selection.

Let 𝑔 in Eq (S11) take values {0, 1, 2}, where 0 denotes homozygous wild type 0/0, 1
denotes heterozygous type 0/1, and 2 denotes type 1/1 homozygous for the type conferring
selective advantage. Taking 𝑧0 = 2 in Eq (S11), the cases we will consider are, with
dominance mechanism relative to the type conferring selective advantage,

complete dominance 0 = 𝑧(0) < 𝑧(1) = 𝑧(2) = 2,

incomplete dominance 0 = 𝑧(0) < 𝑧(1) < 𝑧(2) = 2,

recessive 0 = 𝑧(0) = 𝑧(1) < 𝑧(2) = 2.

(S12)

S3.1 Random sweepstakes without bottlenecks

In this section we investigate the effect of random sweepstakes on selection in a diploid
population of constant size evolving according to Eq (4). In Figure S3 we compare the
joint effects of dominance mechanism and random sweepstakes (no bottlenecks) for a
diploid population evolving according to Eq (4) with 𝜀𝑁 = 0 (left column) and 0.1 (right
column) with 𝛼1 = 0.75 and cutoff 𝑢(𝑁) = 2𝑁 = 106, the number of diploid individuals.
The dominance mechanisms relative to the beneficial type (Eq (S12)) are incomplete (top
row), complete (middle row), and recessive (bottom row). The number of excursions in
the right column (𝜀𝑁 = 0.1) is roughly half the number in the left column (𝜀𝑁 = 0) for
the same number of experiments; random sweepstakes reduce 𝑝𝑁 (1) but not by much.
The effect of random sweepstakes on the time to fixation depends on the dominance
mechanism; if the dominance mechanism is incomplete the effect is hardly noticeable, but
the story is quite different for the other two dominance mechanisms. The time to fixation
(conditional on fixation) is clearly increased in both the complete dominance (middle
row), and recessive beneficial type (bottom row) in the absence of random sweepstakes,
and random sweepstakes act to reduce the time to fixation (compare the horizontal scale
of the graphs). Furthermore, 𝑝𝑁 (1) is clearly reduced when the beneficial type is recessive
(the number of experiments is 104 for the bottom row, and 102 otherwise).
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𝜀𝑁 = 0, recessive 𝜀𝑁 = 0.1, recessive

Figure S3: Random sweepstakes without bottlenecks. Examples of excursions to fixation of
the genotype (1/1) homozygous for the type at a single locus conferring selective advantage
in a diploid population of constant size 2𝑁 = 106 diploid individuals evolving according
to Eq (4), i.e. most of the time, or with probability 1−𝜀𝑁 , the current parent pairs produce
a small number (relative to the population size) number of juveniles with high probability
since then 𝛼 in Eq (3) is increased (𝛼 = 𝛼2); occasionally, i.e. with probability 𝜀𝑁 , repro-
duction matches favorable conditions and the parent pairs produce juveniles according to
Eq (3) with 𝛼 in Eq (3) decreased (𝛼 = 𝛼1). Throughout we have 𝛼1 = 0.75 , 𝛼2 = 3, cutoff
𝑢(𝑁) = 2𝑁 (each parent pair can produce at most 𝑢(𝑁) juveniles), strength of selection
𝑠 = 0.5 (recall Eq (S11)), and with 𝜀𝑁 and dominance mechanisms (Eq (S12)) as shown.
The trajectories, shown as the number of diploid individuals homozygous for the fit type
relative to the population size as a function of time were obtained for 102 experiments
(a,b,c,d), otherwise 104 experiments (e,f). The scale of the abscissa (time axis) may differ
between the subplots. In each panel the trajectories shown were obtained under identical
conditions.

8



S3.2 Incomplete dominance of the fit type

In this section we investigate the case when the beneficial type in a diploid population
evolving according to random sweepstakes (Eq (4)) and recurrent bottlenecks when the
beneficial type is given incomplete dominance (Eq (S12)). In the case of incomplete
dominance (Figure S4) a noticeable effect of random sweepstakes (bottom two rows, 𝜀𝑁 =

0.1) is to reduce 𝜏𝑁 (1) (Eq (S10)), while bottlenecks (bottlenecks occur with probability
0.01 per generation in first and third row, and with probability 0.1 in second and fourth
row) tend to increase 𝜏𝑁 (1).
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Figure S4: Incomplete dominance of the fit type. Examples of excursions to fixation of the
genotype (1/1) homozygous for the type at a single locus conferring selective advantage
in a diploid population evolving according to Eq (4). The evolution described by Eq (4)
is that most of the time, or with probability 1 − 𝜀𝑁 , the current parent pairs produce a
small number (relative to the population size) number of juveniles with high probability
since then 𝛼 in Eq (3) is increased (𝛼 = 𝛼2); occasionally, i.e. with probability 𝜀𝑁 , repro-
duction matches favorable conditions and the parent pairs produce juveniles according
to Eq (3) with 𝛼 in Eq (3) decreased (𝛼 = 𝛼1). Furthermore, the population experiences
randomly occurring bottlenecks, with carrying capacity 2𝑁 = 106, 𝛼1 = 0.75, 𝛼2 = 3,
cutoff 𝑢(𝑁) = 2𝑁 , strength of selection 𝑠 = 0.5 throughout, with 𝜀𝑁 , bottleneck size 𝐵, and
the probability 𝑏 of a bottleneck in any given generation as shown. Here we consider the
case of incomplete dominance of the beneficial type (Eq (S12)). The trajectories, shown
as the number of diploid individuals homozygous for the fit type relative to the population
size as a function of time were obtained for 102 experiments (a,b), otherwise from 103

experiments. The scale of the abscissa (time axis) may differ between panels. In each
panel the excursions shown were all obtained under identical conditions.
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S3.3 The fit type as recessive

