REFERENCES
1. Bayoudh, S., Othmane, A., Ponsonnet, L., & Ouada, HB. (2008).
Electrical detection and characterization of bacterial adhesion using
electrochemical impedance spectroscopy-based flow chamber.Colloids and Surfaces. A: Physicochemical Engineering Aspects ,
318(1-3), 291-300.
2. Hori, K., & Matsumoto S. (2010). Bacterial adhesion: from mechanism
to control, Biochemical Engineering Journal ,48(33), 424-434.
3. Liu, Y., Wang, J., Ren, L., Tu, Q., Liu, W., Wang, X., Liu, R.,
Zhang, Y., & Wang, J. (2011). Microfluidics-based assay on the effects
of microenvironmental geometry and aqueous flow on bacterial adhesion
behaviors. Journal of Pharmaceutical Analysis , 1(3), 175-183.
4. Bouwer, E. J., & Zehnder, A. J. (1993). Bioremediation of organic
compounds-putting microbial-metabolism to work. Trends in
Biotechnology , 11(8), 360-367.
5. Macdonald, J. A., & Rittmann, B. E. (1993) Performance standards for
in situ bioremediation. Environmental Science Technology , 27(10),
1974-1979.
6. Marjaka, I. W., Miyanaga, K., Hori, K., Tanji, Y., & Unno, H.
(2003). Augmentation of self-purification capacity of sewer pipe by
immobilizing microbes on the pipe surface. Biochemical Engineering
Journal , 15(1), 69-75.
7. Hori, K., Yamashita, S., Ishii, S., Kitagawa, M., Tanji, Y., & Unno,
H. (2001). Isolation, characterization and application to off-gas
treatment of toluene-degrading bacteri. Journal of Chemical
Engineering of Japan ,9(31), 1120-1126.
8. Espinosa-Urgel, M., Salido, A., & Ramos, J. L. (2000). Genetic
analysis of functions involved in adhesion of pseudomonas putidato seed. Journal of Bacteriology , 9(182), 2363-2369.
9. Rakotoarivonina, H., Jubelin, G., Hebraud, M., Gaillard-Martinie, B.,
Forano, E., & Mosoni, P. (2002). Adhesion to cellulose of the
gram-positive bacterium ruminococcus albusinvolves type iv pil.Microbiology ,148,1871-1880.
10. Straub H, Bigger C M, Valentin J, Abt, D., Qin, X., Eberl, L.,
Maniura-Weber, K., & Ren, Q. (2019). Bacterial adhesion on soft
materials: passive physicochemical interactions or active bacterial
mechanosensing. Advanced Healthcare Materials ,8(8): 1801323
11. Mah, T. F., & O’Toole, G. A. (2011). Mechanisms of biofilm
resistance to antimicrobial agent. Trends in Microbiology , 9(1),
34-39
12. Preedy, E., Perni S, Nipiĉ D., Bohinc, K., & Prokopovich, P.
(2014). Surface roughness mediated adhesion forces between borosilicate
glass and gram-positive bacteria. Langmuir ,30(31), 9466-9476.
13. Landini, P., Antoniani, D., Burgess, J. G., & Nijland, R. (2010).
Molecular mechanisms of compounds affecting bacterial biofilm formation
and dispersa. Applied Microbiology and Biotechnology ,86(3),
813-823.
14. Ferraris, S., & Spriano, S. (2016). Antibacterial titanium surfaces
for medical implants. Materials Science and Engineering: C ,61,
965-978.
15. Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B.
Huovinen, P., Jacoby, G., Kishony, R., Kreiswirth, B., & Kutter, E.
(2011). Tackling antibiotic resistanc. Nature Reviews
Microbiology ,9(12), 894-896.
16. Carniello V, Peterson B W, van der Mei H C, & Busscher, H. B.
(2018). Physico-chemistry from initial bacterial adhesion to
surface-programmed biofilm growt. Advances in Colloid and
Interface Science , 261, 1-14.
17. Elbourne, A., Chapman, J., Gelmi, A., & Cozzolino, D. (2019).
Bacterial-nanostructure interactions: the role of cell elasticity and
adhesion force. Journal of Colloid and Interface Science ,546:
192-210.
18. Connell, J. L., Whiteley, M., & Shear, J. B. (2011).
Sociomicrobiology in Engineered Landscape. Nature Chemical
Biology ,8(1): 10-13.
19. Sun, J., Qi, Q., & Liu, Z. (2009). Cooperation in the microorganism
community and sociomircobiology. International Journal of
Stomatology ,36(4),444-447.
20. Clevenger, K. D., & Fast, W. (2012). “Clicking” on the lights to
reveal bacterial social networkin. Chembiochem ,13(4), 508-510.
21 Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival
mechanisms of clinically relevant microorganism. Clinical
Microbiology Reviews ,15(2), 167-193.
22. Kreve, S., & Reis, A. (2021). Bacterial adhesion to biomaterials:
what regulates this attachment? a revie. Japanese Dental Science
Review ,57(8), 85-96.
23. Xin, B., Xu, Y., Li, Y., Liu, T., & Yang, D. (2010). Communication
and cooperation of different microorganisms within biofilm.Scientia Sinica Vitae ,40(11), 1002-1013.
24. Connell, J. L., Whiteley, M., & Shear, J. B. (2011).
Sociomicrobiology in engineered landscape. Nature Chemical
Biology ,8(1), 10-13.
25. Stevens, A. M., Schuster, M., & Rumbaugh, K. P. (2010). Working
together for the common good: cell-cell communication in bacteri.Journal of Bacteriology ,194(9), 2131-2141.
26. Martin, M., Hölscher, T., Dragoš, A., Cooper, V., & Kovács, Á. T.
(2016). Laboratory evolution of microbial interactions in bacterial
biofilms. Journal of Bacteriology ,198(19), 2564-2571.
27. Berne, C., Ellison, C. K., Ducret, A., & Brun, Y.V. (2018).
Bacterial adhesion at the single-cell level. Nature Reviews
Microbiology , 16(10), 616-627.
28. Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E.,
& Jermakow, K. (2020). Prevention of biofilm formation by quorum
quenching. Applied Microbiology and Biotechnology ,104(5),
1871-1881.
29. Harapanahalli, A. K., Younes, J. A., Allan, E.,Ver der Mei, H. C.,
& Busscher, H. J. (2015). Chemical signals and mechanosensing in
bacterial responses to their environment. PLOS Pathogens ,11(8),
e1005057
30. Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant
infections: adhesion, biofilm formation and immune evasion. Nature
Reviews Microbiology ,16(7), 397-409
31. Ma, Z., Huang, X., Cai, Z., & Zhou, J. (2018). Sociological
characteristics of biofilms. Scientia Sinica Vitae , 48(5),
521-534.
32. Persat, & Alexandre. (2017). Bacterial mechanotransduction.Current Opinion in Microbiology , 36:1.
33. Li, G., Brown, P. J. B., Tang, J., Xu, J., & Quardokus, E. M.
(2011). Surface contact stimulates the just‐in‐time deployment of
bacterial adhesins. Molecular Microbiology , 83(1), 41-51.
34. Frank, B. P., & Belfort, G. (2003). Polysaccharides and sticky
membrane surfaces: critical ionic effects. Journal of Membrane
Science ,212(1/2), 205-212.
35. Walker, S. L., Redman, J. A., & Elimelech, M. (2004). Role of cell
surface lipopolysaccharides in escherichia coli k12 adhesion and
transport. Langmuir the Acs Journal of Surfaces and Colloids ,
20(18), 7736-7746.
36. Renner, L. D., Weibel, & D. B. (2011). Physicochemical regulation
of biofilm formation. MRS Bulletin , 36(5), 347-355.
37. Henrichsen, J. (1972). Bacterial surface translocation: a survey and
a classification. Bacteriological Reviews , 36(4), 478-503
38. Jarrell, K. F., & McBride, M. J. (2008). The surprisingly diverse
ways that prokaryotes move. Nature Reviews Microbiology , 6,
466-476.
39. Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J.R., Hendrixson, D.
R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Müller, A., Dobro, M.
J., & Jensen, G. J. (2011). Structural diversity of bacterial flagellar
motors. The EMBO Journal , 30(14), 2972-2981.
40. Scharf, B. E., Fahrner, K. A., Turner, L., & Berg, H. C. (1998).
Control of direction of flagellar rotation in bacterial chemotaxis.Proceedings of the National Academy of Science , 95(1), 201-206.
41. Kearns, D. B. (2010). A field guide to bacterial swarming motility.Nature Reviews Microbiology , 8(9), 634-644.
42. Skerker, J. M., & Berg, H. C. (2001) Direct observation of
extension and retraction of type iv pili. Proceedings of the
National Academy of Science , 98(12), 6901-6904.
43. Belas, & Robert. (2014). Biofilms, flagella, and mechanosensing of
surfaces by bacteria. Trends in Microbiology , 22(9), 517-527.
44. Berg, & Howard C. (2003). The Rotary Motor of Bacterial flagella.Annual Review of Biochemistry , 72(1), 19.
45. Hazelbauer, G. L., Falke, J. J., & Parkinson, J. S. (2008).
Bacterial chemoreceptors: high-performance signaling in networked
arrays. Trends in Biochemical Sciences , 33(1), 9-19.
46 Ma, L., Jackson, K. D., Landry, R. M., & Wozniak, D. J. (2006).
Analysis of pseudomonas aeruginosa conditional psl variants reveals
roles for the psl polysaccharide in adhesion and maintaining biofilm
structure postattachment. Journal of bacteriology , 188(23),
8213-8221.
47. Klapper, I, Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P.
(2002). Viscoelastic Fluid description of bacterial biofilm material
properties. Biotechnology and Bioengineering , 80(3), 298-296.
48. Cense, A. W., Peeters, E., Gottenbos, B., Baaijens, F. P. T., Nuijs,
A. M., & Dongen, M. E. H. (2006). Mechanical properties and failure of
streptococcus mutans biofilms, studied using a microindentation device.Journal of Microbiological Methods , 67(3), 463-472.
49. Satoshi, T., Hirotoshi, A., Hiroshi, H., Atsushi, Y., & Akira, H.
(2003). Extracellular polymeric substances responsible for bacterial
adhesion onto solid surface. Fems Microbiology Letters , 223(2),
287-292.
50. Harimawan, A., & Ting, P. Y. (2016). Investigation of extracellular
polymeric substances (eps) properties of p. aeruginosa and b. subtilis
and their role in bacterial adhesion. Colloids and Surfaces B:
Biointerfaces , 146,459-467.
51. Zhang, T. (2019). Single-cell analysis of microbial initial adhesion
at the interface. PhD Thesis, University of Science and Technology
of China .
52. Yang, K., Shi, J. R., Wang, L., Chen, Y., Liang, L., & Wang, L.
(2022). Bacterial anti-adhesion surface design: surface patterning,
roughness and wettability: a review. Journal of Materials Science
& Technology , 99, 82-100.
53. Ivanova, E. P., Truong, V. K., Wang, J. Y., Berndt, C. C., Jones, R.
T. Yusuf, L. L., Peake, I., Schmidt, H. W., Fluke, C., & Barnes, D.
(2010). Impact of nanoscale roughness of titanium thin film surfaces on
bacterial retention. Langmuir , 26(3), 1973-1982.
54. Mitik-Dineva, N., Wang, J., Mocanasu, R. C., Stoddart, P. R.,
Crawford, R. J., & Ivanova, E. P. (2008). Impact of nano-topography on
bacterial attachment. Biotechnology Journal , 3(4), 536-544.
55. Mitik-Dineva, N., Wang, J., Truong, V. K., Stoddart, P. R.,
Malherbe, F., Crawford, R. J., & Ivanova, E. P. (2009). Escherichia
coli, pseudomonas aeruginosa, and staphylococcus aureus attachment
patterns on glass surfaces with nanoscale roughness. Current
Microbiology , 58(3), 268-273.
56. Lüdecke, C., Bossert, J., Roth, M., & Jandt, K. D. (2013). Physical
Vapor deposited titanium thin films for biomedical applications:
reproducibility of nanoscale surface roughness and microbial adhesion
properties. Applied Surface Science , 280(9), 578-589.
57. Spengler, C., Nolle, F., Mischo, J., Faidt, T., Grandthyll, S,
Thewes, N., Koch, M, k Müller, F., Bischof, M., Klatt, M. A., & Jacobs,
K. (2019). Strength of bacterial adhesion on nanostructured surfaces
quantified by substrate morphometry. Nanoscale , 11(42),
19713-19722.
58. Yoda, I., Koseki, H., Tomita, M., Shida, T., Horiuchi, H.,Sakoda,
H.,Osaki, M. & (2014). Effect of surface roughness of biomaterials on
staphylococcus epidermidis adhesion. BMC Microbiology ,2014(1),
1-7.
59. Azelmad, K., Hamadi, F., Mimouni, R., Amzil, K, & Boulani, E. L.
(2017). Adhesion of staphylococcus aureus and staphylococcus xylosus to
materials commonly found in catering and domestic kitchens. Food
Control ,73, 156-163.
60. Kaliaraj, G. S., Bavanilathamuthiah, M., Kirubaharan, K.,
Ramachandran, D., Dharini, T., Viswanathan, K., & Vishwakarm, V.
(2016). Bio-inspired ysz coated titanium by eb-pvd for biomedical
application. Surface and Coatings Technology , 307, 227-235.
61. Merghni, A., Kammoun, D., Hentati, H., Janel, S., a Popoff, M., k
Lafont, F., Aouni, M., & Mastouri, M. (2016). Quantification of
staphylococcus aureus adhesion forces on various dental restorative
materials using atomic force microscopy. Applied Surface
Science ,379, 323-330.
62. Lu, A., Gao, Y., Jin, T., Luo, X., & Shang, Z. (2019). Effects of
surface roughness and texture on the bacterial adhesion on the bearing
surface of bio-ceramic joint implants: an in vitro study. Ceramics
International ,46(5), 6550-6559.
63. Seddiki, O., Harnagea, C., Levesque, L., Mamtovani, D., & Rosei, F.
(2014). Evidence of antibacterial activity on titanium surfaces through
nanotextures. Applied Surface Science ,308, 275-284.
64. Kumar, S. S., Hiremath, S. S., Ramachandran, B., & Muthuvijayan, V.
(2019). Effect of surface finish on wettability and bacterial adhesion
of micromachined biomaterials. Biotribology ,18, 100095.
65. Wassmann, T., Kreis, S., Behr, M., & Buergers, R. (2017). The
Influence of surface texture and wettability on initial bacterial
adhesion on titanium and zirconium oxide dental implants.International Journal of Implant Dentistry ,3(1), 32.
66. Bohinc, K., Dražić, G., Abram, A., Jevšnik, M., Jeršek, B., Nipič,
D., Kurinčič, M., & Raspor, P. (2016). Metal surface characteristics
dictate bacterial adhesion capacity. International Journal of
Adhesion & Adhesives , 68, 39-46
67. Almaguer-Flores, A., Ximenez-Fyvie, L. A., & Rodil, S. E.
(2015).Oral Bacterial adhesion on amorphous carbon and titanium films:
effect of surface roughness and culture media. Journal Biomedical
Materials Research Part B: Applied Biomaterials , 92 B (1), 196-204.
68. Alam, F., & Balani, K. (2017). Adhesion force of staphylococcus
aureus on various biomaterial surfaces. Journal of the Mechanical
Behavior of Biomedical Materials ,65, 872-880.
69. Mei, L., Busscher, H. J., Mei, H., & Ren, Y. (2011). Influence of
surface roughness on streptococcal adhesion forces to composite resin.Dental Materials , 27(8), 770-778.
70. Wang, C., Zhao, Y, Zheng, S. Xue, J., Zhou, J., Tang, Y., Jiang, L.,
& Li, W. (2015).
Effect of Enamel morphology on nanoscale adhesion forces of
streptococcal bacteria: an afm study. Scanning, 37(5), 313-321.
71. Ortega, M. P., Hagiwara, T., Watanabe, H., & Sakiyama, T. (2010).
Adhesion behavior and removability of escherichia coli on stainless
steel surface. Food Control ,21(4), 573-578.
72. Siegismund, D., Undisz, A., Germerodt, S., Schuster, S., &
Rettrnmayr, M. (2014). Quantification of the interaction between
biomaterial surfaces and bacteria by 3-d modeling. Acta
Biomaterialia ,10(1), 267-275.
73. Lorenzetti, M., Dogša, I., Stošicki, T., Stopar, D., Kalin, M.,
Kobe, S., & Novak, S. (2014). The influence of surface modification on
bacterial adhesion to titanium-based substrates. ACS Applied
Materials & Interfaces , 7(3), 1644-1651.
74. Beaussart A, Elkiratchatel S, Herman P, Alsteens, D., Mahillon, J.,
Hols, P., & Dufreˆne, Y. F. (2013). Single-cell Force Spectroscopy of
Probiotic Bacteria. Biophysical Journal , 104(9), 1886-1892.
75. Fadeeva, E., Truong, V. K., Stiesch, M., Chichkov, B. N., Crawford,
R. J., Wang, J., & Ivanova, E. P. (2011). Bacterial retention on
superhydrophobic titanium surfaces fabricated by femtosecond laser
ablation. Langmuir , 27(6), 3012-3019.
76. Truong, V. K., Webb, H. K., Fadeeva, E., