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Abstract 18 

1. Morphology-based taxonomic research frequently applies linear morphometrics (LMM) in 19 

skulls to quantify species distinctions. The choice of which measurements to collect 20 

generally relies on the expertise of the investigators or a set of standard measurements, but 21 

this practice may ignore less obvious or common discriminatory characters. In addition, 22 

taxonomic analyses often ignore the potential for subgroups of an otherwise cohesive 23 

population to differ in shape purely due to size differences (or allometry). Geometric 24 

morphometrics (GMM) is more complicated as an acquisition technique, but can offer a more 25 

holistic characterization of shape and provides a rigorous toolkit for accounting for allometry.  26 

2. In this study, we used linear discriminant analysis to assess the discriminatory 27 

performance of four published LMM protocols and a 3D GMM dataset for three clades of 28 

antechinus known to differ subtly in shape. We assessed discrimination of raw data (which 29 

are frequently used by taxonomists); data with isometry removed; and data after allometric 30 

correction.  31 

3. We found that group discrimination among raw data was high for LMM, possibly inflated 32 

relative to GMM when visualised in PCA plots. However, GMM produced better results in 33 

group discrimination after the size and allometry treatments. High measurement redundancy 34 

in LMM protocols appears to result in relatively high allometry but low discriminatory 35 

performance.  36 

4. These findings suggest that taxonomic measurement protocols might benefit from GMM-37 

based pilot studies, because this offers the option of differentiating allometric and non-38 

allometric shape differences between species, which can then inform on the development 39 

of the easier-to-apply LMM protocols. 40 
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Introduction 43 

Morphometric measurements are an important tool in efforts to differentiate 44 

mammalian species from each other, and have been used in taxonomic research for 45 

centuries. Mammalian skulls in particular are widely used for taxonomic diagnostics and 46 

have long provided important data which can be used in the delimitation of species or 47 

Evolutionary Significant Units (ESUs). Cranial morphometric measurements are widely used 48 

in the separation of closely related mammalian groups around the world, ranging across 49 

disparate taxa such as rodents (Alhajeri, 2021), mustelids (Abramov et al., 2018; Gálvez-50 

López et al., 2022) and whales (Rosel et al., 2017). 51 

Morphometrics-based taxonomic differentiation remains mostly the domain of linear 52 

morphometrics (LMM) (Jackson & Groves, 2015), mainly because linear measurements are 53 

easily taken and comparable to results from past studies. However, this approach has 54 

several limitations. For example, taxonomists choose a set of linear distances based on their 55 

expertise of the morphology of the taxon in question. This could pose a problem when these 56 

linear protocols are not standardized among morphometricians, obtaining potentially 57 

different acquisitions of data in studies of similar taxa but based on different protocols. In 58 

addition, the linear distances measured in taxonomic diagnoses often include maximum and 59 

minimum heights, widths and lengths that are easily identifiable to the eye. However, these 60 

measurements may characterize conditions that are not necessarily biologically 61 

homologous across taxa. This is because, when shapes differ, maximum or minimum 62 

distances may not be comparable among individuals, as the point-to-point distance may 63 

relate to different reference points that are not necessarily homologous (Figure 1). 64 

Additionally, LMM describes the distance between two points, missing potentially relevant 65 

variation between shapes and not retaining information about the original shape. Lastly, size 66 
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differences are not often accounted for in taxonomic studies using LMM, but there is a 67 

problem of redundancy when linear measurements contain other linear measurements 68 

within them (e.g., multiple measurements along the longitudinal axis of the skull). Similarly, 69 

the frequent use of proportional ratios (e.g. skull length vs. width) is problematic because 70 

many species display intraspecific allometry, such that genetically similar individuals will 71 

differ in a ratio simply because they differ in size (Sidlauskas et al., 2011). 72 

A potential refinement of LMM protocols could be offered by the use of Geometric 73 

Morphometrics (GMM). GMM uses the coordinates of anatomical reference points as 74 

identifiable shape variables in most or all the specimens in a given dataset. Since the 1990s, 75 

this technique (Adams et al., 2004) has become the standard method for shape 76 

characterization in evolutionary and ecological morphometrics and has a very mature 77 

analytical toolkit (Fruciano, 2016; Fruciano et al., 2017). The holistic characterization of the 78 

biological specimens under study and the graphical output of the associated shape changes 79 

provide a powerful and alternative tool for biological inferences in many contexts 80 