In this section investigate the effect of random sweepstakes and recurrent bottlenecks on
selection at a single site in a diploid population paritioned into two types with the fit type
as recessive (Fig S5). The effect of random sweepstakes (𝜀𝑁 > 0) on the time to fixation
(conditional on fixation), especially in the presence of frequently occurring bottlenecks,
is clear.
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𝜀𝑁 = 0.1, 𝐵 = 102, 𝑏 = 0.1 𝜀𝑁 = 0.1, 𝐵 = 104, 𝑏 = 0.1

Figure S5: A recessive fit type. The caption is on the following page.
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Caption to Figure S5: The fit type as recessive. Examples of excursions to fixation of the
genotype 1/1 homozygous for the type at a single locus conferring selective advantage in a
diploid population evolving according to Eq (4) where occasionally (with probability 𝜀𝑁)
reproduction matches favorable conditions so that individuals have a higher chance of pro-
ducing many juveniles, but most of the time (with probability 1− 𝜀𝑁) individuals produce
a small number (relative to the population size) number of juveniles with high probabil-
ity, and experiencing randomly occurring bottlenecks, with carrying capacity 2𝑁 = 106,
𝛼1 = 0.75 representing an higher chance of producing many juveniles , 𝛼2 = 3 representing
a lower chance of producing many juveniles, cutoff 𝑢(𝑁) = 2𝑁 meaning that each parent
pair can produce at most 𝑢(𝑁) juveniles, strength of selection 𝑠 = 0.5 throughout, with 𝜀𝑁 ,
the number 𝐵 of individuals surviving a bottleneck, and the probability 𝑏 of a bottleneck
in a given generation as shown. The dominance mechanism is with the beneficial type
recessive (Eq (S12)). Results shown from 104 (a,b,f) otherwise from 106 experiments. The
excursions are shown as 𝑛2(𝑡)/𝑛(𝑡) as a function of time 𝑡 in generations, where 𝑛2(𝑡) is
the number of copies of the homozygous 1/1 type at time 𝑡, and 𝑛(𝑡) is the total number of
gene copies in the population at time (generation) 𝑡. The scale of the abscissa (time axis)
may vary between panels. In each panel the trajectories were obtained under identical
conditions.

S4 Illustration of the Durrett-Schweinsberg model

In this section the Durrett-Schweinsberg model(Durrett and Schweinsberg, 2005a) of a
fixation of a beneficial type arising by mutation in a population evolving according to the
Moran model (Figure S6). The mutation occurs at a site linked to a ‘neutral’ site, i.e.
a site assumed to never experiencing mutation. During a sweep recombination between
the neutral site and the site experiencing mutation can lead to some ancestral lineages
of a sample to ‘escape’ a sweep by moving onto a different background. If that happens,
not all ancestral lineages merge during a sweep, leading to a non-trivial multiple merger
genealogy of the neutral site (Eq (S6)).
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(C) The Durrett-Schweinsberg model of a sweep
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Figure S6: Illustration of the Durrett-Schweinsberg model (Durrett and Schweinsberg,
2005a) of a sweep leading to a multiple merger in the genealogy at the neutral site. The
beneficial type is denoted 𝐵, and arises through a mutation. The gene copies of the neutral
site are denoted as empty circles or filled circled when ancestral to a sample. During the
sweep, one ancestral chromosome escapes a sweep through recombination. A sweep takes
on the order of log(𝑁) time units, so occurs instantaneously when time is viewed in 𝑁

time units, leading to an apparent multiple merger in the genealogy of the neutral site. In
the example genealogy at the bottom, pairwise mergers may be due to a sweep.

14



S5 The expected number of segregating sites

For completeness we state in Eq (S13) the expected number of segregating sites (assuming
the infinitely-many sites mutation model) for a sample of size 𝑛 gene copies. Each gene
copy represents a contiguous non-recombining segment of a chromosome of lengths 𝐿

base pairs, with 𝜇 denoting the per site per generation mutation rate. We denote by 𝐵(𝑛)
the random total size of a genealogy of a sample of size 𝑛, and 𝑀 (𝑛) denotes the random
number of segregating sites (derived mutations) in a sample of size 𝑛. Then

1
𝑐𝑁

𝜇𝐿E [𝐵(𝑛)] = E[𝑀 (𝑛)] (S13)

A simple rearrangement yields Eq (2).

S6 Describing a fixation trajectory

For completeness we state in this section, see Eq (S14), the logistic differential equation
that has been used to describe the trajectory of a mutation to fixation conditional on the
mutation doing so,

𝑑𝑝𝑡

𝑑𝑡
= 𝑠𝑝𝑡 (1 − 𝑝𝑡) (S14)

In Eq (S14), 𝑝𝑡 denotes the frequency of the beneficial type at time 𝑡, and 𝑠 > 0 the
strength of selection(Kaplan et al., 1989; Stephan et al., 1992). Schweinsberg and Durrett
(2005) suggest another approach for describing fixation trajectories.
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