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1. Introduction

Uncertainty principle asserts that a function and its Fourier transform cannot both
be sharply localized. In Euclidien spaces, many theorems are devoted to clarify it
such as Beurling, Cowling and Price, Hardy, Heisenberg.
Beurling’s theorem which is given by A. Beurling [1] and proved by Hörmander [9] is
the the most relevant one: that is it gives Hardy, Cowling-Price and Gelfand-Shilov
theroems. The result of Beurling-Hörmander describes the uncertainty principle in
terms of a single integral estimate of f and its Fourier transform f̂ as follows.

Theorem 1.1. [9] Let f ∈ L2(R) be such that∫
R

∫
R
|f(x)||f̂(y)|e|x||y|dxdy < ∞,

where the Fourier transform f̂ is defined by

f̂(y) =

∫
R

e−ixyf(x)dx.

Then f = 0 almost everywhere.

This theorem is generalized by Bonami et al [2] by giving solutions in terms of
Hermite functions.

Theorem 1.2. [2, Theorem 1.1] Let N ≥ 0. Assume that f ∈ L2(Rm). Then, f
satisfy ∫

Rm

∫
Rm

|f(x)||f̂(y)|
(1 + |x|+ |y|)N

e|x||y|dxdy < ∞,
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if and only if f(x) = P (x)e−a|x|2 where P is a polynomial of degree < N−m
2

and a > 0.

For N = 0, we should note that the hypothesis of Theorem 1.2 is the same as the
one of Theorem 1.1. This case was studied by Bonami et al in [2, Appendix, p52]
and it was proved that f is identically zero.
For N ≤ m, we can write f as f(x) = P (x)e−a|x|2 using the result of Theorem 1.2,
where P is a polynomial of negative degree. This yields that P = 0. Therefore,
f = 0.
The Beurling’s theorem was obtained for many Fourier transforms [11, 13]. In 2010,
Kawazoe and Majjaoli provided a Beurling-type theorem for the Dunkl transform
[10]. Moreover, Parui and Pusti gave an alternative proof of the Beurling’s theorem
for the Dunkl transform [12] similar to the proof used in [2].
Then, many studies were devoted to generalize Fourier transform in the Clifford anal-
ysis setting which is characterized by a lack of commutativity. In 2005, Sommen et
al defined a generalization of the classical Fourier transform in the Clifford analysis
setting called The Clifford-Fourier transform [3]. This transform was studied in [4, 6].
Following that, there was an interest in studying uncertainty principles in the Clifford
analysis. In this context, many uncertainty principles for the Clifford-Fourier trans-
form were proved, such as the Hardy theorem and the Heisenberg inequality [5, 7, 8].
However, the Cowling and Price theorem is not yet shown in the Clifford analysis
setting. Furthermore, the Beurling’s theorem, which is the most relevant one since it
yields various other uncertainty principle theorems, is not provided.
Our goal in this paper is to establish the Beurling’s theorem in the Clifford analysis
setting. Indeed, we aim to prove Theorem 1.2 for the Clifford-Fourier transform de-
fined by Sommen et al in [3].
This paper is organized as follows. In section 2, we recall the Clifford algebra and
some notations that will be useful in the sequel. In section 3, we recall some as-
pects of the Clifford-Fourier transform and its properties. In section 4, we prove a
Beurling-type theorem for the Clifford-Fourier transform. Section 5 contains some
consequences of the Beurling’s theorem for the Clifford-Fourier transform. Indeed,
we derive the Hardy, Cowling and Price and Gelfand Shilov uncertainty principles in
Clifford analysis.

2. Notations and preliminaries

The real Clifford algebra Cl0,m is generated by {1, e1, · · · , em} with the multiplication
rules

(2.1)

{
eiek = −ekei, if i 6= k,

e2
i = −1, ∀1 ≤ i ≤ m.

We recall that Cl0,m can be decomposed as

(2.2) Cl0,m = ⊕m
k=0Clk0,m,

where Clk0,m = span{ei1 · · · eik , i1 < · · · < ik}.
We denote by Cm = C⊗ Cl0,m the complexification of Cl0,m which can be seen as
Cm = Cl0,m ⊕ jCl0,m where j is the complex imaginary unit.
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The set {eA : A ⊆ {1, · · · , m}}, with eA = ei1ei2 · · · eik , 1 ≤ i1 < · · · < ik ≤ m,
e∅ = 1, forms a graded basis of Cl0,m and of Cm.
A multivector x in the Clifford algebra Cl0,m (respectively Cm) can be presented as:

(2.3) x =
∑
A∈L

eAxA,

where L := {i1, · · · , ik} ⊂ {1, · · · , m}, eA = ei1ei2 · · · eik are ordered by 1 ≤ i1 <
· · · < ik ≤ m and xA are real numbers(respectively complex numbers).
Conjugation in Cl0,m is defined as the anti-involution for which ek = −ek, k =
1, 2, ...,m. In the case of Cm, we add the rule j = −j.
If x is an arbitrary element of Cm, then its norm ||x||c is:

(2.4) ||x||2c = [xx]0 =
∑
A∈L

|xA|2,

where [·]0 denotes the scalar part of the expression between brackets.

