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Abstract14

Mesoscale convective systems (MCSs) are the main source of precipitation in the trop-15

ics and parts of the mid-latitudes and are responsible for high-impact weather worldwide.16

Studies showed that deficiencies in simulating mid-latitude MCSs in state-of-the-art cli-17

mate models can be alleviated by kilometer-scale models. However, whether these mod-18

els can also improve tropical MCSs and weather we can find model settings that perform19

well in both regions is understudied. We take advantage of high-quality MCS observa-20

tions collected over the Atmospheric Radiation Measurement (ARM) facilities in the U.S.21

Southern Great Plains (SGP) and the Amazon basin near Manaus (MAO) to evaluate22

a perturbed physics ensemble of simulated MCSs with 4 km horizontal grid spacing. A23

new model evaluation method is developed that enables to distinguish biases stemming24

from spatiotemporal displacements of MCSs from biases in their reflectivity and cloud25

shield. Amazon MCSs are similarly well simulated across these evaluation metrics than26

SGP MCSs despite the challenges anticipated from weaker large-scale forcing in the trop-27

ics. Generally, SGP MCSs are more sensitive to the choice of model microphysics, while28

Amazon cases are more sensitive to the planetary boundary layer (PBL) scheme. Although29

our tested model physics combinations had strengths and weaknesses, combinations that30

performed well for SGP simulations result in worse results in the Amazon basin and vice31

versa. However, we identified model settings that perform well at both locations, which32

include the Thompson and Morrison microphysics coupled with the Yonsei University33

(YSU) PBL scheme and the Thompson scheme coupled with the Mellor–Yamada–Janjic34

(MYJ) PBL scheme.35

1 Introduction36

Mesoscale convective systems (MCSs) play an important role in Earth’s energy bal-37

ance (Houze Jr, 2018) and are essential for Earth’s water cycle in the tropics (Nesbitt38

et al., 2006; Feng, Leung, et al., 2021) and mid-latitude regions (Fritsch et al., 1986; Feng39

et al., 2016; Feng, Leung, et al., 2021). These systems are prolific rain producers and are40

the main cause of warm-season flooding (R. S. Schumacher & Johnson, 2005; Rasmussen41

et al., 2014; Pokharel et al., 2018). Observations of MCSs over the continental U.S. in-42

dicate that extreme precipitation rates associated with MCSs have significantly increased43

during the past decades (Feng et al., 2016) and MCSs are predicted to further intensify44

in the future climate (A. F. Prein et al., 2017). Nevertheless, a major bottleneck for pre-45

dicting possible climate change effects on climate extremes has been related to the poor46

representation of MCS intensity (e.g., precipitation rates, updraft strength) and spatiotem-47

poral evolution in state-of-the-art models (Wang et al., 2020; Donner et al., 2016; Lin48

et al., 2022). Improving our MCS modeling capabilities on weather, seasonal, and cli-49

mate time scales is essential to advance the credibility of model predictions.50

The frontier of global and regional atmospheric modeling has reached convection-51

permitting scales (horizontal grid spacings ∆x ≤ 4 km; Satoh et al. (2019)). While global52

large eddy (LES) simulations on climate timescales are far out of reach, convection-permitting53

“gray-zone” decadal simulations are already feasible in regional models (e.g., Liu et al.54

(2017); Berthou et al. (2020)) and will soon be achievable with global models (e.g., Stevens55

et al. (2019)). Convection-permitting models (CPMs) can explicitly simulate deep con-56

vective clouds, which revolutionizes our ability to simulate and predict severe weather57

and climate extremes (A. F. Prein et al., 2015; Clark et al., 2016). These CPMs substan-58

tially improve the simulation of MCSs including their propagation direction and speed,59

evolution, size, and associated extreme precipitation (A. F. Prein et al., 2020). Although60

this progress is encouraging, CPMs have difficulties simulating MCS cold pool and draft61

dynamics that modulate the MCS lifecycle and development, especially in weakly-forced62

environments (Haberlie & Ashley, 2019a; Wang et al., 2020).63
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In this study, we investigate the ability of the Advanced Research Weather Research64

and Forecasting (AR-WRF or short WRF) model (Skamarock & Klemp, 2008; Powers65

et al., 2017) at convection-permitting resolution (4 km horizontal grid spacing) to sim-66

ulate MCSs that overpassed the U.S. Department of Energy’s (DOE) Atmospheric Ra-67

diation Measurement (ARM) (Mather & Voyles, 2013) sites in the U.S. Southern Great68

Plains (SGP, Lamont, Oklahoma) (Sisterson et al., 2016) and the Amazon basin (MAO,69

Manaus, Brazil) (Martin et al., 2016). MCSs in those regions initiate and develop un-70

der very different environmental conditions, which promotes distinct convection lifecy-71

cle characteristics and associated precipitation behaviors (Wang et al., 2019).72

Moreover, Wang et al. (2019) recently showed that MCSs over the SGP and MAO73

sites feature similar rainfall rates and accumulations, though having larger stratiform rain-74

fall contributions in the U.S. SGP events. Similarly, the convective cold pools have com-75

parable strength in both regions. However SGP MCSs show more intense convective up-76

drafts, deeper and stronger convective downdrafts, and larger mass flux than MAO MCSs77

(Wang et al., 2020). The SGP MCS investigated for this study predominantly occur in78

the springtime (see Table 1) and feature strong large-scale forcing (e.g., frontal passages),79

which is distinctly different from MAO MCSs that typically occur under much weaker80

synoptic-scale forcing. These differences in synoptic-scale and thermodynamic forcings81

motivate this study to explore the skill of CPMs and their sensitivities to model physics82

in simulating MCSs in both regions. There have been several studies that investigate the83

sensitivity of simulated MCSs to the model microphysics (Xue et al., 2017; Feng et al.,84