(Klingenberg, 2016; Stone, 1997), a definite advantage that linear morphometrics cannot 81 

offer.  82 

 83 
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 84 

Figure 1: Three specimens (CM12785, CM6540 and CM10548) outlining two commonly 85 
used linear distances: the width of greatest constriction of orbitotemporal fossa (dark 86 
purple) and the maximum width of cranium measured across zygomatic arches (pink). 87 
In addition, two type I homologous landmarks (by suture intersection) are depicted: 88 
the fronto-parietal suture in midline (red dot) an the parietal-interparietal suture in 89 
midline (blue dot). The two examples of maximum and minimum distances are 90 
measured at different anatomical positions relative to the homologous landmarks and 91 
other sutures in the skull, indicating a possibly serious lack of homology. 92 

GMM is rarely used in taxonomic studies, probably because linear measurements 93 

are easier to acquire and analyse, and because there is a large body of literature on 94 

taxonomic measurements that has been widely used for centuries (Sidlauskas et al., 2011). 95 

In addition, geometric morphometric data acquisition can be more complex, requiring 96 

digitisation of either photographs or 3D specimen representations, which generally involve 97 

specialized equipment. The statistical analyses required, while very well developed and 98 

versatile, are also specialised and involve high-dimensional data (Adams & Otárola‐99 

Castillo, 2013; Klingenberg, 2011; Zelditch et al., 2012). Therefore, they may not be 100 

perceived to be straightforward as the statistical toolkits used in LMM analyses. 101 



7 

 

We argue that GMM analyses are a useful addition to taxonomic studies because the 102 

technique addresses several of the issues of LMM raised above. First, the analyses of the 103 

main variation of a dataset based on a GMM protocol that optimizes anatomical coverage 104 

could inform a LMM protocol to include linear distances with potential taxonomic 105 

differentiators. Second, GMM can directly address primary homology by using fixed 106 

homologous landmarks (e.g., suture intersections) and curve and surface semilandmarks 107 

that correspond anatomically to each other (Gunz & Mitteroecker, 2013; Palci & Lee, 2019; 108 

Zelditch et al., 2012). This contrasts to LMM, where often 109 

 measurements are chosen by the maximum and minimum distance from one point 110 

to another regardless of whether they correspond anatomically. This LMM approach results 111 

in distances potentially measured at different places relative to homologous reference points 112 

such as tissue juxtapositions (Figure 1). Third, the distance between two points usually 113 

measured in LMM protocols does not provide information on the geometry (i. e., curvature) 114 

of the line drawn between them. GMM can use semilandmarks along curves or surfaces that 115 

describe the shape between points in three dimensions, augmenting other potential 116 

maximum or minimum distances to be taken into account in LMM protocols.  117 

An additional advantage for GMM is the explicit treatment of size. The Procrustes 118 

superimposition procedure inherent to GMM (Zelditch et al., 2012) allows the removal of the 119 

size component from the dataset by scaling all specimens to the same size. This procedure 120 

results in two components: a proxy for size called centroid size and a multivariate shape 121 

component (Kendall, 1989). These can then be used for analyses of allometry (shape 122 

changes disproportionate to size) in the form of a shape vs size regression (Klingenberg, 123 

2016, 2022). This substantially improves on the issue of accounting for isometric and 124 

allometric variation, which can have serious implications for taxon delimitation. Allometric 125 
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effects in particular can give an impression of species differentiation, when cranial allometry 126 

is generally present within most mammalian species (Cardini et al., 2015; Marcy et al., 2020; 127 

Viacava et al., 2020, 2021) and may not be related to morphological divergence due to a 128 

speciation event (Sidlauskas et al., 2011). Such allometric variation has been regarded as 129 

irrelevant to taxonomy. This is because, if shape differences were strictly due to size 130 

differences, they are likely to be the differences between small and large animals within a 131 

taxonomic group (Pilbeam & Gould, 1974; Seifert, 2008; Wood & Stack, 1980). In contrast, 132 

non-allometric shape changes are thought to be caused by independent adaptive processes 133 

such as are involved in species divergences (Huxley, 1931; Gould, 1975). Thus, it is 134 

recommended to include allometric analyses in taxonomic studies in order to interpret the 135 

shape variation and to properly delimit species (Cardini & Polly, 2013; Kaliontzopoulou et 136 

al., 2008; Outomuro & Johansson, 2017; Seifert, 2008; Sidlauskas et al., 2011; Yazdi, 2014). 137 

