References
Alhuthali, S., Kotidis, P., & Kontoravdi, C. (2021). Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation. International Journal of Molecular Sciences, 22 (7). doi:10.3390/ijms22073290
Ali, A. S., Raju, R., Kshirsagar, R., Ivanov, A. R., Gilbert, A., Zang, L., & Karger, B. L. (2019). Multi-Omics Study on the Impact of Cysteine Feed Level on Cell Viability and mAb Production in a CHO Bioprocess.Biotechnology Journal, 14 (4), e1800352. doi:10.1002/biot.201800352
Avello, V., Tapia, B., Vergara, M., Acevedo, C., Berrios, J., Reyes, J. G., & Altamirano, C. (2017). Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. Electronic Journal of Biotechnology, 27 , 55-62. doi:10.1016/j.ejbt.2017.03.008
Bedoya-Lopez, A., Estrada, K., Sanchez-Flores, A., Ramirez, O. T., Altamirano, C., Segovia, L., . . . Valdez-Cruz, N. A. (2016). Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture. PLoS One, 11 (3), e0151529. doi:10.1371/journal.pone.0151529
Boswell, C. A., Tesar, D. B., Mukhyala, K., Theil, F. P., Fielder, P. J., & Khawli, L. A. (2010). Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics. Bioconjugate Chemistry, 21 (12), 2153-2163. doi:10.1021/bc100261d
Budge, J. D., Knight, T. J., Povey, J., Roobol, J., Brown, I. R., Singh, G., . . . Smales, C. M. (2020). Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metabolic Engineering, 57 , 203-216. doi:10.1016/j.ymben.2019.11.007
Chevallier, V., Andersen, M. R., & Malphettes, L. (2020). Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnology and Bioengineering, 117 (4), 1172-1186. doi:10.1002/bit.27247
Chevallier, V., Schoof, E. M., Malphettes, L., Andersen, M. R., & Workman, C. T. (2020). Characterization of glutathione proteome in CHO cells and its relationship with productivity and cholesterol synthesis.Biotechnology and Bioengineering, 117 (11), 3448-3458. doi:10.1002/bit.27495
Chitwood, D. G., Wang, Q., Elliott, K., Bullock, A., Jordana, D., Li, Z., . . . Saski, C. A. (2021). Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnology, 21 (1), 1-16. doi:10.1186/s12896-020-00667-2
Chong, W. P. K., Thng, S. H., Hiu, A. P., Lee, D.-Y., Chan, E. C. Y., & Ho, Y. S. (2012). LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells.Biotechnology and Bioengineering, 109 (12), 3103-3111. doi:10.1002/bit.24580
Chung, S., Tian, J., Tan, Z., Chen, J., Zhang, N., Huang, Y., . . . Li, Z. J. (2019). Modulating cell culture oxidative stress reduces protein glycation and acidic charge variant formation. Mabs, 11 (1), 205-216. doi:10.1080/19420862.2018.1537533
Coronel, J., Heinrich, C., Klausing, S., Noll, T., Figueredo‐Cardero, A., & Castilho, L. R. (2019). Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production. Biotechnology Progress, 36 (1), e2915. doi:10.1002/btpr.2915
Darja, O., Stanislav, M., Sasa, S., Andrej, F., Lea, B., & Branka, J. (2016). Responses of CHO cell lines to increased pCO2 at normal (37 degrees C) and reduced (33 degrees C) culture temperatures.Journal of Biotechnology, 219 , 98-109. doi:10.1016/j.jbiotec.2015.12.013
Dhami, N., Trivedi, D. K., Goodacre, R., Mainwaring, D., & Humphreys, D. P. (2018). Mitochondrial aconitase is a key regulator of energy production for growth and protein expression in Chinese hamster ovary cells. Metabolomics, 14 (10), 136. doi:10.1007/s11306-018-1430-0
Domjan, J., Fricska, A., Madarasz, L., Gyurkes, M., Kote, A., Farkas, A., . . . Hirsch, E. (2020). Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation. Biotechnology Progress, 36 (6), e3052. doi:10.1002/btpr.3052