2018; Shpund et al., 2019; Fan et al., 2017; Han et al., 2019) and planetary boundary85

layer (PBL) schemes (Stephan & Alexander, 2014) using kilometer-scale models. Most86

of these studies focus on U.S. mid-latitude MCSs and do not assess sensitivities across87

climate zones.88

The MCS overpasses over the SGP and MAO sites that are described in Wang et89

al. (2019) provide a unique opportunity for in-depth analyses of the performance of CPMs90

in simulating MCSs in these two regimes. However, using ARM observations for model91

evaluation is challenging due to the limited spatial coverage of the observations and spa-92

tiotemporal displacements of MCSs in the simulations. Traditional evaluation methods93

cannot be used in such situations due to the so-called ”double-penalty problem” (Roberts94

& Lean, 2008; A. Prein et al., 2013). In these cases, simulation performance is penalized95

twice compared to null behaviors, once for not properly simulating the primary event96

and once for including secondary features that were not observed. We present a new method97

that identifies the spatiotemporal displacement of simulated storms, which allows us to98

disentangle displacement errors from other modeling errors. We use this method to test99

the sensitivity of simulated MCSs at the SGP and MAO sites to perturbed model PBL-100

and micro-physics schemes.101

2 Data and Methods102

2.1 MCS Case Selection103

MCSs in the U.S. Great Plains are well studied using observations (Fritsch et al.,104

1986; Houze Jr, 2018; Song et al., 2019; Haberlie & Ashley, 2019b; Wang et al., 2019)105

and models (Trier et al., 2010; Feng et al., 2018; A. F. Prein et al., 2020). U.S. MCSs106

have a strong seasonality and are most frequent in the southern Great Plains during spring107

and in the northern Great Plains during summer (Li et al., 2021). Spring MCSs are fre-108

quently related to frontal passages, feature an enhanced Great Plains low-level jet, and109

are typically squall lines (Song et al., 2019). Spring MCSs occur under large convective110

available potential energy (CAPE) and convective inhibition (CIN) anomalies, while sum-111

mertime MCSs occur under much weaker synoptic-scale forcing (Feng, Song, et al., 2021).112

Even kilometer-scale models can have difficulties in simulating MCSs under weakly forced113

summertime conditions (A. F. Prein et al., 2020).114
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MCSs are the dominant rain-producer in the Amazon basin, which features about115

7,200 MCSs per year (Rehbein et al., 2018; Anselmo et al., 2021) contributing approx-116

imately 50% of the annual rainfall (Feng, Leung, et al., 2021). MCSs in the Amazon can117

have various morphologies and sizes but typically develop in lines (Anselmo et al., 2021).118

The number of MCSs during the ARM Green Ocean Amazon (GoAmazon) campaign119

period (2014–2015), whose data we leverage in this study, was about 50% lower than the120

2000–2013 climatology (Rehbein et al., 2019) probably due to positive equatorial Pacific121

sea surface temperatures and reduced moisture transport into the Amazon basin. For122

additional context, the larger-scale regimes associated with GoAmazon mature MCS events123

are summarized by Wang et al. (2019) and more generically in Giangrande et al. (2020).124

We investigate MCS events over the U.S. DOE ARM (Mather & Voyles, 2013) SGP125

(Sisterson et al., 2016) site and the 2014/15 GoAmazon field campaign site near Man-126

aus Brazil (MAO; Martin et al. (2016, 2017); Giangrande et al. (2017)). In previous work,127

we identified 16 MCS overpasses over the SGP site and 44 over the MAO sites (Wang128

et al., 2019). From these cases, we simulate a sub-set of 13 cases at the SGP site and 41129

cases at the MAO site based on observational data availability. After comparing to ob-130

served radar reflectivity (Z) and satellite brightness temperature (BT) we select 11 well-131

simulated MAO MCSs that occurred in different seasons (4 cases in the wet seasons, 4132

cases in the transition seasons, and 3 cases in the dry seasons; see Table 1). These MCSs133

have various morphologies (e.g., propagating lines vs. convection organization over the134

site). The dates and characteristics of the selected SGP and MAO cases are shown in135

Table 1.136

2.2 Observational Datasets137

We use S-band Z (10-cm wavelength, 3 GHz) and satellite-derived cloud BT for model138

evaluation. For MAO MCS cases, volumetric radar observations collected during the GoA-139

mazon2014/15 campaign by the SIPAM S-band radar are used. These data are quality140

controlled and interpolated to a three-dimensional grid (C. Schumacher & Funk, 2018).141

Data are available every 12minutes on a 2 km horizontal grid, which covers a maximum142

area of 480 km×480 km. The vertical grid spacing is 500m at constant altitude plan po-143

sition indicator (CAPPI) with a vertical grid spacing of 500m up to 20 km height. We144

test the sensitivity of our model evaluation using scans at 2 km, 4 km, and 6 km altitudes.145

Those levels are chosen due to the complete data coverage over the radar site (higher lev-146

els have missing data over the radar location). The 2 km CAPPIs (those that sample147

to the furthest distance) are limited to 180 km in range, which informed our decision about148

the default scanning distance that we will introduce in Section 2.4. For the SGP MCS149

events, we use the GridRad (Homeyer & Bowman, 2017) product that merges Z from150

the U.S. National Weather Service NEXRAD WSR-88D high-resolution S-band Doppler151

weather radars (Ansari et al., 2018). GridRad provides hourly, three-dimensional, Z on152

an 0.02◦ horizontal and 1 km vertical grid between 1995 to 2018 covering the Contigu-153

ous United States. We use the same scanning distance as for the Amazon MCS evalu-154

ation for consistency, but the larger radar coverage in the U.S. also allows testing the155

sensitivity of our analysis to the scanning distance setting. The NEXRAD and SIPAM156

are quality controlled and accurate within 1-2 dBz (Wang et al., 2019).157

The BT observations are derived from the GOES-13 satellite Chanel 4 (Knapp &158

Wilkins, 2018). Channel 4 measurements (often referred to as the ”Cirrus” Band; ap-159

prox. central wavelength is 1.37 µm) were selected owing to their high contrast in iden-160

tifying anvil clouds and their good agreement with simulated BT data (Feng, Leung, et161

al., 2021). The only exception where we substituted GOES13 data with GOES15 data162

is June 5, 2013, MCS case that over-passed the SGP site due to missing data in GOES13.163