However, even in a case where taxonomic differentiation is driven purely by selection for 138 

size and coincides only with allometry effects, this represents important information on the 139 

differentiation process and should be considered. 140 

Here, we compare the taxonomic differentiation performance of conventional, linear-141 

based morphometrics and 3D geometric morphometrics in a species complex that includes 142 

three genetically differentiated taxonomic groups containing subtle morphological 143 

differences (Viacava et al., 2021), the A. stuartii / A. subtropicus species complex. This 144 

represents a scenario where finer-grained differences (e.g., allometric effects or differences 145 

in non-homologous measurements) need to be identified and interpreted with great care to 146 

understand their pertinence to group differentiation. The taxonomic situation of this species 147 

complex is also useful because three linear morphometric protocols have been used 148 

pertaining to the genus, allowing an assessment of how important protocol choice can be to 149 

the delimitation of taxonomic units. We add to this also a more generic protocol developed 150 
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for bandicoots (Travouillon, 2016), with a particularly high number of linear measurements. 151 

We use linear discriminant analysis to ask how well the four protocols and our GMM protocol 152 

perform in a context typical to taxonomy (without consideration of size, or with consideration 153 

only of isometry) and compare it to the analysis pipeline typically taken in GMM studies (with 154 

allometric variation accounted for as well). 155 

Materials and methods 156 

All analyses are based on a 3D landmark coordinate dataset from Viacava et al. 157 

(2021), which includes high-coverage 3D landmarked crania with 412 landmarks (82 fixed 158 

landmarks, 185 curved semilandmarks and 145 surface semilandmarks) of 136 adult 159 

individuals reconstructed in virtual 3D images. All analyses were performed in R version 160 

4.0.4 (R Core Team, 2021). The code and raw 3D data are available on Github 161 

(https://github.com/pietroviama/Viacavaetal_LMMvsGMM). 162 

We identified four linear measurement protocols that represent traditional 163 

morphometric methods commonly used in Australian mammal taxonomy, but are also 164 

specific to Antechinus. These include a protocol used for a species contained in the species 165 

complex studied here, A. subtropicus (Van Dyck & Crowther, 2000), a sister species of the 166 

species complex studied here, A. agilis (Dickman et al., 1998), a species within the genus 167 

Antechinus, A. flavipes (Baker & Van Dyck, 2013), and a comprehensive protocol that was 168 

developed for Peramelemorphians (bandicoots) (Travouillon, 2016). The last protocol is not 169 

necessarily expected to apply well to the genus Antechinus because it was designed for a 170 

different order of marsupials. However, it was chosen as a useful comparison of 171 

performance with the other three sets of linear measurements, representing one of the most 172 

https://github.com/pietroviama/Viacavaetal_LMMvsGMM
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comprehensive protocols in the morphometric study of Australian mammals. All of these 173 

protocols differ from each other, but overlap in some measurements (Table 1).  174 

 175 

 176 

Table 1. Degree of overlap of linear measurements between protocols. The LMM 177 
protocols in the rows cover a fraction of the LMM protocols in the columns. 178 

 179 

 180 

To obtain linear measurement data, we extracted the linear distances of each 181 

protocol that could be estimated most appropriately from the coordinates of the landmarks 182 

used for the geometric morphometric approach (Supplementary Table S4.1). These 183 

measurements were not exactly the same as calliper measurements; however, we assume 184 

that slight inconsistencies between linear-based and 3D landmark-based distances are 185 

acceptable because they were taken in a consistent fashion and the representation of shape 186 

taken with the linear distances is not lost. We averaged right and left measurements 187 

whenever possible.  188 

Isometry and allometry 189 

In geometric morphometrics, the isometric component of shape (i.e. the shape that 190 

varies in a 1:1 proportion with size) is generally removed from the dataset through the scaling 191 
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procedure of the Procrustes superimposition. This step brings all specimens to the same 192 

size, producing “isometry-free” shape coordinates and a centroid size (Dryden & Mardia, 193 