An element x = (x1, x2, · · · , xm) ∈ Rm can be identified with the vector x =
m∑

i=1

eixi.

The mutiplication of two vectors x and y is given by

(2.5) xy = − < x, y > +x ∧ y,

where the inner product and the wedge product are defined respectively by

(2.6) < x, y >=
m∑

k=1

xkyk =
−1

2
(xy + yx)

and

(2.7) x ∧ y =
∑
i<k

eiek(xiyk − xkyi) =
1

2
(xy − yx).

We introduce the Dirac operator, Gamma operator and Laplace operator associated
to a vector x respectively by:

(2.8) ∂x =
m∑

i=1

ei∂xi
;

(2.9) Γx = −
∑
i<k

eiek(xi∂xk
− xk∂xi

);

(2.10) ∆x =
m∑

i=1

∂2
xi

.

In Cl0,m, for a vector x, we have the following relations:

(2.11) ||x||2c = −x2 =
m∑

i=1

x2
i
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and

(2.12) ∆x = −∂2
x.

In the sequel, we consider functions defined on Rm and taking values in Cl0,m or its
complexification Cm. These functions can be written as :

(2.13) f(x) = f0(x) +
m∑

i=1

eifi(x) +
∑
i<k

eiekfik(x) + · · ·+ e1···mf1···m(x),

where f0, fi, · · · , f1···m all real-valued or complex- valued functions depending on
whether the function takes values in Cl0,m or Cm.
We denote by Pk the space of homogeneous polynomials of degree k taking values in
Cl0,m. P denotes the space of polynomials taking values in Cl0,m. The right Hilbert
module denoted by L2(Rm) ⊗ Cl0,m is the right Cl0,m-module of square integrable
functions taking values in Cl0,m equipped with the inner product

< f, g >=

∫
Rm

f(x)g(x)dx, ∀f, g ∈ L2(Rm)⊗ Cl0,m

and the associated norm

||f ||22,c = [< f, f >]0.

Finally, by respectively, L1(Rm)⊗Cl0,m and S(Rm)⊗Cl0,m, we denote the right Cl0,m-
modules of Cl0,m-valued respectively integrable and rapidly decreasing functions.

3. Clifford-Fourier Transform

We introduce the class of functions
(3.1)

B(Rm)⊗Cl0,m =

{
f ∈ L1(Rm)⊗ Cl0,m/||f ||B :=

∫
Rm

(1 + ||y||c)
m−2

2 ||f(y)||cdy < ∞
}

Definition 3.1. [6] The Clifford-Fourier transform is defined on B(Rm)⊗ Cl0,m by

(3.2) F±(f)(y) = (2π)
−m
2

∫
Rm

K±(x, y)f(x)dx,

where

(3.3) K±(x, y) = e∓i π
2
Γye−i<x,y>.

We recall the characterization of the kernel in the following lemma which plays an
important role in the main theorem. More precisely, it allows to determine the
boundedness of the functions used in the proof.

Lemma 3.1. [8, Lemma 3.2] Let m be even. Then

(3.4) ||K±(x, y)||c ≤ Ce||x||c||y||c , ∀x, y ∈ Rm.
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The following theorem gives boundedness of the Clifford-Fourier transform.

Theorem 3.2. Let m be even and f ∈ B(Rm)⊗ Cl0,m. Then, there exists a positive
constant A such that

(3.5) ||F±(f)(y)||c ≤ Ce
||y||2c

4 ||f ||B, ∀||y||c > A

and

(3.6) ||F±(f)(y)||c ≤ C(1 + A)
m−2

2 ||f ||B, ∀||y||c ≤ A.

Proof. Recall that the Clifford kernel [6, Theorem 5.3] is written as:

K−(x, y) = K−
0 (x, y) +

∑
i<j

eijK
−
ij (x, y),

where K−
0 (x, y) and K−

ij (x, y) satisfy

|K−
0 (x, y)| ≤ C(1 + ||x||c)

m−2
2 (1 + ||y||c)

m−2
2

|K−
ij (x, y)| ≤ C(1 + ||x||c)

m−2
2 (1 + ||y||c)

m−2
2 .