GOES data are provided hourly with all data mapping to the nearest hour on an equal164

angle grid with a spacing of 0.04◦.165
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BT needs to be estimated from WRF output since it is not a standard output vari-166

able, either by running a radiative transfer model (NCEP, 2020) or by applying empir-167

ical relationships between the top of the atmosphere long-wave outgoing radiation and168

BT (Yang & Slingo, 2001; Wu & Yan, 2011). We tested both approaches and found that169

they result in very similar estimates, especially over the convective regions, which are170

the focus of this study. Since empirical estimates are significantly cheaper to perform171

compared to running a radiative transfer model, we use the equation presented in Wu172

and Yan (2011) for the calculation of the BTs using WRF top of the atmosphere out-173

going long-wave radiating. This approach is similar to what has been used in existing174

MCS studies (Feng, Leung, et al., 2021).175

2.3 Model Setup176

We use the WRF model version 4.1.5 (Skamarock & Klemp, 2008; Powers et al.,177

2017) for the simulations. The simulation domains are shown in Fig. 1. Each domain con-178

sists of 500×500 grid cells and 96 stretched vertical levels. The horizontal grid spacing179

is approximately 4 km, which is sufficient to capture bulk MCS properties reasonably well180

at computational affordable costs (A. F. Prein et al., 2020). Each simulation is started181

24-hours before an MCS overpass at the corresponding ARM site (Wang et al., 2019)182

and has a total runtime of 36-hours. The initial and lateral boundary conditions are de-183

rived from hourly pressure level data from the fifth generation European Center for Medium-184

Range Weather Forecasting (ECMWF) reanalysis (ERA5; Hersbach et al. (2020)). We185

use the Noah-MP land surface model (Niu et al., 2011), the RRTMG shortwave and long-186

wave radiation scheme (Iacono et al., 2008) and do not use a convection parameteriza-187

tion scheme. We test three options each for the microphysics and PBL parameterizations,188

to be described below. These schemes were selected as they represent several of the most189

widely tested/used options and feature different levels of complexity and underlying as-190

sumptions.191

For our microphysical sensitivity tests, we chose the Thompson (Thompson et al.,192

2004), the Morrison (Morrison et al., 2009), and the P3 (Morrison & Milbrandt, 2015)193

schemes. All of these are bulk microphysics schemes that vary in their representation of194

hydrometeors. The Thompson scheme uses two moments for cloud water, rain, and grau-195

pel/hail hydrometeors and one moment for ice and snow; which allows it to predict grau-196

pel/hail, water, and rain density. However, Thompson representations for ice properties197

is otherwise limited compared to the other schemes tested. The Morrison microphysics198

scheme is more complex than the Thompson scheme since it also represents two moments199

of ice and snow. The P3 scheme follows the full 2-moment implementation of the Mor-200

rison scheme but includes a detailed prediction of ice particle properties (conceptually201

similar to Jensen et al. (2017)). This change avoids the artificial classification of frozen202

hydrometeors into ice, snow, and graupel/hail categories. This scheme has a conceptual203

advantage over the Morrison and Thompson schemes but is less widely used and tested.204

For the PBL parameterization sensitivity testing, we considered the Yonsei Uni-205

versity (YSU; Hong et al. (2006)), the Mellor–Yamada–Janjic (MYJ; Janjić (1994); Mesinger206

(1993)), and Mellor–Yamada Nakanishi Niino Level 2.5 schemes (MYNN2.5; Nakanishi207

and Niino (2006, 2009)). YSU is a non-local scheme that uses a first-order closure and208

has an improved simulation of deeper vertical mixing in buoyancy-driven PBLs and shal-209

lower mixing in strong-wind regimes compared to successor PBL schemes (e.g., the MRF210

scheme; Hong and Pan (1996)). However, YSU features systematic biases that may in-211

clude issues such as PBLs that deepen too vigorously for springtime deep convective en-212

vironments, resulting in an underestimation of near-surface buoyancy (Coniglio et al.,213

2013). In contrast, the MYJ parameterization is a local 1.5-order closure scheme, which214

improves PBL simulations compared to its preceding schemes (Mellor & Yamada, 1982),215

without increases in computational costs. However, MYJ tends to undermix PBLs for216

locations upstream of convection (Coniglio et al., 2013). Finally, we employ the MYNN2.5,217
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which is a local scheme that uses a 1.5-order closure and improves the PBL depiction218

compared to non-local schemes (e.g., YSU) during springtime in environments that sup-219

port deep convection (Coniglio et al., 2013). Similar to MYJ, the local formulations of220

MYNN2 do not fully account for deep vertical mixing.221

2.4 Model Evaluation222

This study is motivated by the complex nature by which model biases arise due223

to spatiotemporal displacements that are, in parts, intrinsic to the simulation of deep224

convection from biases that are predominantly related to model deficiencies (e.g., model225

physics, grid spacing, numerics). We introduce a method that separates those bias com-226

ponents by identifying the time and location in the simulation that best aligns with the227

observed MCS overpass over the ARM sites. The model analysis is performed at the iden-228

tified optimal, displaced location by using observations that are common to many regions229

where MCSs occur.230

In Fig. 2, we provide a schematic of our approach. It starts by selecting a scan area231

