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Affective video content analysis is an active topic in the field of affec-
tive computing. In general, affective video content can be depicted by
feature vectors of multiple modalities, so it is important to effectively
fuse information. In this work, a novel framework is designed to fuse
information from multiple stages in a unified manner. In particular, a
unified fusion layer is devised to combine output tensors from multiple
stages of the proposed neural network. With the unified fusion layer,
a bidirectional residual recurrent fusion block is devised to model the
information of each modality. Moreover, the proposed method achieves
state-of-the-art performances on two challenging datasets, i.e., the accu-
racy value on the VideoEmotion dataset is 55.8%, and the MSE values
on the two domains of EIMT16 are 0.464 and 0.176 respectively. The
code of UMFN is available at: https://github.com/yunyi9/UMFN.

Introduction: Affective computing has many application scenarios, with
affective video content analysis being one of its active research top-
ics [1–3]. The purpose of affective video content analysis is to auto-
matically predict emotions elicited by videos. To this end, recent stud-
ies designed neural networks and optimized model parameters [4].
Although previous researches [5–13] have achieved promising progress,
it is still challenging to analyze the emotions induced by videos.

Generally, information fusion is a significant ability of human brain,
and human perceives the world by multiple modalities, e.g., visual
modality, aural modality, attribute modality, etc. Therefore, previous
researches combine multiple features from different modalities to ana-
lyze affective video content. Moreover, previous scenes and sounds can
affect the audience’s current emotion, so the fusion of temporal infor-
mation can improve the capability of affective video content analysis.
Furthermore, the fusion of information from different stages of neu-
ral network may promote the generalization ability of network model.
However, most existing works ignore information from multiple stages,
or fuse them in different ways.

To address this issue, a unified multi-stage fusion network (UMFN)
is proposed to uniformly fuse information from multiple stages. Specif-
ically, a unified fusion layer (UFL) is designed to combine information
from multiple stages in a unified way, and the tensor of fusion weight
in UFL is learned by using an optimization algorithm. Moreover, a bidi-
rectional residual recurrent fusion block (Bi-RRFB) is devised to model
the information of each modality. Experiments are conducted on the two
challenging datasets of VideoEmotion [2] and LIRIS-ACCEDE [3], and
the results show that the proposed method obtains better performances
than baseline methods and achieves state-of-the-art results.

In summary, the main contributions of this work are as follows. First,
to predict emotions by using visual-aural features, UMFN is designed
with the proposed Bi-RRFB and UFL. Second, UFL is proposed to
uniformly fuse information from multiple stages, so there is no need
to design different fusion layers to combine information from multi-
ple stages. Third, Bi-RRFB is devised to model the information of each
modality, in which the proposed UFL is utilized to combine the output
tensors from multiple stages of Bi-RRFB.

Proposed Unified Multi-stage Fusion Network: In this section, the pro-
posed UMFN is introduced as visualized in Fig. 1. First, feature vectors
are extracted from three convolutional neural networks (CNNs). Then,
the model of UMFN is trained by using feature vectors on the training
set. In the testing phase, the labels of videos on the test set are predicted
by utilizing the trained model.

Fig 1 Overview of the proposed UMFN.

Network Architecture: In this work, three modalities (i.e., audio signals,
RGB frames and optical flows) are selected to depict videos. Similar
to [12], three types of feature vectors are respectively calculated by
feeding the three modalities into three CNNs, namely VGGish [14],
Inception-v3-RGB [15] and Inception-v3-Flow [15].

As shown in Fig. 1, there are three streams in UMFN, i.e., audio
stream, spatial stream and temporal stream, which correspond to the
three modalities. Except for the input dimension of the first fully con-
nected (FC) layer of the stream, these three streams have the same net-
work architecture. In each stream, the feature vectors of the correspond-
ing modality are mapped to a fixed dimension by using the first FC layer
of the stream. After this FC layer, layer normalization (LayerNorm) and
dropout are utilized to regularize the activities of neurons. Then, the out-
put tensors are fed into the designed Bi-RRFB, which is detailed in the
next section. The output tensors from the three Bi-RRFBs are fused by
using UFL, which is presented in Section 3. In all experiments, the out-
put dimension of the first FC layer is fixed at 800, and the dropout ratio
is set to 0.1.