Duarte, T. M., Carinhas, N., Barreiro, L. C., Carrondo, M. J., Alves, P. M., & Teixeira, A. P. (2014). Metabolic responses of CHO cells to limitation of key amino acids. Biotechnology and Bioengineering, 111 (10), 2095-2106. doi:10.1002/bit.25266
Fan, W., & Evans, R. M. (2015). Turning up the heat on membrane fluidity. Cell, 161 (5), 962-963. doi:10.1016/j.cell.2015.04.046
Gomez, N., Subramanian, J., Ouyang, J., Nguyen, M. D. H., Hutchinson, M., Sharma, V. K., . . . Yuk, I. H. (2012). Culture temperature modulates aggregation of recombinant antibody in CHO cells.Biotechnology and Bioengineering, 109 (1), 125-136. doi:10.1002/bit.23288
Gomez, N., Wieczorek, A., Lu, F., Bruno, R., Diaz, L., Agrawal, N. J., & Daris, K. (2018). Culture temperature modulates half antibody and aggregate formation in a Chinese hamster ovary cell line expressing a bispecific antibody. Biotechnology and Bioengineering, 115 (12), 2930-2940. doi:10.1002/bit.26803
Grilo, A. L., & Mantalaris, A. (2019). The Increasingly Human and Profitable Monoclonal Antibody Market. Trends in Biotechnology, 37 (1), 9-16. doi:10.1016/j.tibtech.2018.05.014
Grimalt-Alemany, A., Etler, C., Asimakopoulos, K., Skiadas, I. V., & Gavala, H. N. (2021). ORP control for boosting ethanol productivity in gas fermentation systems and dynamics of redox cofactor NADH/NAD+ under oxidative stress. Journal of CO2 Utilization, 50 , 101589. doi:10.1016/j.jcou.2021.101589
Han, J., & Kaufman, R. J. (2016). The role of ER stress in lipid metabolism and lipotoxicity. Journal of Lipid Research, 57 (8), 1329-1338. doi:10.1194/jlr.R067595
Handlogten, M. W., Wang, J., & Ahuja, S. (2020). Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction. Biotechnology and Bioengineering, 117 (5), 1329-1336. doi:10.1002/bit.27281
Handlogten, M. W., Zhu, M., & Ahuja, S. (2018). Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochemical Engineering Journal, 133 , 12-20. doi:10.1016/j.bej.2018.01.031
Hartley, F., Walker, T., Chung, V., & Morten, K. (2018). Mechanisms driving the lactate switch in Chinese hamster ovary cells.Biotechnology and Bioengineering, 115 (8), 1890-1903. doi:10.1002/bit.26603
Hecklau, C., Pering, S., Seibel, R., Schnellbaecher, A., Wehsling, M., Eichhorn, T., . . . Zimmer, A. (2016). S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Journal of Biotechnology, 218 , 53-63. doi:10.1016/j.jbiotec.2015.11.022
Hofer, A., Kroll, P., Barmettler, M., & Herwig, C. (2020). A Reliable Automated Sampling System for On-Line and Real-Time Monitoring of CHO Cultures. Processes, 8 (6). doi:10.3390/pr8060637
Hong, J. K., Lee, S. M., Kim, K.-Y., & Lee, G. M. (2014). Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells.Applied Microbiology and Biotechnology, 98 (12), 5417-5425. doi:10.1007/s00253-014-5596-8
Hong, J. K., Yeo, H. C., Lakshmanan, M., Han, S. H., Cha, H. M., Han, M., & Lee, D. Y. (2020). In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Journal of Biotechnology, 308 , 10-20. doi:10.1016/j.jbiotec.2019.11.011
Huang, Z., Xu, J., Yongky, A., Morris, C. S., Polanco, A. L., Reily, M., . . . Yoon, S. (2020). CHO cell productivity improvement by genome-scale modeling and pathway analysis: Application to feed supplements.Biochemical Engineering Journal, 160 , 107638. doi:10.1016/j.bej.2020.107638
Kumar, N., Gammell, P., & Clynes, M. (2007). Proliferation control strategies to improve productivity and survival during CHO based production culture - A summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines.Cytotechnology, 53 (1-3), 33-46. doi:10.1007/s10616-007-9047-6