(N), which is based on the spatial reach of the SIPAM S-band radar in Manaus (∼180 km232

radius at 2 km height). A square box scan area with a side length of N=2.6◦ (∼290 km)233

was selected over a circular region for computational efficiency. As previously described,234

Z CAPPIs at 2 km, 4 km, and 6km above ground level, are input, with the multiple heights235

included testing the sensitivity of the model evaluation to the height of the radar obser-236

vation. Since BT and GridRAD observations are only available at full hours, we search237

for the time of maximum Z in the scan area for MAO MCSs and round the time to the238

closest full hour.239

Next, we define a search time window (T ) that corresponds to the maximal allowed240

temporal displacement in the model. Here we use T±4 hours around the time of the ob-241

served MCS overpass. We decided to constrain T to four hours since larger temporal dis-242

placements would likely result in MCSs that develop in significantly different environ-243

mental conditions than the observed MCSs. We used a similar rationale in defining a search244

area that is 2◦ degrees larger than the scan area in each direction (M =N+2◦+2◦; Fig. 2).245

For each model output interval (t=10-minutes), we derive the simulated Z and BT246

within the search area and the search time window. For instance, we have 65×65 grid247

cells within the scan area and 165×165 grid cells within the search area, which results248

in 100×100 possibilities to shift the scan area within the search area. For each output249

interval, we calculate two skill scores for all possible shifts of the scan area within the250

search area.251

The first skill score is the spatial pattern correlation coefficient (CC; Wilks (2011))252

which evaluates the model skill in capturing the spatial pattern of simulated Z and BT253

without penalizing the model for systematic magnitude biases. The second skill score254

is the absolute cumulative distribution function difference (ACDFD; see Fig. 2 for an ex-255

ample). The ACDFD, in comparison, does not penalize the model for deficiencies in sim-256

ulating spatial patterns, but solely focuses on the correct simulation of the Z and BT mag-257

nitudes.258

This evaluation results in a displacement matrix containing T×(M−N)×(M−259

N) skill scores for Z CC, BT CC, Z ACDFD, and BT ACDFD. Using the above exam-260

ple, these two skill scores are calculated 480,000 times for each MCS case, assuming a261

search time window of ±4-hours with 10-minute output intervals (48-time slices) and 100×100262

possibilities to shift the scan area within the search area. To find the temporal (∆t) and263

spatial (∆x) displacement that corresponds to the location of the optimal model perfor-264

mance, we combine these four skill scores by normalizing their distributions to a mean265

of zero and a standard deviation of one. Next, we multiply the normalized ACDFD ma-266

trices by minus one, which means that larger values are better (similarly to the CC statis-267
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tics). The average of the four derived matrices is calculated, resulting in a displacement268

matrix in which larger values correspond to an improved agreement between the model269

and observations. Finally, we search for the maximum in the displacement matrix to de-270

rive ∆t and ∆x and use the optimal location and time for model evaluation.271

To better understand the impact of model physics on the MCS environments, we272

calculate CAPE, CIN, and vertical average hydrometeor mixing ratios in a ±15 grid cell273

square around the optimal location. CAPE and CIN are calculated with the python wrf.cape 2d274

function that finds the level of maximum equivalent potential temperature height in the275

lowest 3,000m above ground. Next, a parcel with 500m depth centered on this height276

is defined and used for the CAPE and CIN calculation.277

3 Results278

3.1 Idealized Tests279

Before we apply the model evaluation method to our simulated MCSs, we test its280

performance on four idealized cases. These cases are similar to cases used in previous281

studies for testing model evaluation methods (e.g., see Fig. 2 in Davis et al. (2009)) and282

exemplify how the derived skill scores are affected by specific biases in the simulation.283

To simplify the analysis, we remove the time dimension and only consider one variable284

(Z). A summary of these tests is provided in the list below.285

• The first case represents a simulated MCS that is identical to the observed case,286

but eastward displaced by 4◦ (Fig. 3a). The algorithm can detect the displacement,287

which is 350 km (4◦ longitude at 36.6◦ North; the latitude of the SGP site). As288

expected, the CC=1 and the ACDFD=0dBZ when accounting for the shift.289

• The second case (Fig. 3b) is identical to the first case, but the simulated Z values290

are 10 dBZ higher than the observed ones. The method can identify the displace-291

ment without any problems and returns a perfect correlation coefficient (CC=1)292

and an ACDFD of 6 dBZ. The reason why the latter is not 10 dBZ is because we293

are associating cloud-free areas remain zero dBZ, in both observation and simu-294

lations.295

• The third test case (Fig. 3c) features a displacement bias of 5◦ to the east and has296

a simulated MCSs width that is double the observed one. The algorithm detects297

an eastward displacement of 579.2 km (6.6◦) and returns a moderate CC of 0.58298

indicating that the MCS spatial patterns are erroneously simulated. The ACDFD299

score has a value of 6 dBZ resulting from the wider areas of simulated Z.300

• The final test case (Fig. 3d) features a simulated storm that is identical to the ob-301

served one but shifted by 7◦ to the east and rotated by 90◦. The rotational bias302

is reflected in a low correlation coefficient (CC=0.1), while the ACDFD score is303

zero due to the correct simulation of Z magnitudes in the scan area. The simu-304

lated storm is identified as shifted eastward and slightly southward. The south-305

ward shift stems from the asymmetry in the storm’s Z values.306

3.2 Evaluation of Simulated MCSs307

After gaining confidence in our evaluation method based on idealized settings, we308

apply the evaluation algorithm to real-world MCS simulations over the SGP and MAO.309