Bidirectional Residual Recurrent Fusion Block: The proposed Bi-
RRFB plays an important role in fusing information from multiple
stages. In order to model temporal information, Bi-RRFB adopts the
architecture of recurrent neural network (RNN). Let {xt | t ∈ [1, T ]}
and {ht | t ∈ [1, T ]} be the input set and hidden state set of a RNN cell
respectively, and T be the length of input sequence, then the output of
RNN is formulated as

ht = fr c (xt, ht−1), (1)

where fr c (·) is the mapping function of the RNN cell, ht−1 is the hidden
state at the previous time step. Although other RNN cells can be used in
Bi-RRFB, the LSTM cell is selected as the basic RNN cell in Bi-RRFB.

In order to improve the generalization ability of the model, a batch of
connections in the previous hidden state ht−1 are dropped by the dropout
method, where the dropout ratio is set to 0.1. Let X1 = {x1

t | t ∈

[1, T ]} and {h1
t | t ∈ [1, T ]} be the input set and hidden state set of the

first recurrent block respectively, the output at the t−th temporal step is
computed as

h1
t = fr c (x

1
t , Dropout(h1

t−1)), (2)

where Dropout(·) is the dropout function. By stacking the list of h1
t along

the temporal dimension, the output tensor at the first recurrent block H1

can be calculated as

H1 = LayerNorm(Stack(h1
t )), (3)

where h1
t can be computed by using Eq.(2), Stack(·) is the function that

concatenates a list of tensors along the last dimension of the output ten-
sor, and LayerNorm(·) is the function for layer normalization. By sub-
stituting Eq.(2) into Eq.(3), the mapping function of the recurrent block
frb (·) can be written as

H1 = frb (X
1)

= LayerNorm(Stack(h1
t ))

= LayerNorm(Stack( fr c (x1
t , Dropout(h1

t−1)))).

(4)
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Inspired by ResNet, the input tensor of the second recurrent block X2

is
X2 = ReLU(X1 + H1)

= ReLU(X1 + frb (X
1)),

(5)

where ReLU(·) is the function of rectified linear unit. By substituting
Eq.(5) into the mapping function frb (·), the output of the second recur-
rent block H2 is calculated as

H2 = frb (X
2)

= frb (ReLU(X1 + frb (X
1))).

(6)

So the output tensor of the l-th recurrent block H l is computed as

H l = frb (X
l )

= frb (ReLU(X l−1 + frb (X
l−1))),

(7)

where l ∈ [2, L] and L is the number of residual blocks.
All output tensors of recurrent blocks are fed into a multi-layer per-

ceptron (MLP) block, which consists of two FC layers. Between the two
FC layers, the methods of layer normalization and dropout are used to
regularize the activities of neurons. So the output tensor of the MLP
block Ol

m is calculated as

Ol
m = fmp (H

l )

= FC(Dropout(LayerNorm(FC(H l )))),
(8)

where fmp (·) is the mapping function of MLP block, and FC(·) stands
for the function of fully connected layer.

In order to efficiently utilize temporal information, the proposed UFL
is utilized to combine the temporal information in the output tensor Ol

m ,
and the output tensor Ol

u of this UFL is calculated as

Ol
u = ful (O

l
m), (9)

where ful (·) is the mapping function of UFL and is defined as Eq.(10)
in Section 3. To fully use the information of all residual blocks, UFL is
employed to fuse the output tensor list {Ol

u | l ∈ [1, L]}. With regard
to the combination of bidirectional RRFB, UFL is also used to combine
the output tensors of the two RRFBs.

Unified Fusion Layer: In neural networks, the output information from
a stage is a tensor. In order to fuse information from multiple stages uni-
formly, UFL is designed to combine these output tensors. In this work,
the input tensors of UFL are from the outputs of 4 stages, including
the temporal sequence of RNN, residual blocks, bidirectional RRFB and
streams of multiple modalities. Let X ∈ RB×K×N be the input tensor of
UFL, where B is the batch size, K represents the number of categories
for the classification task and is fixed at 1 for the regression task, and N

stands for the number of slices of tensor X to be fused. Let W ∈ RN×1

be the weight tensor and the network parameter to be learned, the map-
ping function of UFL ful (·) is defined as

ful (X) = Sum(X ⊗ Softmax(W )), (10)

where ⊗ is the matrix multiplication with bitwise operators, Softmax(·)
is the softmax function so that the elements of the output tensor lie in
the range [0,1] and sum to 1, and the Sum(·) function returns the sum of
each slice of the input tensor in the last dimension. Therefore, the shape
of output tensor of UFL is B × K .