Kunert, R., & Reinhart, D. (2016). Advances in recombinant antibody manufacturing. Applied Microbiology and Biotechnology, 100 (8), 3451-3461. doi:10.1007/s00253-016-7388-9
Liu, D., Evans, T., & Zhang, F. (2015). Applications and advances of metabolite biosensors for metabolic engineering. Metabolic Engineering, 31 , 35-43. doi:10.1016/j.ymben.2015.06.008
Locasale, J. W., & Cantley, L. C. (2011). Metabolic Flux and the Regulation of Mammalian Cell Growth. Cell Metabolism, 14 (4), 443-451. doi:10.1016/j.cmet.2011.07.014
Loh, W. P., Yang, Y., & Lam, K. P. (2017). miR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels. Biotechnology Journal, 12 (4), 1600488. doi:10.1002/biot.201600488
Martínez-Monge, I., Comas, P., Triquell, J., Casablancas, A., Lecina, M., Paredes, C. J., & Cairó, J. J. (2019). Concomitant consumption of glucose and lactate: A novel batch production process for CHO cells.Biochemical Engineering Journal, 151 , 107358. doi:10.1016/j.bej.2019.107358
McFarland, K. S., Zhu, J., Sinharoy, P., Betenbaugh, M. J., & Handlogten, M. W. (2022). Engineering redox sensors into CHO cells enables near real-time quantification of intracellular redox in bioprocesses. Biotechnology and Bioengineering, 119 (6),1439-1449 . doi:10.1002/bit.28067
McHugh, K. P., Xu, J., Aron, K. L., Borys, M. C., & Li, Z. J. (2020). Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnology Progress, 36 (3), e2959. doi:10.1002/btpr.2959
Mellahi, K., Brochu, D., Gilbert, M., Perrier, M., Ansorge, S., Durocher, Y., & Henry, O. (2019). Assessment of fed-batch cultivation strategies for an inducible CHO cell line. Journal of Biotechnology, 298 , 45-56. doi:10.1016/j.jbiotec.2019.04.005
Nör, C., Sassi, F. A., de Farias, C. B., Schwartsmann, G., Abujamra, A. L., Lenz, G., . . . Roesler, R. (2013). The Histone Deacetylase Inhibitor Sodium Butyrate Promotes Cell Death and Differentiation and Reduces Neurosphere Formation in Human Medulloblastoma Cells.Molecular Neurobiology, 48 (3), 533-543. doi:10.1007/s12035-013-8441-7
O’Flaherty, R., Bergin, A., Flampouri, E., Mota, L. M., Obaidi, I., Quigley, A., . . . Butler, M. (2020). Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnology Advances, 43 , 107552. doi:10.1016/j.biotechadv.2020.107552
Orellana, C. A., Marcellin, E., Schulz, B. L., Nouwens, A. S., Gray, P. P., & Nielsen, L. K. (2015). High-Antibody-Producing Chinese Hamster Ovary Cells Up-Regulate Intracellular Protein Transport and Glutathione Synthesis. Journal of Proteome Research, 14 (2), 609-618. doi:10.1021/pr501027c
Park, J. H., Noh, S. M., Woo, J. R., Kim, J. W., & Lee, G. M. (2016). Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnology Journal, 11 (4), 487-496. doi:10.1002/biot.201500327
Roobol, A., Roobol, J., Carden, M. J., Bastide, A., Willis, A. E., Dunn, W. B., . . . Smales, C. M. (2011). ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal, 435 (2), 499-508. doi:10.1042/BJ20101303
Sakai, K., Matsunaga, T., Hayashi, C., Yamaji, H., & Fukuda, H. (2002). Effects of phosphatidic acid on recombinant protein production by Chinese hamster ovary cells in serum-free culture. Biochemical Engineering Journal, 10 (2), 85-92. doi:10.1016/s1369-703x(01)00171-1
Selvarasu, S., Ho, Y. S., Chong, W. P., Wong, N. S., Yusufi, F. N., Lee, Y. Y., . . . Lee, D. Y. (2012). Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture.Biotechnology and Bioengineering, 109 (6), 1415-1429. doi:10.1002/bit.24445
