References:
Antunes, A., & Ramos, M. J. (2005). Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes.Genomics, 86 (6), 708-717. doi:https://doi.org/10.1016/j.ygeno.2005.08.002
Bourret, V., Albert, V., April, J., Côté, G., & Morissette, O. (2020). Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evolutionary Applications, 13 (6), 1420-1434. doi:https://doi.org/10.1111/eva.12977
Brown, K. H. (2008). Fish mitochondrial genomics: sequence, inheritance and functional variation. Journal of Fish Biology, 72 , 355-374. doi:doi:10.1111/j.1095-8649.2007.01690.x
Dayama, G., Emery, S. B., Kidd, J. M., & Mills, R. E. (2014). The genomic landscape of polymorphic human nuclear mitochondrial insertions.Nucleic Acids Res, 42 (20), 12640-12649. doi:10.1093/nar/gku1038
Deagle, B. E., Kirkwood, R., & Jarman, S. N. (2009). Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces.Molecular Ecology, 18 (9), 2022-2038. doi:https://doi.org/10.1111/j.1365-294X.2009.04158.x
Dhorne-Pollet, S., Barrey, E., & Pollet, N. (2020). A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics, 21 (1), 785. doi:10.1186/s12864-020-07183-9
Dugal, L., Thomas, L., Jensen, M. R., Sigsgaard, E. E., Simpson, T., Jarman, S., . . . Meekan, M. (2021). Individual haplotyping of whale sharks from seawater environmental DNA. Molecular Ecology Resources, 22 (1), 56-65. doi:https://doi.org/10.1111/1755-0998.13451
Evans, N. T., Olds, B. P., Renshaw, M. A., Turner, C. R., Li, Y., Jerde, C. L., . . . Lodge, D. M. (2016). Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding.Molecular Ecology Resources, 16 (1), 29-41. doi:https://doi.org/10.1111/1755-0998.12433
Filipović, I., Hereward, J. P., Rašić, G., Devine, G. J., Furlong, M. J., & Etebari, K. (2021). The complete mitochondrial genome sequence ofOryctes rhinoceros (Coleoptera: Scarabaeidae) based on long-read nanopore sequencing. PeerJ, 9 , e10552. doi:10.7717/peerj.10552
Formenti, G., Rhie, A., Balacco, J., Haase, B., Mountcastle, J., Fedrigo, O., . . . The Vertebrate Genomes Project, C. (2021). Complete vertebrate mitogenomes reveal widespread repeats and gene duplications.Genome Biology, 22 (1), 120. doi:10.1186/s13059-021-02336-9
Franco-Sierra, N. D., & Díaz-Nieto, J. F. (2020). Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecology and Evolution, 10 (7), 3544-3560. doi:https://doi.org/10.1002/ece3.6151
Furlan, E. M., Gleeson, D., Wisniewski, C., Yick, J., & Duncan, R. P. (2019). eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia. Journal of Applied Ecology, 56 (11), 2505-2517. doi:10.1111/1365-2664.13485
Gallego, R., Jacobs-Palmer, E., Cribari, K., & Kelly, R. P. (2020). Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proceedings of the Royal Society B: Biological Sciences, 287 (1940), 20202424. doi:doi:10.1098/rspb.2020.2424
Gan, H. M., Linton, S. M., & Austin, C. M. (2019). Two reads to rule them all: Nanopore long read-guided assembly of the iconic Christmas Island red crab, Gecarcoidea natalis (Pocock, 1888), mitochondrial genome and the challenges of AT-rich mitogenomes.Mar Genomics, 45 , 64-71. doi:10.1016/j.margen.2019.02.002
Gilpatrick, T., Lee, I., Graham, J. E., Raimondeau, E., Bowen, R., Heron, A., . . . Timp, W. (2020). Targeted nanopore sequencing with Cas9-guided adapter ligation. Nature Biotechnology, 38 (4), 433-438. doi:10.1038/s41587-020-0407-5
Hartmann, N., Reichwald, K., Wittig, I., Dröse, S., Schmeisser, S., Lück, C., . . . Englert, C. (2011). Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell, 10 (5), 824-831. doi:10.1111/j.1474-9726.2011.00723.x
Isokallio, M. A., & Stewart, J. B. (2018). Isolation of high-quality, highly enriched mitochondrial DNA from mouse tissues.Retrieved from protocols.io:
Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T. P., . . . Nishida, M. (2013). MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution, 30 (11), 2531-2540. doi:10.1093/molbev/mst141
Jackman, J. M., Benvenuto, C., Coscia, I., Oliveira Carvalho, C., Ready, J. S., Boubli, J. P., . . . Guimarães Sales, N. (2021). eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environmental DNA, 3 (4), 837-849. doi:https://doi.org/10.1002/edn3.191
Jensen, M. R., Sigsgaard, E. E., Liu, S., Manica, A., Bach, S. S., Hansen, M. M., . . . Thomsen, P. F. (2020). Genome-scale target capture of mitochondrial and nuclear environmental DNA from water samples.Molecular Ecology Resources (July), 1-13. doi:10.1111/1755-0998.13293
Keraite, I., Becker, P., Canevazzi, D., Frias-López, M. C., Dabad, M., Tonda-Hernandez, R., . . . Gut, I. G. (2022). Novel method for multiplexed full-length single-molecule sequencing of the human mitochondrial genome. bioRxiv , 2022.2002.2008.479581. doi:10.1101/2022.02.08.479581
Kinkar, L., Young, N. D., Sohn, W.-M., Stroehlein, A. J., Korhonen, P. K., & Gasser, R. B. (2020). First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Neglected Tropical Diseases, 14 (8), e0008552. doi:10.1371/journal.pntd.0008552
Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 37 (5), 540-546. doi:10.1038/s41587-019-0072-8
Langlois, V. S., Allison, M. J., Bergman, L. C., To, T. A., & Helbing, C. C. (2020). The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environmental DNA, n/a (n/a). doi:https://doi.org/10.1002/edn3.164
Leite, B. R., Vieira, P. E., Troncoso, J. S., & Costa, F. O. (2021). Comparing species detection success between molecular markers in DNA metabarcoding of coastal macroinvertebrates. Metabarcoding and Metagenomics, 5 , e70063.