For different tasks, N has different meanings. More specifically, N
is the length of the temporal sequence of RNN in the residual block,
and N is the number of residual blocks in Bi-RRFB. Furthermore, N is
fixed at 2 for the fusion of output tensors of the two RRFBs. Regarding
the fusion of output tensors from multiple streams, N is the number of
modalities. In conclusion, tensors from multiple stages can be fused in a
unified way by using UFL.

Experiment:

Dataset and Metric: Experiments are conducted on two challenging
datasets, i.e., VideoEmotion [2] and LIRIS-ACCEDE [3]. The VideoE-
motion dataset [2] includes 1,101 user-generated videos, which fall
into 8 emotional categories. For evaluation, the dataset [2] provides 10

training-test splits. In each split, the training set includes 736 videos and
the test set contains 365 videos. In all experiments, we follow the official
protocols, and report the mean of the 10 predicted accuracy values [2].
The MediaEval 2016 Emotional Impact of Movies Task (EIMT16) [16]
is a task of the LIRIS-ACCEDE dataset [3]. EIMT16 includes 11,000
short videos, which are split into 9,800 training videos and 1,200 test
videos. This dataset has two affect domains, i.e., arousal and valence.
According to the recommendations of the competition organizers [16],
mean squared error (MSE) and Pearson correlation coefficient (PCC) are
the official evaluation metrics for EIMT16, and are calculated in the two
affect domains, respectively.

Experimental Setup: In this work, PyTorch is utilized to implement the
proposed UMFN. Label smoothed cross entropy [17] and MSE are used
as the loss function for the classification task on VideoEmotion and the
regression task on EIMT16, respectively. Regarding model training, the
Adam algorithm is utilized to optimize UMFN, the learning rate is fixed
at 1e-5, and the parameter of weight decay is set to 1e-2 on EIMT16
and 1e-6 on VideoEmotion, respectively. To achieve a balance between
performance and computational complexity, the length of input sequence
T is set to 18 on EIMT16 and 50 on VideoEmotion, and the batch size for
network training is configured to 32 on EIMT16 and 8 on VideoEmotion.
In order to avoid over-fitting, early stopping schema is utilized. For fair
comparison, UMFN uses the same scheme as the baseline methods to
choose parameters.

Evaluation of Parameter L: As described in Section 3, the number of
residual blocks L is an important parameter. In order to find out the
best parameter, experiments are conducted on the two datasets. Table 1
shows the evaluation of parameter L, where “ACC” represents the mean
of predicted accuracy values of the 10 test splits, “A-MSE” is the value
of MSE in the arousal domain, and “V-MSE” stands for the value of
MSE in the valence domain. For fair comparison, all methods in Table 1
utilize the same experimental setup. As shown in this table, UMFN with
3 residual blocks achieves the best results on the two datasets. Therefore,
we set the parameter L to 3 in the subsequent experiments.

Table 1. Evaluation of the number of residual blocks. The best results
are highlighted in bold.

Parameter L
VideoEmotion EIMT16

ACC(%) A-MSE V-MSE

2 55.4 0.475 0.186
3 55.8 0.464 0.176
4 55.1 0.441 0.185
5 55.0 0.467 0.181

Evaluation of Modality Fusion: Generally, different input modalities
have different representation ability. By using UMFN, experiments are
performed on the two datasets to evaluate the fusion of these three
modalities, i.e., audio signals, RGB frames and optical flows. Table 2
reports the experimental results, where “Audio” stands for the modality
of audio signals, “Flow” represents the modality of optical flows, and
“RGB” is the modality of RGB frames. Except for the input modalities,
all methods utilize the same experimental setup.

Table 2. Evaluation of modalities on the two datasets.