Fig. 4 shows a representative example of the algorithm’s input and output for the June310

6, 2014 case at 9:00UTC at the SGP site. The observed MCS shows a large anvil cloud311

shield (Fig. 4a) associated with a squall line (Fig. 4g). The simulated cloud shield (Fig. 4b)312

is smaller than the observed one although the model overestimates Z at 4 km altitude313

(Fig. 4h). The location where the modeled MCS is most similar to the observed one is314

180 km displacement towards the northeast (distance between red and blue dots in Fig. 4a,b)315
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and occurs 120minutes later (Fig. 4m). Comparisons between BTs in the observed (Fig. 4c)316

and simulated (Fig. 4d) scan areas show that simulated cloud tops are warmer (Fig. 4f;317

ACDFD=7.2K), and the spatial pattern correlation is CC=0.41 (Fig. 4e). The spatial318

structures of Z in the scan areas are better simulated (Fig. 4i,j) with a slight higher CC319

of 0.54 (Fig. 4k); however, the simulated Z values are higher than observed (Fig. 4l; ACDFD=3.9 dBZ).320

Fig. 4m shows the spatial maximum values of the normalized ACDFD Z, ACDFD321

BT, Z CC, and BT CC scores for every 10-minutes model output within the search time322

window. Note that the normalized ACDFD values have been multiplied by minus one,323

which means that larger values are better for all skill scores. While BT CC is the clos-324

est to the observations at t=0minutes, the maxima in the other skill scores are delayed.325

Equally weighting the four skill scores results in a temporal delay of 120minutes between326

the observed and the simulated MCSs. Fig. 4n shows the displacement matrix at t=120-327

minutes with the maximum value being highlighted as a blue dot. The displacement ma-328

trix component from the four skill scores are shown in Fig. 4o–r, each showing a displace-329

ment of the simulated MCS towards the northeast.330

3.3 Model Physics Sensitivities331

Fig. 5 shows observational and simulated results for the Nov. 17, 2014, MCS event332

at the MAO site to exemplify the impacts of different microphysics and PBL schemes333

on the simulated cloud and Z fields. The simulated fields are shown at the time of the334

optimal comparison to the observations. This event features a line of clouds produced335

by a weakly forced line of convection (Fig. 5a). Somewhat unexpectedly for a tropical336

MCS event, most of the tested simulations can capture the basic characteristics of this337

case. Clear outliers are the simulations that use the MYNN2.5 PBL scheme, which pro-338

duces wide-spread, disorganized clouds. Additionally, MYNN2.5 seems to produce clouds339

that are strongly influenced by the Amazon River (especially visible in the simulations340

using the Thompson and Morrison microphysics schemes), which is not evident from the341

observations.342

Fig. 6 shows a ’heat map’ that provides an overview of the four skill scores includ-343

ing the spatial and temporal displacements for all tested physics combinations (MCS cases344

for Z CAPPIs at 2 km above the ground). The large case-to-case variability at both lo-345

cations is prominent, which appears larger than the sensitivity to the selected physics346

(a more detailed analysis on this topic is presented below). Additionally, there is little347

correlation between skill scores. This implies that well simulated BT patterns (e.g., the348

SGP case on June 18, 2016) do not infer well simulated Z patterns or ACDFD values.349

This lack of consistency is surprising and should be further investigated in follow-up stud-350

ies. Another surprising result is that skill scores are similar for the MAO and SGP MCSs351

despite their different environmental conditions. Our initial expectation was that the SGP352

MCSs might be better simulated due to the involvement of mid-latitude disturbances353

that help to initiate and organize the systems. However, such a difference is not obvi-354

ous besides there being a slightly smaller spatiotemporal displacements for SGP MCSs.355

The largest difference between MCSs at these two locations are the lower (better) ACDFD356

Z scores over MAO, which is in part due to the stronger and larger frontally driven MCSs357

in the SGP (i.e., relative Z differences might be more similar). Another noteworthy dif-358

ference between the two regions is that SGP MCSs tend to be simulated too early (on359

average), while MAO MCSs are simulated slightly too late for most physics settings. There360

is little systematic effect from evaluating Z at different altitudes (not shown). We note361

that slightly higher average CC values are observed for the SGP events that used the 4362

km CAPPIs. However, ACDFD scores for Z are the worst (highest) at this altitude. We363

attribute these discrepancies to radar ‘bright band’ signatures (observed Z enhancement364

owing to aggregation and melting) in observed Z factor expected near the melting layer,365

something that model microphysics are struggling to simulate and standard forward model-366

radar operators do not capture.367
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Due to the large case-to-case variability, we average the skill scores of all cases and368

the 2 km, 4 km, and 6 km Z heights to better isolate the impact of the model physics on369

the simulation performance (Fig. 7). Limited consistency exists between schemes that370

perform well for the SGP and MAO events. For instance, simulations using the MYNN2.5371

scheme have the highest BT CCs for SGP cases, yet feature the lowest CCs for MAO372

MCSs (Fig. 7b). This result is in agreement with previous examples as in Fig. 5. Inter-373

estingly, a lower skill score in simulating cloud top structures (Fig. 7c) does not directly374

translate to a lower skill score in simulating Z patterns (Fig. 7a).375

A more rigorous assessment of the sources of variability in the SGP and MAO cases376

based on variance decomposition (Déqué et al., 2007; A. F. Prein et al., 2011) is shown377

in Fig. 8. Case to case variability is the largest source of uncertainty contributing between378

one-third to two-thirds of the total variability (Fig. 8a–l). The variability stemming from379

the choice of microphysics or PBL scheme is comparatively small. The choice of the PBL380

scheme is most important (contributing ∼20% to the total variability) for the ACDFD381

score of BT in the Amazon (Fig. 8g), while the microphysics scheme selection is most in-382

fluential in simulating the Z ACDFD score in the SGP (Fig. 8f). The sizes of the rings383

in Fig. 8 indicate the total variability. The ACDFD scores of Z (Fig. 8e,f) are smaller for384

cases in MAO, while the opposite is true for temporal and spatial displacements (Fig. 8i–385

l).386

We repeated the variance decomposition by averaging over all cases within a re-387

gion to highlight the other sources of variability besides the case-to-case variability (Fig. 8m–388

x). This reveals major differences between modeling sensitivities of MAO and SGP MCS389

cases. For instance, the PBL scheme substantially impacts Amazon brightness temper-390

ature CC (45%; Fig. 8o) and ACDFD scores (80%; Fig. 8s). On the other hand, SGP391

Z ACDFD scores are very sensitive to the microphysics parameterization (60%; Fig. 8r)392

and Z CCs change substantially with height at which Z is measured (60%; Fig. 8n). Con-393

cerning the total variability at the two locations, BT ACDFD score and the temporal394

and spatial displacement variabilities at the MAO site are substantially larger than those395

at the SGP site.396

To better understand the impact of the tested physics settings on the MCS sim-397

ulations at the MAO and SGP sites, we calculate the evolution of CAPE, CIN, and mean398

cloud condensates at the corresponding optimal locations averaged over all cases (Fig. 9).399

One of the most noticeable differences is that MAO pre-MCS environments have lower400

CIN values when using the MYNN2.5 PBL scheme (Fig. 9c). This indicates that using401

MYNN2.5 results in enhanced mixing at the top of the PBL and supports the develop-402

ment of wide-spread convection, such as seen in Fig. 5. Similarly, CAPE values are typ-403

ically smaller in pre-MCS environments when using MYNN2.5, although the differences404

are not as clear as for CIN (Fig. 9a). The impact of model physics on CAPE and CIN405

is less systematic for SGP MCSs (Fig. 9b,d) except for the post-MCS environmental CAPE,406

which is the lowest when using Thompson microphysics and the highest when using the407

Morrison scheme.408

Using the MYNN2.5 scheme at the MAO site results in a local maximum of cloud409

condensates at ∼3 km height in the pre-MCS environments and during the MCS over-410

pass (Fig. 9e,f), while using the YSU and MYJ schemes leads to a less pronounced peak411

that is at a lower altitude. Consistent with the above analysis, this indicates that the412

MYNN2.5 scheme produces a deeper and strongly mixed PBL. Such differences are not413

obvious for SGP MCS cases (Fig. 9h–j).414

3.4 Best Performing Model Settings415

In this section, we calculate the average skill scores ranks for each physics combi-416

nation. This allows combining the six individual scores to a single average rank skill score417
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that ranges from zero (best performing option for all tested physics) to one (worst-performing418

option), with 0.5 indicating the average performance. For more details, see Section 2.4.419

Overall, the results plotted in Fig. 10a shows that the Thompson microphysics per-420

forms best for SGP MCSs on average, while cases that use the Morrison and P3 schemes421

perform worse than average. The average sensitivity to the PBL scheme is smaller com-422

pared to microphysics sensitivities, although individual scores such as the temporal dis-423

placement show a clear sensitivity to the PBL scheme. Our simulations indicate the Thomp-424

son scheme performs best in capturing the Z distribution (ACDFD score), while it per-425

forms below average concerning spatial displacements (particularly in combination with426

the YSU scheme).427

The MAO MCS cases are more sensitive to the selection of the PBL scheme than428

SGP cases, although there is a clear effect of a microphysics-PBL scheme interaction as429

well (Fig. 10b). As shown before, using the MYNN2.5 scheme results in a sub-optimal430

performance independent of the microphysics parameterization. The main contributors431

to the poor performance are its deteriorated simulation of Z statistics and BT correla-432

tion coefficients. Overall, the best performance is achieved with the Thompson and MYJ433

scheme, followed by Morrison-YSU, and Thompson-YSU. Interestingly, the worst-performing434

physics combination in one region can perform best in the other region and vice-versa.435

This can be seen for the spatial and temporal displacement scores when using Thompson-436

YSU.437

From our input sensitivity testing, we find that three physics combinations perform438

above average independent of the Z height that is used for the analysis. Those are all439

PBL combinations with the Thompson scheme and Morrison-YSU. If the performance440

of an individual score is more important than the average performance, other physics com-441

binations might be more appropriate such as the P3-YSU combination, which results in442

the smallest MCS displacement.443

In addition to the tests of CAPPI altitudes, we test the sensitivity of model per-444

formance to radar coverage/capture domain. These tests are only possible at the SGP445

site using NEXRAD GridRad product given the available radar networks (Fig.11). Over-446

all, sensitivities are generally smaller than the physics sensitivity. This implies that the447

selection of well-performing physics options is not affected by this setting.448

4 Summary, Discussion, and Conclusion449

We present a new model evaluation method that allows us to differentiate spatiotem-450

poral displacement biases from biases in the simulated structure and intensity of the MCSs.451

We evaluate the skill of kilometer-scale models in simulating MCSs using SGP and MAO452

radar and GOES satellite observations. We are particularly interested in the impact of453

the model microphysics and PBL scheme on the simulations of mid-latitude and trop-454

ical MCSs. The main results of this study are as follows.455

• Kilometer-scale models equally well simulate continental tropical and mid-latitude456

MCSs in terms of the spatial structure and intensity of the convection and the cloud457

top field. However, spatial and temporal displacements tend to be smaller in mid-458

latitudes, likely due to the ability of the model to capture the large-scale forcing-459

driven convection.460

• Model physics that work well in mid-latitudes do not necessarily work well in the461

tropics and vice versa. For instance, simulations using the MYNN2.5 PBL scheme462

best simulate the pattern correlations of cloud BT in SGP but perform worst in463

the Amazon basin. Nevertheless, we can identify model settings that perform above464

average in both environments, such as the Thompson and Morrison microphysics465

with the YSU PBL scheme or the Thompson scheme with the MYJ PBL scheme.466
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Figure 1. Computational 4 km WRF domains for simulating MCS cases in the U.S. Southern

Great Plains (SGP; a) and Amazon basin (MAO; b). The colored contours show the model to-

pography. Each domain consists of 500×500×96 grid cells. The black circle shows the location of

the ARM SGP and MAO site.

Finding model setups that work well in different environments is critical for global467

kilometer-scale modeling efforts.468

• SGP MCS simulations are most sensitive to changes in the microphysics, in agree-469

ment with previous studies (Stephan & Alexander, 2014). Amazon MCSs are more470

sensitive to the PBL scheme formulation. However, MCS case-to-case variability471

is the largest source of variability in our model performance evaluation, highlight-472

ing the necessity of an ensemble-based approach for model evaluation.473

• There is little correlation between the model’s performance in simulating Z and474

cloud BTs. This indicates that model physics are potentially tuned to capture one475

or the other, but have difficulties capturing both fields simultaneously in a phys-476

ically sound way.477

Future studies should focus on the simulation of the 3D structure of Z in kilometer-478

scale simulations to better understand potential biases in the vertical structure of MCSs479

due to deficiencies in simulating convective properties (e.g., up-and down-drafts as shown480

in Wang et al. (2020)) at 4 km grid spacing in combination with biases in the model physics.481

A high-priority research area is to better understand the ability of kilometer-scale mod-482

els to simulate oceanic MCSs, particularly over the tropics due to their importance for483

the global water and energy cycle.484

The results from this study will inform the model setup of additional MCS sim-485

ulations in the U.S. Southern Great Plains and the Amazon basin at different horizon-486

tal grid spacings. These simulations will assess the bulk and structural convergence of487

MCS characteristics in these two environments and will help to improve the represen-488

tation of MCSs in weather and climate models.489
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Figure 2. Schematic showing the evaluation framework. An observed storm that passes over

a target location (here the SGP ARM site) is defined at time t = 0 or t0 (lower left corner)

within a scan area (N ; e.g. areal extend of a radar station). A search time window (T ) and

search area (M ; red rectangle in the large map) are defined. Simulated data are derived within

the search time window (t0 − T/2 . . . t0 + T/2) and within the search area M . Two scores are

calculated for all possible shifts of the scan area within the search area and every time step

((M − N) × (M − N) × T combinations for each score). The scores are the spatial correlation

coefficient (CC) and the absolute cumulative distribution function difference (ACDFD; orange

area in right figure).
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Figure 3. Ideal test case experiment showing the impact of displacements (a), intensity (b),

shape (c), and rotational biases (d) on the spatial displacement (∆x), correlation coefficient

(CC), and absolute cumulative distribution differences (CDF) skill score between an observed

(blue) and simulated (red) storm system. The red rectangle shows the algorithm’s search area

(M=14degrees), the hypothetical location of a radar site (here the ARM SGP site), the approxi-

mate reach of an S-Band radar (black) rectangle (4.4 degrees), displacement matrix (gray contour

lines), and the optimal displacement location (blue circle and black dashed rectangle).

–13–



manuscript submitted to Earth and Space Science

30°N

40°N

110°W 100°W 90°W

a) Obs Brightness Temperature 2014-06-12_09

30°N

40°N

110°W 100°W 90°W

b) Obs Reflectivity at 4 km 2014-06-12_11

98 96

35

36

37

38

c) Observed BT

98 96

36

37

38

39
d) Simulated BT

200 220 240
observed BT [K]

200

220

240

260

280

sim
ul

at
ed

 B
T 

[K
]

e) Obs. vs. Sim. BT
CC = 0.41

0 50 100
percentage [%]

200

220

240

260

280

f) CDFs
ACDFD = 7.2

observed
simulated
ACDFD

180 201 222 243 264 285 306

Brightness Temperature

30°N

40°N

110°W 100°W 90°W

g) Obs Reflectivity at 4 km 2014-06-12_09

30°N

40°N

110°W 100°W 90°W

h) Sim Reflectivity at 4 km 2014-06-12_11

0.00 11.25 22.50 33.75 45.00 56.25 67.50

Reflectivity at 4 km

98 96

35

36

37

38

i) Observed dBZ

98 96

36

37

38

39
j) Simulated dBZ

0 20 40
observed dBZ [dBZ]

0

20

40

60

sim
ul

at
ed

 d
BZ

 [d
BZ

]

k) Obs. vs. Sim. dBZ
CC = 0.54

0 50 100
percentage [%]

0

20

40

60

l) CDFs
ACDFD = 3.9

observed
simulated
ACDFD

200 100 0 100 200
time since observation [minutes]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

re
la

tiv
e 

sim
ila

rit
y 

[-]

m) temporal displacement

ACDFD dBZ
ACDFD BT
CC dBZ
CC BT
mean

36°N

38°N

100°W100°W 98°W 96°W

n) Displacement Matrix

0.0

0.3

0.6

0.9

1.2

1.5

1.8

98 96

36

38

o) ACDFD_dBZ [dBZ]

0.0
2.8
5.6
8.4
11.2
14.0

98 96

36

38

p) ACDFD_BT [K]

0
4
8
12
16
20

98 96

36

38

q) CC_dBZ []

0.8
0.4

0.0
0.4
0.8

98 96

36

38

r) CC_BT []

0.8
0.4

0.0
0.4
0.8

Figure 4. Observed brightness temperature (BT in K; a) and reflectively (Z in dBZ; g) field

during an MCS overpass over the ARM SGP site (red dot in a,b,g,h) on June 12, 2014, 9UTC.

Simulated BT (b) and Z (h) field that is most similar to the observed fields using the Thompson

microphysics and the YSU PBL scheme. a,b,g,h) The large red rectangle shows the search area

and the small red rectangle the scan area. The blue rectangle in b,h shows the most similar sim-

ulated area compared to the observed scan area with the blue dot indicating the best estimate

for the displacement error. Additionally shown is a zoomed-in version of the observed scan area

and the most similar simulated BT (c,d) and Z (i,j). The scatter plot and Spearman correlation

coefficient (CC) are shown for BT (c) and Z (k). Only every tenth point is shown in the scatter

plot to improve visibility. The absolute commutative distribution differences (ACDFD; orange

area) are shown for BT (f) and Z (l). m) Maxima of the normalized spatial fields of Z ACDFD

(light red), BT ACDFD (light blue), Z CC (dark red), and BT CC (dark blue). The maxima of

the averaged normalized spatial field of these four components is shown as a thick black line and

the time displacement (peak value) of the simulated optimal field (120-minutes too late) is indi-

cated with a red dashed line. n) Displacement matrix with the optimal simulated location shown

as a blue circle and the four components of the displacement matrix including o) Z ACDFD, p)

BT ACDFD, q) Z CC, and r) BT CC during the optimal displacement time.
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reflectively (inlet in lower left) at 2 km for the Nov. 17, 2014, MCS case in the Amazon. Results

using the Thompson, Morrison, and P3 microphysics scheme are shown top down and YSU,
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Figure 6. Heatmap of the reflectivity (Z) correlation coefficient (a), BT correlation coefficient

(b), Z ACDFD (c), BT ACDFD (d), temporal displacement (e), and spatial displacement (f).

Each panel shows results from the 9 different physics perturbations (columsn) and case experi-

ments (rows) in the Amazon (mao; top block) and U.S. central Great Plains (sgp; bottom block).

The average performance (mean over all cases) is highlighted in a black rectangle. Shown are

results for a 2 km radar scanning heights.
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Figure 8. Variance decomposition showing the contribution of the PBL scheme (P), micro-

physics scheme (M), radar scanning height (H), case-to-case variability (C), and mixed terms

(e.g., PM denotes the variability from the PBL and microphysics combination) to the total vari-

ance in the Z and BT correlation coefficient (CC), Z and BT absolute cumulative distribution

function difference (ACDFD), temporal (∆t), and spatial displacement (∆x); from left to right.

Results are shown including case-to-case variability (top two rows) and for the variability aver-

aged over cases (bottom two rows). For each of these two options results from the Great Plains

(SGP, top) and Amazon (MAO, bottom) simulations are shown. Circle sizes indicate the total

amount of variability relative to the region with the larger variability (i.e., smaller circles show

smaller total variability).
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Figure 9. Temporal development of CAPE (a, b), CIN (c, d), and average cloud hydromether

mixing ratios (e–j) for MAO (left column) and SGP MCSs (right column). Shown are the average

values over all cases in each region at the optimal location (±15 grid cells) and relative to the op-

timal time in the simulations. Panels e–j show the average cloud (frozen and liquid) hydrometeor

mixing rations within the ±15 grid cells region arround the optimal location 180 minutes before,

at, and 240 minutes after the optimal time.
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Figure 10. Average rank skill scores comparing the performance of the tested physics options

(columns in each panel) over the SGP (a) and MAO (b) site including the mean scores of both

locations (c) concerning temporal displacement (∆t), spatial displacement (∆x) BT correlation

coefficients (BT-CC), BT absolute cumulative distribution function differences (BT-ACDFD),

reflectivity (Z) correlation coefficient (Z-CC), and Z absolute cumulative distribution function

differences (Z-ACDFD). The bottom row in each panel shows the mean score averaged over all

metrics.
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Figure 11. Similar to Fig. 10 but showing the impact of increasing the scan area from 2.4◦

(left sub-columns) to 4◦ (right sub-columns) for U.S. Great Plains cases. The radar scan height is

2 km.
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Table 1. Selected MCS cases in the U.S. central Great Plains (SGP) and Amazon basin

(MAO). The date and time indicates the overpass of the MCS over the corresponding ARM

site as defined in Wang et al. (2019).

Region Date & Time [UTC] Season Morphology

SGP 2012.05.31 04:00 spring squall line
SGP 2012.06.15 07:00 spring squall line
SGP 2013.05.09 07:00 spring squall line
SGP 2013.06.05 09:00 spring bow echo
SGP 2013.06.17 07:00 spring squall line
SGP 2014.06.02 04:00 spring squall line
SGP 2014.06.05 12:00 spring bow echo
SGP 2014.06.12 06:00 spring squall line
SGP 2014.06.28 16:00 spring weakly organized
SGP 2014.07.10 10:00 summer training line
SGP 2016.03.08 15:00 spring weak squall line
SGP 2016.06.18 10:00 spring mesoscale convective complex
SGP 2016.07.29 09:00 summer squall line

MAO 2014.08.16 14:00 dry local, small system
MAO 2014.09.17 17:00 dry squall line
MAO 2015.06.21 14:00 dry squall line
MAO 2014.04.01 15:00 wet training line
MAO 2014.12.10 14:00 wet local, weakly organized
MAO 2015.03.28 15:00 wet local, weakly organized
MAO 2015.04.12 12:00 wet squall line
MAO 2014.10.04 13:00 transition squall line
MAO 2014.10.18 14:00 transition local, weakly organized
MAO 2014.11.17 18:00 transition squall line
MAO 2015.11.06 12:00 transition squall line
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Figure 11.
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a) U.S. Great Plains  (SGP)
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