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.Bioinformatics, 34 (18), 3094-3100. doi:10.1093/bioinformatics/bty191
López-Girona, E., Davy, M. W., Albert, N. W., Hilario, E., Smart, M. E. M., Kirk, C., . . . Chagné, D. (2020). CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants. Plant Methods, 16 (1), 1-13. doi:10.1186/s13007-020-00661-x
Malukiewicz, J., Cartwright, R. A., Dergam, J. A., Igayara, C. S., Nicola, P. A., Pereira, L. M. C., . . . Roos, C. (2021). Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world’s most threatened primates. Scientific Reports, 11 (1), 17279. doi:10.1038/s41598-021-96404-6
Margaryan, A., Noer, C. L., Richter, S. R., Restrup, M. E., Bülow-Hansen, J. L., Leerhøi, F., . . . Bohmann, K. (2021). Mitochondrial genomes of Danish vertebrate species generated for the national DNA reference database, DNAmark. Environmental DNA, 3 (2), 472-480. doi:https://doi.org/10.1002/edn3.138
Martin, S., Heavens, D., Lan, Y., Horsfield, S., Clark, M. D., & Leggett, R. M. (2021). Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples. bioRxiv , 2021.2005.2007.443191. doi:10.1101/2021.05.07.443191
McDonald, T. L., Zhou, W., Castro, C. P., Mumm, C., Switzenberg, J. A., Mills, R. E., & Boyle, A. P. (2021). Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nature Communications, 12 (1), 3586. doi:10.1038/s41467-021-23918-y
Miya, M. (2022). Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Annual Review of Marine Science, 14 (1), null. doi:10.1146/annurev-marine-041421-082251
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., . . . Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2 (7), 150088. doi:doi:10.1098/rsos.150088
Mugnai, F., Meglécz, E., Costantini, F., Abbiati, M., Bavestrello, G., Bertasi, F., . . . Wangensteen, O. S. (2021). Are well-studied marine biodiversity hotspots still blackspots for animal barcoding?Global Ecology and Conservation, 32 , e01909. doi:https://doi.org/10.1016/j.gecco.2021.e01909
Novak, B. J., Fraser, D., & Maloney, T. H. (2020). Transforming Ocean Conservation: Applying the Genetic Rescue Toolkit. Genes, 11 (2), 209. doi:10.3390/genes11020209
Ogden, R. (2008). Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish and Fisheries, 9 (4), 462-472. doi:https://doi.org/10.1111/j.1467-2979.2008.00305.x
Oosting, T., Hilario, E., Wellenreuther, M., & Ritchie, P. A. (2020). DNA degradation in fish: Practical solutions and guidelines to improve DNA preservation for genomic research. Ecology and Evolution, 10 (16), 8643-8651. doi:https://doi.org/10.1002/ece3.6558
Payne, A., Holmes, N., Clarke, T., Munro, R., Debebe, B. J., & Loose, M. (2021). Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nature Biotechnology, 39 (4), 442-450. doi:10.1038/s41587-020-00746-x
Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T., & Sandhu, M. S. (2018). Long reads: their purpose and place. Human Molecular Genetics, 27 (R2), R234-R241. doi:10.1093/hmg/ddy177
Poulsen, J. Y., Byrkjedal, I., Willassen, E., Rees, D., Takeshima, H., Satoh, T. P., . . . Miya, M. (2013). Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei). BMC Evol Biol, 13 , 111. doi:10.1186/1471-2148-13-111
Ramón-Laca, A., Gallego, R., & Nichols, K. M. (2022). Raw fast5 sequencing data of “Affordable de novo generation of fish mitogenomes using amplification-free enrichment of mitochondrial DNA and deep sequencing of long fragments”. DRYAD . doi:https://doi.org/10.5061/dryad.jm63xsjdj
Ramón-Laca, A., Wells, A., & Park, L. (2021). A workflow for the relative quantification of multiple fish species from oceanic water samples using environmental DNA (eDNA) to support large-scale fishery surveys. PLoS ONE, 16 (9), e0257773. doi:10.1371/journal.pone.0257773
Ratnasingham, S., & Hebert, P. D. N. (2007). bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7 (3), 355-364. doi:https://doi.org/10.1111/j.1471-8286.2007.01678.x
Robin, E. D., & Wong, R. (1988). Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol, 136 (3), 507-513. doi:10.1002/jcp.1041360316
Rodriguez-Ezpeleta, N., Mendibil, I. a., Álvarez, P., & Cotano, U. (2013). Effect of fish sampling and tissue storage conditions in DNA quality: considerations for genomic studies. Revista de Investigación Marina, AZTI-Tecnalia, 20 (6), 77-87.
Satoh, T. P., Miya, M., Mabuchi, K., & Nishida, M. (2016). Structure and variation of the mitochondrial genome of fishes. BMC Genomics, 17 (1), 719. doi:10.1186/s12864-016-3054-y
Schenekar, T., Schletterer, M., Lecaudey, L. A., & Weiss, S. J. (2020). Reference databases, primer choice, and assay sensitivity for environmental metabarcoding: Lessons learnt from a re-evaluation of an eDNA fish assessment in the Volga headwaters. River Research and Applications, 36 (7), 1004-1013. doi:https://doi.org/10.1002/rra.3610
Schroeter, J. C., Maloy, A. P., Rees, C. B., & Bartron, M. L. (2020). Fish mitochondrial genome sequencing: expanding genetic resources to support species detection and biodiversity monitoring using environmental DNA. Conservation Genetics Resources, 12 (3), 433-446. doi:10.1007/s12686-019-01111-0
Schultzhaus, Z., Wang, Z., & Stenger, D. (2021). CRISPR-based enrichment strategies for targeted sequencing. Biotechnol Adv, 46 , 107672. doi:10.1016/j.biotechadv.2020.107672
Sharma, P., & Sampath, H. (2019). Mitochondrial DNA Integrity: Role in Health and Disease. Cells, 8 (2), 100.
Shaw, J. L. A., Clarke, L. J., Wedderburn, S. D., Barnes, T. C., Weyrich, L. S., & Cooper, A. (2016). Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system.Biological Conservation, 197 , 131-138. doi:https://doi.org/10.1016/j.biocon.2016.03.010
Shelton, A. O., Kelly, R. P., O’Donnell, J. L., Park, L., Schwenke, P., Greene, C., . . . Beamer, E. M. (2019). Environmental DNA provides quantitative estimates of a threatened salmon species. Biological Conservation, 237 , 383-391. doi:10.1016/j.biocon.2019.07.003
Shu, L., Ludwig, A., & Peng, Z. (2020). Standards for methods utilizing environmental dna for detection of fish species. In (Vol. 11).
Srivathsan, A., Lee, L., Katoh, K., Hartop, E., Kutty, S. N., Wong, J., . . . Meier, R. (2021). ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol, 19 (1), 217. doi:10.1186/s12915-021-01141-x
Stat, M., Huggett, M. J., Bernasconi, R., DiBattista, J. D., Berry, T. E., Newman, S. J., . . . Bunce, M. (2017). Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Scientific Reports, 7 (1), 12240. doi:10.1038/s41598-017-12501-5
Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99 (2), 349-364. doi:https://doi.org/10.3732/ajb.1100335
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21 (8), 2045-2050. doi:https://doi.org/10.1111/j.1365-294X.2012.05470.x
Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. In (Vol. 183, pp. 4-18): Elsevier Ltd.
Wang, S., Yan, Z., Hänfling, B., Zheng, X., Wang, P., Fan, J., & Li, J. (2021). Methodology of fish eDNA and its applications in ecology and environment. Science of The Total Environment, 755 , 142622. doi:https://doi.org/10.1016/j.scitotenv.2020.142622
Weitemier, K., Penaluna, B. E., Hauck, L. L., Longway, L. J., Garcia, T., & Cronn, R. (2021). Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Molecular Ecology, 30 (20), 4970-4990. doi:https://doi.org/10.1111/mec.15811
Wilhelm, V., Villegas, J., Miquel, Á., Engel, E., Bernales, S., Valenzuela, P. D. T., & Burzio, L. O. (2003). The complete sequence of the mitochondrial genome of the Chinook salmon, Oncorhynchus tshawytscha . Biological Research, 36 , 223-231.
Zascavage, R. R., Thorson, K., & Planz, J. V. (2019). Nanopore sequencing: An enrichment-free alternative to mitochondrial DNA sequencing. Electrophoresis, 40 (2), 272-280. doi:10.1002/elps.201800083