Thus,

||F±(f)(y)||c ≤ C(1 + ||y||c)
m−2

2 ||f ||B.

Moreover, there exists A > 0 such that for all ||y||c > A,

(1 + ||y||c)
m−2

2 ≤ Ce
||y||2c

4 ,

which completes the proof. �

We should return to the inversion theorem and the Plancherel theorem for the
Clifford-Fourier transform.

Theorem 3.3. [4]
1) The Clifford-Fourier transform is a continuous operator mapping from S(Rm) ⊗
Cl0,m to S(Rm)⊗ Cl0,m (see [4, Theorem 6.3] ).
In particular, when m is even, we have

F±F± = idS(Rm)⊗Cl0,m .

2) The Clifford-Fourier transform extends from S(Rm) ⊗ Cl0,m to a continuous map
on L2(Rm)⊗ Cl0,m (see [4, Theorem 6.4]).
In particular, when m is even, we have

||F±(f)||2,c = ||f ||2,c,

for all f ∈ L2(Rm)⊗ Cl0,m.

We now give the Clifford-Fourier transform for a function defined by the product of
a polynomial and a Gaussian function. This function appears in Beurling’s theorem
and in other uncertainty principles. Specifically, in order to find that the function f
is written in this form, it is enough to express the Clifford-Fourier transform in this
form and to apply the inversion theorem and this theorem.
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Theorem 3.4. [8, Theorem 3.5] Let a > 0 and P ∈ Pk. Then, there exists Q ∈ Pk

satisfying :

(3.7) F±(P (.)e−a||.||2c)(x) = Q(x)e−
||x||2c
4a .

We recall the Clifford translation and the Clifford convolution, which generalize
the classical translation and convolution.

Definition 3.2. [6] Let m be even. The Clifford translation and the Clifford convo-
lution for f, g ∈ S(Rm)⊗ Cl0,m are introduced respectively by

(3.8) Tyf(x) = (2π)−
m
2

∫
Rm

K−(ε, x)K−(y, ε)F(f)(ε)dε,

(3.9) f ∗Cl g(x) = (2π)−
m
2

∫
Rm

Tyf(x)g(y)dy.

The following theorem explicitly gives the Clifford translation for m = 2 and for
radial function.

Theorem 3.5. [6, Proposition 7.2, Theorem 7.3] Let f ∈ S(Rm)⊗ Cl0,m.
i) For m = 2,

Tyf(x) = f(x− y).

ii) For m even and m > 2, we have

Tyf(x) = f0(|x− y|),
for a radial function f on Rm, f(x) = f0(|x|) with f0 : R+ → R.

In the next theorem, the action of the Clifford-Fourier Transform on Clifford’s con-
volution is analogous to the classic case, but confined to radial functions.

Theorem 3.6. [6, Theorem 8.2] Let f ∈ S(Rm) ⊗ Cl0,m be a radial function and
g ∈ S(Rm)⊗ Cl0,m. Then,

F±(f ∗Cl g) = F±(f)F±(g).

In particular, we have
f ∗Cl g = g ∗Cl f.

In the following section, we will use the inversion theorem for functions belonging to
L2(Rm)⊗ Cl0,m. Therefore, we need results associated with Lebesgue spaces. In this
regard, we remember the next theorem of Young inequalities.

Theorem 3.7. Let m be even integer. Let 1 ≤ p, q < ∞ and r ≥ 1 with
1

p
+

1

q
= 1+

1

r
.

(1) [7, Theorem 5.2]
For m = 2, if f ∈ Lp(R2) ⊗ Cl0,2 and g ∈ Lq(R2) ⊗ Cl0,2, then f ∗Cl g ∈
Lr(R2)⊗ Cl0,2.

(2) [7, Theorem 5.4]
For m > 2, if f(x) = f0(||x||c) is a real-valued radial function in Lp(Rm) and
g ∈ Lq(Rm)⊗ Cl0,m. Then f ∗Cl g ∈ Lr(Rm)⊗ Cl0,m.
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In the next section, we will define the Clifford-Fourier transform for certain func-
tions in the proof of Beurling’s Theorem. Because the Clifford-Fourier transform is
defined on B(Rm)⊗Cl0,m, it is critical to check whether or not these functions belong
to B(Rm)⊗ Cl0,m. The following corollary guarentees that.

Corollary 3.8. [7, Corollary 5.5] Let m > 2 be even. Suppose that f(x) = f0(||x||c)
is a real-valued radial function in B(Rm) and g ∈ B(Rm) ⊗ Cl0,m. Then f ∗Cl g ∈
B(Rm)⊗ Cl0,m

4. Beurling’s theorem for the Clifford-Fourier transform

In this section, we provide Beurling’s theorem for the Clifford-Fourier transform.
The proof is based on considering a function g which is a Clifford convolution product
of a Clifford-valued function f and a Gaussian function. In the beginning, we prove
that the function g(z)g(jz) is a polynomial. Indeed , we show that the function Γ
defined below is an entire function bounded by a polynomial, so a polynomial. Then,
by differentiating, it follows that g(z)g(jz) is a polynomial. The main problem is
proving that Γ is polynomial growth. For that purpose, we shall use the following
theorem of Phragmen-Lindelholf.

Theorem 4.1. [14] Let φ be an entire function of order 2 in the complex plane and

let α ∈]0,
π

2
[. Assume that |φ(z)| is bounded by C(1 + |z|)N on the boundary of some

angular sector {rejβ : r ≥ 0, β0 ≤ β ≤ β0 + α}. Then the same bound is valid inside
the angular sector (when replacing C by 2NC).

Afterwards, we resolve the equation g(z)g(jz) = R(z) where R is a polynomial. A

next lemma application is used to write g as g(x) = P (x)e−a||x||2c .

Lemma 4.2. [2] Let φ be an entire function of order 2 on Cm such that, on every
complex line, either φ is identically 0 or it has at most N zeros. Then, there exists a
polynomial P with degree at most N and a polynomial Q with degree at most 2 such
that φ(z) = P (z)eQ(z).

Because the Clifford-Fourier transform is defined on B(Rm) ⊗ Cl0,m, we need check
using the hypothesis of the Beurling’s theorem, if f belongs to B(Rm)⊗ Cl0,m.

Lemma 4.3. Assume f ∈ L2(Rm)⊗ Cl0,m satisfying

(4.1)

∫
Rm

∫
Rm

||f(x)||c||F±(f)(y)||c
(1 + ||x||c + ||y||c)N

e||x||c||y||cdxdy < ∞,

for some N ≥ 0.
Then, f ∈ B(Rm)⊗ Cl0,m and F±(f) ∈ B(Rm)⊗ Cl0,m.

Proof. We suppose that f 6= 0.
Applying Fubini’s theorem, we obtain for almost every y ∈ Rm,

||F±(f)(y)||c
∫

Rm

||f(x)||c
(1 + ||x||c + ||y||)N

e||x||c||y||cdx < ∞.
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Since f 6= 0, then F±(f) 6= 0. Thus, there exists y0 6= 0 such that F±(f)(y0) 6= 0 and

(4.2)

∫
Rm

||f(x)||c
(1 + ||x||c)N

e||x||c||y0||cdx < ∞.

Using (4.2) and the fact that for large x

e||x||c||y0||c

(1 + ||x||c)N+m−2
2

≥ 1,

it follows that ∫
Rm

(1 + ||x||c)
m−2

2 ||f(x)||cdx < ∞.

Hence, we find that f ∈ B(Rm)⊗ Cl0,m. Similarly, we get F±(f) ∈ B(Rm)⊗ Cl0,m.
�

Now, we state the main result which is the Beurling’s theorem.

Theorem 4.4. Let m be even and N be a positive integer. Assume f ∈ L2(Rm)⊗Cl0,m

such that

(4.3)

∫
Rm

∫
Rm

||f(x)||c||F±(f)(y)||c
(1 + ||x||c + ||y||c)N

e||x||c||y||cdxdy < ∞.

Then,

f(x) = Q(x)e−a||x||2c .

for some a > 0 and polynomial Q with degree less than
N −m

2
.

Proof. Let

g(x) = f ∗Cl e−
||.||2c

2 (x).

Step 1.
In this step, we want to establish (4.8). To do this, we need to prove few properties.
Because the inequality (4.8) contains the Clifford-Fourier transform of g, we begin
with check that g belongs to B(Rm)⊗ Cl0,m.
By Lemma 4.3, we have f ∈ B(Rm) ⊗ Cl0,m. In order to demonstrate that g ∈
B(Rm)⊗ Cl0,m, we distinguish two cases depending on m.
Let m = 2.
We notice that B(R2)⊗Cl0,2 is equivalent to L1(R2)⊗Cl0,2. Thus, since f ∈ B(R2)⊗
Cl0,2, an application of Theorem 3.7 gives that g belongs to B(R2)⊗ Cl0,2.
Let m > 2.
According to Corollary 3.8, we have g ∈ B(Rm)⊗ Cl0,m.
We conclude for m even, g ∈ B(Rm)⊗ Cl0,m.
Theorem 3.6 and Theorem 3.4 yield

(4.4) F±(g)(x) = F±(f)(x)F±(e−
||.||2c

2 )(x) = F±(f)(x)e−
||x||2c

2 .