2016; Klingenberg, 2016) for each specimen. Centroid size can be used subsequently as a 194 

proxy for specimen size. To approximate this effect in the LMM context, we used an 195 

approach that is analogous to centroid size extraction by deriving the geometric mean of all 196 

variables as the centroid size, and using log-shape ratios [log10(measurement/geometric 197 

mean)] as isometry-free shape variables. This ensures that each dataset can be analysed 198 

in an approximately equivalent way (Claude, 2013; Mosimann, 1970).  199 

In order to assess the effect of allometry, we regressed the Procrustes shape 200 

variation vs log(centroid size) with the ‘geomorph’ (Adams & Otárola‐ Castillo, 2013) 201 

function ‘procD.lm’. For LMM, we regressed the linear data vs log(geometric mean) with the 202 

lm.rrpp function of the ‘RRPP’ package (Collyer & Adams, 2018). We considered both 203 

centroid size and geometric mean as proxies for size in the context of geometric and linear 204 

morphometrics. We also computed “allometry-free” datasets for the classification analyses 205 

below, by using the residuals from the allometric regressions. In summary, three types of 206 

morphological data were obtained and analysed for the LMM protocols and the GMM 207 

dataset: a) raw 3D coordinates obtained from a partial Procrustes superimposition (GMM) 208 

and raw linear measurements (LMM), b) shape after Procrustes superimposition (GMM) and 209 

log-shape ratios as explained above (LMM), and c) allometry-corrected shape for both. In 210 

the case of raw shape, this type of data is typically called “form” in geometric morphometrics 211 

(shape plus size). However, for practical purposes, we will further call the types of 212 

morphological data explained above as “raw”, “isometry-free” and “allometry-free” shape, 213 

respectively. Allometric regressions were performed with 1000 permutations and p-values 214 

were calculated using Goodall’s F-test (Goodall, 1991). 215 
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Ordination 216 

To assess if the main variation of shape related to differentiation between species, 217 

we computed Principal Component Analysis (PCA) for each treatment (raw, isometry-free 218 

and allometry-free measurements) and each linear measurement protocol and geometric 219 

morphometrics. However, note that lack of differentiation of groups in PC1/PC2 space does 220 

not mean that the groups are not differentiated; PCA is agnostic to groupings, such that 221 

variation that differentiates a particular group can also be “smeared” across many Principal 222 

components (Bookstein, 2015, 2017a, 2017b; Klingenberg et al., 1996; Weisbecker et al., 223 

2019). 224 

Classification rule 225 

To assess how well specimens are predicted to belong to each group based on the 226 

different analyses, we used 95% of the PC variance of each dataset to perform a Linear 227 

Discriminant Analysis. We used the clade identity as a group factor and provided an equal 228 

prior on class membership to the three groups. We plotted the two linear discriminants for 229 

each treatment (raw, isometry-free and allometry-free measurements), and for each linear 230 

measurement protocol and the geometric morphometrics protocol. Next, we used a machine 231 

learning model known as leave-one-out cross validation procedure to calculate the posterior 232 

probability values (Venables & Ripley, 2002). These values allowed us to use the ‘klaR’ 233 

package for R (Weihs et al., 2005) to calculate a number of metrics termed Garczarek’s 234 

classification performance measures (Garczarek & Weihs, 2003), which include 235 

Correctness Rate (CR), Accuracy (AC), Ability to Separate (AS), Confidence (CF), and 236 

Confidence for each class. The CR and AC values estimate the degree of validity (“quality”) 237 

of the linear discriminant analysis from the predicted values based on the true values. AS 238 
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corresponds to the distance between the posterior values and the assigned groups and CF 239 

measures the degree of confidence to which the groups have been assigned – both AS and 240 

CF estimate the “certainty” of the result of the linear discriminant analysis (Dr. Karsten 241 

Luebke pers. comm.). Finally, we predicted the identity of unidentified specimens (n = 32). 242 

For this, we predicted the PC scores of the unidentified specimens and then used the LDA 243 

model of our “isometry-free” datasets to predict the class provenance for each specimen 244 

(Supp. Table 1).  245 

Results 246 

Allometry 247 

All LMM and GMM protocols were significantly allometric (Table 2). The amount of 248 

shape variation attributable to allometry differed substantially, from 7.9% using Van Dyck & 249 

Crowther’s linear measurement protocol, to over 25% using Travouillon’s linear 250 

measurement protocol. Dickman et al., Baker & Van Dyck and GMM identified a similar 251 

allometric effect of between 11 and 14% of shape variation explained by size (Table 2).  252 