Sinharoy, P., McFarland, K. S., Majewska, N. I., Betenbaugh, M. J., & Handlogten, M. W. (2021). Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Current Opinion in Biotechnology, 71 , 49-54. doi:10.1016/j.copbio.2021.06.017
Sunley, K., & Butler, M. (2010). Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest.Biotechnology Advances, 28 (3), 385-394. doi:10.1016/j.biotechadv.2010.02.003
Templeton, N., Dean, J., Reddy, P., & Young, J. D. (2013). Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnology and Bioengineering, 110 (7), 2013-2024. doi:10.1002/bit.24858
Tigges, M., & Fussenegger, M. (2006). Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metabolic Engineering, 8 (3), 264-272. doi:10.1016/j.ymben.2006.01.006
Torres, M., Akhtar, S., McKenzie, E. A., & Dicksons, A. (2021). Temperature Down-Shift Modifies Expression of UPR-/ERAD-Related Genes and Enhances Production of a Chimeric Fusion Protein in CHO Cells.Biotechnology Journal, 16 (2), 2000081. doi:10.1002/biot.202000081
Torres, M., & Dickson, A. J. (2022). Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnology and Bioengineering, 119 (2), 550-565. doi:10.1002/bit.28000
Torres, M., Zuniga, R., Gutierrez, M., Vergara, M., Collazo, N., Reyes, J., . . . Altamirano, C. (2018). Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFalpha production in CHO cells.PLoS One, 13 (3), e0194510. doi:10.1371/journal.pone.0194510
Tossolini, I., Lopez-Diaz, F. J., Kratje, R., & Prieto, C. C. (2018). Characterization of cellular states of CHO-K1 suspension cell culture through cell cycle and RNA-sequencing profiling. Journal of Biotechnology, 286 , 56-67. doi:10.1016/j.jbiotec.2018.09.007
Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7 , 420. doi:10.3389/fbioe.2019.00420
Vappiani, J., Eyster, T., Orzechowski, K., Ritz, D., Patel, P., Sevin, D., & Aon, J. (2021). Exometabolome profiling reveals activation of the carnitine buffering pathway in fed-batch cultures of CHO cells co-fed with glucose and lactic acid. Biotechnology Progress , e3198. doi:10.1002/btpr.3198
Wilkens, C. A., Altamirano, C., & Gerdtzen, Z. P. (2011). Comparative metabolic analysis of lactate for CHO cells in glucose and galactose.Biotechnology and Bioprocess Engineering, 16 (4), 714-724. doi:10.1007/s12257-010-0409-0
Yao, G., Aron, K., Borys, M., Li, Z., Pendse, G., & Lee, K. (2021). A Metabolomics Approach to Increasing Chinese Hamster Ovary (CHO) Cell Productivity. Metabolites, 11 (12), 823. doi:10.3390/metabo11120823
Zhang, X., Sun, Y.-T., Tang, H., Fan, L., Hu, D., Liu, J., . . . Tan, W.-S. (2015). Culture temperature modulates monoclonal antibody charge variation distribution in Chinese hamster ovary cell cultures.Biotechnology Letters, 37 (11), 2151-2157. doi:10.1007/s10529-015-1904-3
Zhang, Z., Cheng, X., Zhao, Y., & Yang, Y. (2020). Lighting Up Live-Cell and In Vivo Central Carbon Metabolism with Genetically Encoded Fluorescent Sensors. Annual Review of Analytical Chemistry, 13 (1), 293-314. doi:10.1146/annurev-anchem-091619-091306
Zhao, Y., Hu, Q., Cheng, F., Su, N., Wang, A., Zou, Y., . . . Yang, Y. (2015). SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metabolism, 21 (5), 777-789. doi:10.1016/j.cmet.2015.04.009
Zhao, Y., & Yang, Y. (2016). Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD(+)/NADH sensors. Free Radical Biology and Medicine, 100 , 43-52. doi:10.1016/j.freeradbiomed.2016.05.027
Zou, W., Edros, R., & Al-Rubeai, M. (2018). The relationship of metabolic burden to productivity levels in CHO cell lines.Biotechnology and Applied Biochemistry, 65 (2), 173-180. doi:10.1002/bab.1574