We will show that g satisfies the following assumptions :

(4.5)

∫
Rm

||F±(g)(y)||ce
||y||2c

2 dy < ∞,
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(4.6) ||F±(g)(y)||c ≤ Ce−
||y||2c

4 ,

(4.7)

∫
Rm

∫
Rm

||g(x)||c||F±(g)(x)||ce||x||c||y||c
(1 + ||x||c + ||y||c)N

dxdy < +∞

(4.8)

∫
||x||c≤R

∫
Rm

||g(x)||c||F±(g)(y)||ce||x||c||y||cdxdy ≤ C(1 + R)N .

Since F(f) ∈ B(Rm)⊗ Cl0,m, (4.5) is a simple deduction from (4.4).
We shall prove (4.6).
Using (4.4) and Theorem 3.2, it follows that

||F±(g)(y)||c ≤ C(1 + A)
m−2

2 ||f ||Be−
||y||2c

2 , ∀||y||c ≤ A

and

||F±(g)(y)||c ≤ C||f ||Be−
||y||2c

4 , ∀||y||c > A.

Thus, we get (4.6).
In order to establish (4.7), we use (4.4), Definition 3.2 and Theorem 3.5.
Therefore, we find

I :=

∫
Rm

∫
Rm

||g(x)||c||F±(g)(y)||ce||x||c||y||c
(1 + ||x||c + ||y||c)N

dxdy

≤
∫

Rm

∫
Rm

∫
Rm

||f(t)||ce−
||x−t||2c

2 ||F±(f)(y)||ce−
||y||2c

2 e||x||c||y||c

(1 + ||x||c + ||y||c)N
dtdxdy

≤
∫

Rm

∫
Rm

||f(t)||c||F±(f)(y)||cA(t, y)e||t||c||y||cdtdy,

with A(t, y) := e−
(||t||c+||y||c)2

2

∫
Rm

e−
||x||2c

2 e<x,t>e||x||c||y||c

(1 + ||x||c + ||y||c)N
dx.

We should prove that

(4.9) A(t, y) ≤ C(1 + ||t||c + ||y||c)−N .

According to the Cauchy-Schwarz’s inequality, we have

| < x, t > | ≤ ||x||c||t||c.
Thus ∫

Rm

e−
||x||2c

2 e<x,t>e||x||c||y||c

(1 + ||x||c + ||y||c)N
dx ≤ e

(||t||c+||y||c)2

2

∫
Rm

e−
(||x||c−||t||c−||y||c)2

2

(1 + ||x||c + ||y||c)N
dx.

Hence

A(t, y) ≤
∫

Rm

e−
(||x||c−||t||c−||y||c)2

2

(1 + ||x||c + ||y||c)N
dx.

Fix 0 < l < 1. Let B = (1 + ||t||c + ||y||c).

A(t, y) ≤
∫
|||x||c−||t||c−||y||c|>lB

e−
(||x||c−||t||c−||y||c)2

2 dx
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+

∫
|||x||c−||t||c−||y||c|≤lB

e−
(||x||c−||t||c−||y||c)2

2

(1 + ||x||c + ||y||c)N
dx.

If |||x||c − ||t||c − ||y||c| ≤ lB, then

1 + ||x||c + ||y||c ≥ 1 +
1

2

∣∣∣||x||c − ||t||c + ||t||c
∣∣∣ + ||y||c

≥ 1 +
1

2
(||t||c −

∣∣∣||x||c − ||t||c
∣∣∣) + ||y||c.

Observe that ∣∣||x||c − ||t||c
∣∣ ≤ ∣∣||x||c − ||t||c − ||y||c

∣∣ + ||y||c.
Thus,

1 + ||x||c + ||y||c ≥
1

2
+
||t||c

2
+
||y||c

2
− 1

2

∣∣||x||c − ||t||c − ||y||c
∣∣

≥ 1

2
B − l

2
B

≥ (1− l)

2
B.

We conclude (4.9).
Now, we return to the proof of (4.7) by applying (4.9) as follows

I ≤
∫

Rm

∫
Rm

||f(t)||c||F±(f)(y)||cA(t, y)e||t||c||y||cdtdy

≤ C

∫
Rm

∫
Rm

||f(t)||c||F±(f)(y)||c
e||t||c||y||c

(1 + ||t||c + ||y||c)N
dtdy.