Method
VideoEmotion EIMT16

ACC(%) A-MSE V-MSE

Audio+Flow 49.2 0.554 0.185
Flow+RGB 53.2 0.563 0.181
Audio+RGB 54.9 0.540 0.179

Audio+Flow+RGB 55.8 0.464 0.176

As shown in Table 2, the experimental results on these two datasets
are improved by using UMFN to fuse the three modalities, because these
modalities complement each other and UMFN reduces redundant infor-
mation between these modalities. Regarding the fusion of two modal-
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ities, the method “Audio+RGB” achieves better performances than the
other two methods. This is probably because there is less redundancy
between audio signals and RGB frames.

Comparison with Baselines: In this section, three methods are selected
as baselines (i.e., UMFN-GRU, UMFN-LSTM and AFRN [12]),
because these methods are similar to the proposed UMFN. In partic-
ular, UMFN-GRU and UMFN-LSTM respectively use stacked GRU
and stacked LSTM instead of the proposed Bi-RRFB. Moreover, AFRN
utilizes LSTM to model temporal information, and combines informa-
tion from two stages by using temporal-adaptive-fusion layer and multi-
modal-adaptive-fusion layer. Table 3 reports the comparison between
UMFN and baseline methods. To make a fair comparison, UMFN-GRU,
UMFN-LSTM and UMFN utilize the same experimental setup. Regard-
ing AFRN, Table 3 shows the results reported in [12].

Table 3. Comparison with baseline methods on the two datasets.

Method
VideoEmotion EIMT16

ACC(%) A-MSE V-MSE

AFRN [12] 48.2 0.542 0.193
UMFN-GRU 49.2 0.847 0.186
UMFN-LSTM 50.4 1.097 0.185
UMFN 55.8 0.464 0.176

As shown in Table 3, AFRN obtains relatively worse results than
the methods based on UMFN, because AFRN only fuses information
from two stages. Moreover, UMFN-GRU and UMFN-LSTM gain simi-
lar results. In a word, the proposed UMFN obtains the best experimental
results on the two datasets. This partly demonstrates that UMFN suc-
cessfully fuses information from multiple stages in a unified way.

Computational Complexity: To quantify the computational time, exper-
iments are performed using a GTX 3090 GPU. On the VideoEmotion
dataset, the training time of UMFN, UMFN-LSTM and UMFN-GRU
is about 1.48, 1.39 and 1.37 minutes per epoch, respectively. So, after
extracting feature vectors, the model of UMFN can be trained quickly.

Comparison with State-of-The-Art Methods: This section reports the
standardized evaluations between the proposed UMFN and other meth-
ods. Table 4 and Table 5 show the comparison with state-of-the-art meth-
ods on the two datasets.

Table 4. Comparison with state-of-the-art methods on VideoEmo-
tion.

Method ACC(%)

MMLGAN [5] 51.1
Cheng et al. [6] 52.7
KeyFrame [7] 52.9
HAMF [8] 53.1
VAANet [9] 54.5
UMFN 55.8

Table 5. Comparison with state-of-the-art methods on EIMT16.

Method
Arousal Valence

MSE PCC MSE PCC

MML [10] 1.173 0.446 0.198 0.399
Guo et al. [11] 0.543 0.459 0.209 0.326
AFRN [12] 0.542 0.522 0.193 0.468
MMLGAN [5] 1.077 0.491 0.194 0.445
AttendAffectNet [13] 0.742 0.503 0.185 0.467
UMFN 0.464 0.523 0.176 0.503

In summary, the methods [5–13] in the above tables utilize multi-
ple modalities to describe affective content, and employ different strate-
gies to fuse feature vectors. In particular, these methods obtain good

experimental results by devising a deep visual-audio attention network,
a multi-modal local-global attention network, a context-aware frame-
work, a key frames extraction algorithm, a hierarchical attention-based
multi-modal fusion network, a self-attention based network, etc. Differ-
ent from the above methods, our method makes full use of the informa-
tion from 4 stages, thus improving experimental performances. In con-
clusion, the proposed UMFN obtains better experimental results than
other state-of-the-art methods on the two datasets.

Conclusion: In this work, UMFN is proposed to fuse information from
multiple stages in a unified manner. For this purpose, UFL is designed
to combine information uniformly, in which the weights of this layer are
learned by an optimization algorithm. Meanwhile, Bi-RRFB is devised
to model the information of each modality, where UFL is used to fuse
information from multiple stages. On two challenging datasets, UMFN
achieves better performances than baseline and other state-of-the-art
methods, because information from multiple stages is fully utilized.
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