Ordination 253 

The first Principal Component (PC1) of the three LMM protocols developed for 254 

antechinuses accounted for more than 70% of morphological variation in raw, isometry-free 255 

and allometry-free contexts (Figure 2). Travouillon et al.’s linear measurement protocol was 256 

substantially affected in the amount of morphological variation accounted for by PC1 after 257 

the removal of isometry, dropping from 73.36% to 38.33%, and to 24.65% after allometric 258 

correction. We also observed a reduction in morphological variation accounted by PC1 after 259 

removal of isometry in the GMM protocol, from 78.77% to 19.43%, and a slight decrease 260 
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after allometric correction to 14.78%. Grouping of the three clades was affected in all three 261 

stages of data treatment; in all cases, isometry removal contributed to the assemblage of 262 

the groups along PC1 and allometric correction scattered the three groups showing unclear 263 

grouping (Figure 2).  264 

Classification rule 265 

The Linear Discriminant Analysis plots display similar groupings of clades for raw and 266 

isometry-free measurements. Interestingly, the removal of isometry increased group 267 

differentiation in the GMM protocol, whereas the LMM protocols showed a considerable 268 

decrease in group differentiation after removal of allometry (Figure 3 and Table 2). For GMM, 269 

the removal of allometry did not affect group differentiation as much as for LMM (Figure 3 270 

and Table 2). 271 

For size-unadjusted raw data, the classification performance measures were 272 

reasonably high in all four LMM protocols (Table 2). After isometry removal and allometric 273 

correction, these measures decreased to varying degrees for all LMM protocols. GMM 274 

performed better than LMM at group discrimination at the raw data stage. After the removal 275 

of isometry, GMM performed similarly to LMM protocols in CR and AC (“quality” measures) 276 

and better in AS and CF (“certainty” measures). After allometric correction, a large decrease 277 

in CR and AC was observed in GMM data despite similar performance in AS and CF.  278 

Class predictions for unidentified specimens are shown in Supp. Table 1. 279 

280 
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 281 

Figure 2: Principal Component Analyses plot for all raw, isometry-free and allometry-free datasets. These include the four linear 282 
measurement protocols and the geometric morphometrics approach. Only the first two Principal Components are shown.283 
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 284 

Figure 3: Linear Discriminant Analyses plot for all raw, isometry-free and allometry-free datasets used in this study. These include the 285 
four linear measurement protocols and the geometric morphometrics approach. Ellipses were computed at 95%condifence intervals. 286 
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Table 2: Classification performance measures (Garczarek, 2002) of the four linear measurement protocols and geometric morphometrics. 287 
For each protocol, the classification performance measures were computed with raw datasets, after size treatment, and after allometry 288 
correction. Allometric regression results are also indicated in the last row. 289 

 

Van Dyck & Crowther, 2000 Dickman et al., 1998 Baker & Van Dyck, 2013 Travouillon, 2016 GMM 

Raw 
Isometry-

free 

Allometry-

free 
Raw 

Isometry-

free 

Allometry-

free 
Raw 

Isometry-

free 

Allometry-

free 
Raw 

Isometry-

free 

Allometry-

free 
Raw 

Isometry-

free 

Allometry-

free 

Correctness 

Rate 
0.904 0.875 0.838 0.904 0.853 0.765 0.875 0.86 0.757 0.882 0.853 0.662 0.926 0.86 0.581 

Accuracy 0.759 0.686 0.55 0.779 0.681 0.516 0.741 0.687 0.5 0.764 0.712 0.328 0.843 0.761 0.286 

Ability to 

Separate 
0.855 0.763 0.654 0.87 0.784 0.707 0.837 0.793 0.665 0.879 0.858 0.597 0.943 0.983 0.879 

Confidence 0.915 0.861 0.79 0.924 0.874 0.817 0.905 0.879 0.794 0.927 0.914 0.749 0.967 0.99 0.928 

Confidence 

for each true 

class 

North:  
0.89 

North: 
0.773 

North:  
0.72 

North: 
0.889 

North: 
0.802 

North: 
0.794 

North:  
0.86 

North: 
0.776 

North: 
0.726 

North: 
0.892 

North: 
0.863 

North:  
0.806 

North: 
0.963 

North: 
0.961 

North: 
0.947 

South: 
0.875 

South: 
0.807 

South: 
0.787 

South: 
0.886 

South: 
0.817 

South: 
0.835 

South: 
0.87 

South: 
0.819 

South: 
0.783 

South: 
0.926 

South: 
0.897 

South: 
0.754 

South: 
0.953 

South: 
0.997 

South: 
0.944 

Sub:  
0.949 

Sub:  
0.931 

Sub:  
0.823 

Sub:  
0.961 

Sub:  
0.937 

Sub:  
0.818 

Sub:  
0.945 

Sub:  
0.958 

Sub:    
0.83 

Sub:  
0.944 

Sub:  
0.946 

Sub:  
0.721 

Sub:  
0.976 

Sub:  
0.998 

Sub:    
0.91 

Allometry R² = 0.079, F = 11.475, p = 0.001 R² = 0.144, F = 22.48, p = 0.001 R² = 0.113, F = 17.064, p = 0.001 R² = 0.251, F = 44.99, p = 0.001 R² = 0.132, F = 20.403, p = 0.001 