Subsquently, (4.7) is carried out by (4.3).

Fix k > 4. Let

J :=

∫
||x||c≤R

∫
Rm

||g(x)||c||F±(g)(y)||ce||x||c||y||cdxdy

=

∫
||x||c≤R

||g(x)||c
(∫

||y||>kR

||F±(g)(y)||ce||x||c||y||cdy +

∫
||y||<kR

||F±(g)(y)||ce||x||c||y||cdy

)
dx.

Relation (4.6) implies

J ≤
∫
||x||c≤R

||g(x)||c
(∫

||y||>kR

Ce−( 1
4
− 1

k
)||y||2cdy +

∫
||y||<kR

||F±(g)(y)||ce||x||c||y||cdy

)
dx

≤ C||g||1,c +

∫
||x||c≤R

∫
||y||<kR

||g(x)||c||F±(g)(y)||ce||x||c||y||cdydx

≤ C||g||1,c(1 + R)N +

∫
||x||c≤R

∫
||y||<kR

||g(x)||c||F±(g)(y)||ce||x||c||y||cdydx.
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Multiplying and dividing by (1+ ||x||c+ ||y||c)N in the integral of right side, we obtain∫
||x||c≤R

∫
||y||<kR

||g(x)||c||F±(g)(y)||ce||x||c||y||cdydx

≤ C
(
1 + (k + 1)R

)N
∫
||x||c≤R

∫
||y||<kR

||g(x)||c||F±(g)(y)||ce||x||c||y||c
(1 + ||x||c + ||y||c)N

dxdy

≤ C ′(1 + R)N

∫
||x||c≤R

∫
||y||<kR

||g(x)||c||F±(g)(y)||ce||x||c||y||c
(1 + ||x||c + ||y||c)N

dxdy,

where C ′ = C(1 + k)N .
Using (4.7), we complete the proof of (4.8).
Step 2. We introduce a function Γ on C⊗ Rm as

Γ(z) =

∫ z1

0

...

∫ zm

0

g(u)g(ju)du.

In this step, we shall establish that Γ is a polynomial. Indeed, we prove that Γ is an
entire function with polynomial growth. Once, we show that Γ is a polynomial, by
differentiation of Γ, we prove that g(z)g(jz) is a polynomial.
Since f ∈ L2(Rm)⊗Cl0,m, according to the Theorem 3.7, we have that g ∈ L2(Rm)⊗
Cl0,m. Combining Theorem 3.3 and (4.6), we get g admits an holomorphic extension
to C ⊗ Rm. Moreover, using these results and Lemma 3.1, we obtain that for all
z ∈ C⊗ Rm,

||g(z)||c = ||F± ◦ F±(g)(z)||c

≤ (2π)−
m
2

∫
Rm

e||y||c||z||c||F±(g)(y)||cdy

≤ (2π)−
m
2 C

∫
Rm

e||y||c||z||ce−
||y||2c

4 dy

≤ Ce||z||
2
c .

Thus, g is entire of order 2.
Since g is entire of order 2, then Γ is entire and of order 2.

We study now the boundedness of Γ. Since g ∈ L2(Rm)⊗ Cl0,m, using Theorem 3.3,
we find that

g(z) = F± ◦ F±(g)(z).

Note that

||ejθx||c = ||
(

cos(θ) + j sin(θ)
)
x||c = ||x||c.

Therefore, by Lemma 3.1, it follows that for all x ∈ Rm and θ ∈ R

(4.10) ||g(ejθx)||c ≤ C

∫
Rm

e||x||c||y||c ||F±(g)(y)||cdy.

Let ε ∈ Rm and Γε(z) = Γ(εz), ∀z ∈ C. It follows that Γε is entire function of order
2. Using (4.8) and (4.10), we obtain that Γε is polynomial growth on R and jR. In
order to prove that Γ is polynomial growth in the first quadrant, we apply Phragmen-
Lindelhof’s Theorem ( see Theorem 4.1). However, in this theorem we can’t use an
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angular sector of angle π
2
. So, we will prove that Γε is polynomial growth in all

angular sectors {rejβ, r ≥ 0, 0 < β0 ≤ β ≤ π
2
}.

Let 0 < α < β0. We consider Γα
ε (z) = Γα(εz) with

Γα(z) =

∫ z1

0

...

∫ zm

0

g(e−jαu)g(ju)du.

It follows from (4.8) that Γα
ε has polynomial growth on ejαR and on jR.