 290 
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Discussion 291 

Our results showed that linear morphometrics performed well in distinguishing 292 

the three closely related species of antechinus in our dataset. However, the confidence 293 

of differentiations was better for the geometric morphometric protocol, particularly after 294 

size correction. There is also a clear indication that measurement choice has a 295 

substantial influence on the discriminatory performance of a linear measurement 296 

protocol. 297 

We found that GMM performed relatively better at discriminating groups based 298 

on raw and isometry-free data. However, the traditional morphometric protocols were 299 

highly dependent on the choice of the measurements. The fewer variables relative to 300 

GMM may therefore improve the discrimination of LMM protocols, but only if the 301 

selected linear distances are the “real” best discriminatory ones. In the case of 3D 302 

GMM, this dependence on measurement choice is expected to be less pronounced if 303 

the creation of the landmarking template relies on the agnostic and comprehensive 304 

placement of homologous reference points present in all specimens in a given dataset. 305 

The selection of the landmarks should involve the construction of a template that 306 

attempts the optimal anatomical coverage with diverse homologous points. This 307 

process does not necessarily focus on the most variable regions because it can rely 308 

on finding those differentiable shape patterns at the analytical step (Webster & Sheets, 309 

2010). Thus, proportionally, some linear measurement protocols might be best at 310 

discriminating but this will only be the case if the linear distances selected are best at 311 

discriminating in “reality”. This is probably why the protocol developed for bandicoots 312 

(Travouillon, 2016) had the lowest classification performance metrics among all 313 
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protocols (possibly exacerbated by the fact this was the only LMM protocol not 314 

optimised for Antechinus). 315 

Visual display of the main variation (PC1 vs PC2 plots; “PCA plots” from hereon 316 

in) highlight the important issue that an interpretation solely based on the first principal 317 

components can be misleading (Schreiber, 2021; Weisbecker et al., 2019) and in our 318 

case can lead to a misunderstanding on the performance of GMM data. For GMM 319 

data, the PCA plots revealed unclear grouping of the clades (see Figure 2), compared 320 

to the much clearer differentiation of clades for the LMM protocols. However, the 321 

classification performance measures that used 95% of PC variance of all protocols 322 

reflect the ability of GMM to differentiate among clades exceedingly well (see Table 323 

2).  324 

This superficially better differentiation of the LMM PCA plots relative to the 325 

GMM PCA plot is chiefly due to the lower dimensionality of the LMM dataset and the 326 

fact that, in these particular cases, the linear distances chosen largely reflected the 327 

differences among clades. However, this consideration can be deceptive given the low 328 

variance explained by the first principal component in GMM, where in truth the 329 

morphological variance tends to be distributed along a larger number of principal 330 

components. This simply reflects the fact that the GMM dataset contains far more 331 

variation overall, much of which does not differentiate clades. As PCA is agnostic to 332 

group membership, this meant that the principal components containing variation that 333 

discriminates groups were “hidden” in the lower ranks (Bookstein, 2017b; Klingenberg 334 

et al., 1996; Weisbecker et al., 2019). The relevance of ignored morphological 335 

variance in a PCA biplot in GMM is emphasized in our LDA results where 95% of the 336 
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PC variance was taken into account. This showed a more similar performance to group 337 

discrimination in GMM and LMM relative to what we observed in the PCA plots.  338 

The GMM protocol had an interesting property of numerically (and visually; 339 

Figure 3) increasing the “certainty” measures of classification after the isometry 340 

removal step (between raw and isometry-free datasets). The contribution of geometric 341 

morphometrics towards isometry-free group separation may be a substantial 342 

improvement in the way we regard size and shape as independent variables for 343 

subsequent allometric analyses. In the case of geometric morphometrics, the large 344 

number of landmarks may contribute to a holistic characterization of size – in the form 345 

of centroid size (Mitteroecker & Gunz, 2009). In the LMM context, the linear distances 346 

may contain fewer aspects of the size of the skull (Farkas et al., 2002; Slice, 2006). 347 