Referring to Phragmen-Lindelholf’s Theorem ( see Theorem 4.1), we get the same
estimate is valid inside the angular sector. Similarly, we show that Γε is an en-
tire function with polynomial growth of order N in the other three quadrants, so a
polynomial of degree ≤ N . Thus,

Γε(z) = a0(ε) + a1(ε)z + · · ·+ aN(ε)zN ,

Then,

ak(ε) =
1

k!

dk(Γ(zε))

dzk
|z=0, ∀k ∈ {0, · · · , N}.

Subsquently, aj is Cl0,m-valued homogeneous polynomial on Rm.
Since Γ is entire and polynomial on Rm by the principle of analytic continuation, Γ
is a polynomial on C⊗ Rm. By differentiation, we get that

(4.11) g(z)g(jz) = R(z),

with R is a Cm-valued polynomial.
Step 3. By Lemma 4.2, the solution of the equation (4.11) is g(z) = P (z)eQ(z)

with Q(z) is a complex-valued polynomial of degree at most 2 and P is a Cm-valued
polynomial.
Using the fact that eQ(z) is a complex-valued function and equation (4.11), we find

Q(z) + Q(jz) = 0.

We deduce so that Q is homogeneous of degree 2. Finally, we obtain that

g(x) = P (x)e−b||x||2c , b > 0.

On one hand, it follows from Theorem 3.4 that

F±(g)(x) = H(x)e−
1
4b
||x||2c ,

where H is a Cm-valued polynomial with degree equal to the degree of P .
On the other hand, referring to (4.4), we have

F±(g)(x) = F±(f)(x)e−
||x||2c

2 .

Therefore, we conclude that

F±(f)(x) = H(x)e−( 1
4b
− 1

2
)||x||2c ,

We recall that form the hypothesis of the Beurling’s Theorem, we have that f be-
longs to L2(Rm) ⊗ Cl0,m. This allow us to use Theorem 3.3 and to show that f can

be written as f(x) = Q(x)e−a||x||2c , a > 0. �
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5. Applications to other uncertainty principles

In this section, we show the relevance of Beurling’s theorem since it entails Hardy,
Cowling and Price and Gelfand Shilov theorems.

Corollary 5.1 (Hardy theorem). Let m be even. Assume that f ∈ L2(Rm) ⊗ Cl0,m

satisfies

(5.1) ||f(x)||c ≤ C(1 + ||x||c)Ne−a||x||2c

and

(5.2) ||F(f)(y)||c ≤ C(1 + ||y||c)Ne−b||y||2c ,

for some N ∈ N and for some positive contants a and b. Then, three cases can occur
i) If ab > 1

4
, then f = 0.

ii) If ab = 1
4
, then f = P (x)e−a||x||2c with degree of P ≤ N .

ii) If ab < 1
4
, there are many functions satisfying these estimates.

Proof. See that

(1 + ||x||c + ||y||c)2N ≥ (1 + ||x||c)N (1 + ||y||c)N .

Subsquently, we obtain∫
Rm

∫
Rm

||f(x)||c||F±(f)(y)||c
(1 + ||x||c + ||y||c)2N

e||x||c||y||cdxdy

≤
∫

Rm

∫
Rm

e−(
√

a||x||c−
√

b||y||c)2e(1−2
√

ab)||x||c||y||cdxdy.

If ab > 1
4
, by Theorem 4.4, we have

f(x) = P (x)e−δ||x||2c .

Referring to (5.1), (5.2) and Theorem 3.4, f = 0 if ab > 1
4
.

If ab = 1
4
, by Theorem 4.4, f = P (x)e−δ||x||2c with δ > 0. From relations (5.1) and

(5.2), δ should be equal to a and degree of P < N−m
2

which leads to the desired result.

For ab < 1
4
, let f(x) = Ce−t||x||2c with t ∈ [a,

1

4b
] and C is a Clifford constant. Then,

f satisfy the assumptions of the theorem. �

Corollary 5.2 (Cowling and Price theorem). Let N ∈ N, α, β > 0, 1 ≤ p, q < ∞
and m be even. Let f ∈ L2(Rm)⊗ Cl0,m be such that

(5.3)

∫
Rm

eαp||x||2c ||f(x)||pc
(1 + ||x||c)N

dx < ∞

(5.4)

∫
Rm

eβq||y||2c ||F(f)(y)||qc
(1 + ||y||c)N

dy < ∞.
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Then
i) f = 0, if αβ > 1

4
.

ii) f = P (x)e−α||x||2c whith P is a polynomial of degree < min{N−m
p

, N−m
q
}, if αβ = 1

4
.

iii) There are many functions satisfying the assumptions of the theorem, if αβ < 1
4
.

Proof. Let M > max{m + N−m
p

, m + N−m
q
}.

Applying Hölder’s inequality, we find that∫
Rm

eα||x||2c ||f(x)||c
(1 + ||x||c)M

dx < ∞

and ∫
Rm

eβ||y||2c ||F(f)(y)||c
(1 + ||y||c)M

dy < ∞.

Note that∫
Rm

∫
Rm

||f(x)||c||F(f)(y)||ce||x||c||y||c
(1 + ||x||c)M(1 + ||y||c)M

dxdy

=

∫
Rm

∫
Rm

||f(x)||ceα||x||2c ||F(f)(y)||ceβ||y||2ce−(
√

α||x||c−
√

β||y||c)
2

e(1−2
√

αβ)||x||c||y||c

(1 + ||x||c)M(1 + ||y||c)M
dxdy.

Thus, if αβ ≥ 1
4
, we have∫

Rm

∫
Rm

||f(x)||c||F(f)(y)||ce||x||c||y||c
(1 + ||x||c + ||y||c)2M

dxdy < ∞.

Therefore, if αβ ≥ 1
4
, by Theorem 4.4,

f(x) = Q(x)e−δ||x||2c , δ > 0.

with the degree of the polynomial Q is less than M−m

2
. Returning to the conditions

of the corollary, if αβ > 1
4
, f = 0. Furthermore, if αβ = 1

4
, δ = α and the degree of

Q < min{N−m
p

, N−m
q
}.

If αβ < 1
4
, we can take the same example used in Corollary 5.1.

�

Corollary 5.3 (Gelfand Shilov theorem). Let N ∈ N, 1 < p, q < ∞, α, β > 0 and
m be even. Let f ∈ L2(Rm)⊗ Cl0,m satisfy

(5.5)

∫
Rm

||f(x)||ce
(2α||x||c)p

p

(1 + ||x||c)N
dx < ∞

(5.6)

∫
Rm

||F(f)(y)||ce
(2β||y||c)q

q

(1 + ||y||c)N
dy < ∞

with αβ ≥ 1
4

and 1
p

+ 1
q

= 1. We have the following results :

i) If αβ > 1
4

or (p, q) 6= (2, 2), then f = 0 almost everywhere.
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ii) If αβ = 1
4

and p = q = 2, then f = P (x)e−2α2||x||2c where P is a polynomial with
degree less than N −m.

Proof. Using (5.5) and (5.6) and the fact that

4αβ||x||c||y||c ≤
(2α)p

p
||x||pc +

(2β)q

q
||y||qc,

we get

(5.7)

∫
Rm

∫
Rm

||f(x)||c||F±(f)(y)||c
(1 + ||x||c + ||y||c)2N

e4αβ||x||c||y||cdxdy < ∞.

Since αβ ≥ 1
4
, it follows from Theorem 4.4 that

f(x) = P (x)e−a||x||2c

with degree of P less than
N −m

2
. Thus, by Theorem 3.4, (5.7) can be written as

∫
Rm

∫
Rm

||P (x)||ce
−

(√
a||x||c− ||y||c

2
√

a

)2

||Q(y)||c
(1 + ||x||c + ||y||c)2N

e(4αβ−1)||x||c||y||cdxdy < ∞

When αβ > 1
4
, this integral is not finite only if f = 0 almost everywhere.

Moreover, see that (5.5) and (5.6) are satisfied only when (p, q) = (2, 2).
When αβ = 1

4
and (p, q) = (2, 2), (5.5) and (5.6) imply that the degree of P < N−m

and a = 2α2. �

6. Conclusion

In the present paper, we established uncertainty principles in the setting of the Clif-
ford analysis. These principles state that a Clifford-valued function and its Clifford-
Fourier transform cannot be simultaneously sharply localized. We started by proving
the Beurling’s theorem for the Clifford-Fourier transform which is the most interesting
theorem since it implies other well known uncertainty principles. Then, we derived
some applications such as the Hardy uncertainty principle, Cowling and Price uncer-
tainty principle, and Gelfand-Shilov uncertainty principle. We should mention that
the Hardy uncertainty principle was proved in another paper differently. However,
Cowling and Price uncertainty principle and Gelfand-Shilov uncertainty principle are
new results. Furthermore, we recall that the Clifford-Fourier transform presents a
generalization of other Fourier transforms such as the quaternion-Fourier transform
and the Hankel-Fourier transform. Regarding this, we can obtain Beurling, Hardy,
Cowling and Price and Gelfand-Shilov uncertainty principles for all these Fourier
transforms.
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