For example, if we measured only the length or the width of a skull, other linear 348 

distances associated with size-related shape could be ignored, such as the width of 349 

the snout. This can be a problem because it disregards measures that are 350 

characterizing the size of a three-dimensional object (Adams et al., 2004). 351 

Furthermore, if size is not characterized well, further consequences on the 352 

independence of a size and shape variable can undermine allometric analyses in the 353 

form of a size vs shape regression (Klingenberg, 2016). 354 

The removal of shape variation due to allometry (the step from “isometry-free” 355 

to “allometry-free”) had a generally larger decrease in all classification performance 356 

measures compared to the previous step of removal of isometry (from “raw” to 357 

“isometry-free”). In the GMM dataset, this step of removal of allometry had a greater 358 

decline in Correctness Rate and Accuracy but lesser decline in Ability to Separate and 359 

Confidence (see Table 2) compared to the LMM protocols. This could be either 360 
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because of redundancy in the information of nearby landmarks and semilandmarks 361 

resulting in “low quality” classification (low CR and AC), or because GMM deals more 362 

effectively with allometric variation resulting in “highly certain” classification (highest 363 

AS and CF among the datasets). We note that this result may be an indicator of the 364 

former where the linear discriminant analysis may wrongly assign classes with false 365 

“certainty” due to the poor ratio between variables (PC scores) and observations 366 

(number of individuals) typically encountered in GMM. However, we suspect that the 367 

latter is the case because the step of removal of allometry has a similar large decrease 368 

on Accuracy in GMM and Travouillon’s protocol (2016), despite the particularly 369 

stronger allometric relationship captured by Travouillon’s linear measurements. This 370 

“large amount of allometry” captured by Travouillon may be caused by the redundancy 371 

of some linear measurements that exacerbate some shape patterns driven by size. 372 

However, if this was the case in GMM (i.e., high amount of allometry captured due to 373 

redundant measurements), the Ability to Separate, reduced drastically in Travouillon, 374 

should also be drastically reduced in GMM after removal of allometry. In contrast, what 375 

we observe is high performance in Ability to Separate in GMM after the removal of 376 

allometry. These contrasting results suggest that geometric morphometric techniques 377 

provide a more thorough way of dealing with allometry-driven shape patterns 378 

compared to linear measurements.  379 

Our study suggests that GMM and its statistical toolkit provides improved 380 

insights into taxon discrimination and particularly the influence of allometric patterns 381 

that might not be taxonomically relevant. While GMM-based taxonomic studies are not 382 

practical and are very time consuming, they are an excellent first “pilot” step to identify 383 

linear measurements that are most likely to discriminate best within a group of interest. 384 
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Subsequently, linear morphometric studies can rely on the measurements that 385 

account for the relevant shape patterns identified in GMM and be applied to larger 386 

sample sizes.  387 

Our results also highlight the dangers of introducing artificial group separation 388 

due to “splitting” differently sized, but allometrically uniform taxonomic units. This is 389 

not to say that size cannot be a distinguishing feature of two real taxonomic groups; 390 

rather, understanding when variation relates to size, as opposed to other factors, can 391 

help clarify the distinction between taxa as part of a wider discrimination toolkit (such 392 

as genetics, pelage or behavioural traits). 393 
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 591 

Supp. Table 1: Class predictions for unidentified specimens using isometry-free data.    592 

 
Van Dyck & Crowther, 2000 Dickman et al., 1998 Baker & Van Dyck, 2013 Travouillon, 2016 Geometric morphometrics 

 
Class Posterior 

probability (%) 

Class Posterior 

probability (%) 

Class Posterior 

probability (%) 

Class Posterior 

probability (%) 

Class Posterior 

probability (%) 

CM12785 A. subtropicus 99.87 A. subtropicus 99.9 A. subtropicus 99.66 A. subtropicus 99.81 A. stuartii south 99.64 

CM12786 A. stuartii north 84.95 A. stuartii north 81.17 A. stuartii north 88.92 A. stuartii north 90.51 A. stuartii north 100 

JM21536 A. stuartii north 85.38 A. stuartii north 92.07 A. stuartii north 93.57 A. stuartii south 68.17 A. stuartii south 95.16 

J3810 A. stuartii south 62.85 A. stuartii north 52.21 A. stuartii north 60.23 A. stuartii north 97.48 A. stuartii north 70.15 

CM3795 A. stuartii south 87.99 A. stuartii south 94.54 A. stuartii south 89.58 A. stuartii north 67.2 A. stuartii north 100 

J5030 A. stuartii south 93.87 A. stuartii south 93.94 A. stuartii south 91.17 A. stuartii south 86.6 A. stuartii south 100 

JM4432 A. stuartii north 82.92 A. stuartii north 92.35 A. stuartii north 92.28 A. stuartii north 97.41 A. stuartii north 100 

JM3944 A. stuartii north 92 A. stuartii north 98.69 A. stuartii north 93.86 A. stuartii south 90.03 A. stuartii north 100 

M22782 A. stuartii north 88.39 A. stuartii north 96.85 A. stuartii north 93.28 A. stuartii north 98.8 A. stuartii north 100 

M22784 A. stuartii north 93.36 A. stuartii north 90.94 A. stuartii north 95.2 A. stuartii north 99.72 A. stuartii north 99.99 

M22785 A. stuartii north 58.88 A. subtropicus 51.36 A. stuartii north 57.38 A. stuartii north 88.51 A. stuartii north 100 

J15888 A. stuartii north 51.45 A. stuartii south 51.48 A. stuartii north 59.4 A. stuartii north 91.51 A. stuartii north 100 

JM14417 A. stuartii north 63.98 A. stuartii north 81.44 A. stuartii north 63.89 A. subtropicus 61.98 A. stuartii north 100 

RT1 A. stuartii north 97.79 A. stuartii north 99.42 A. stuartii north 98.32 A. stuartii north 98.36 A. stuartii north 100 

JM1600 A. stuartii north 80.24 A. stuartii north 81.09 A. stuartii north 83.52 A. subtropicus 69.26 A. stuartii south 96.95 

JM1596 A. stuartii north 81.93 A. stuartii north 87.6 A. stuartii north 93.59 A. stuartii north 74.2 A. stuartii north 99.28 



33 

 

J17400 A. subtropicus 100 A. subtropicus 100 A. subtropicus 100 A. subtropicus 100 A. subtropicus 100 

J17401 A. subtropicus 82.82 A. subtropicus 83.59 A. subtropicus 97.78 A. subtropicus 93.8 A. subtropicus 100 

J17402 A. subtropicus 100 A. subtropicus 100 A. subtropicus 100 A. subtropicus 99.97 A. subtropicus 99.49 

J17403 A. subtropicus 99.97 A. subtropicus 99.99 A. subtropicus 99.99 A. subtropicus 99.96 A. subtropicus 100 

J17406 A. subtropicus 99.38 A. subtropicus 99.72 A. subtropicus 99.9 A. subtropicus 86.44 A. subtropicus 100 

JM1420 A. stuartii north 83.45 A. stuartii north 93.65 A. stuartii north 78.72 A. stuartii north 94.95 A. stuartii north 100 

JM14415 A. stuartii north 79.26 A. stuartii north 86.65 A. stuartii north 88.53 A. stuartii north 64.21 A. subtropicus 99.84 

J20265 A. stuartii north 95.54 A. stuartii north 96.88 A. stuartii north 97.77 A. stuartii north 72.12 A. stuartii north 93.19 

MWA1 A. stuartii north 77.94 A. stuartii north 86.11 A. stuartii north 73.15 A. stuartii north 68.85 A. stuartii north 99.69 

MWA2 A. stuartii north 81.1 A. stuartii north 83.42 A. stuartii north 78.38 A. stuartii north 98.39 A. stuartii north 100 

CG1 A. stuartii north 88.79 A. stuartii north 76.56 A. stuartii north 88.12 A. stuartii north 75.14 A. stuartii north 100 

JM20761 A. stuartii north 69.88 A. stuartii north 72.83 A. stuartii north 85.39 A. stuartii north 66.84 A. stuartii north 100 

JM21357 A. stuartii north 83.37 A. stuartii north 85.79 A. stuartii north 88.05 A. stuartii north 96.27 A. stuartii north 100 

JM14452 A. subtropicus 62.93 A. stuartii north 58.51 A. stuartii north 70.93 A. subtropicus 95.9 A. stuartii north 99.73 

CM674 A. subtropicus 93.56 A. subtropicus 97.38 A. subtropicus 99.64 A. subtropicus 87.61 A. subtropicus 99.84 

CM675 A. stuartii north 96.48 A. stuartii north 97.83 A. stuartii north 97.61 A. stuartii north 93.34 A. subtropicus 100 
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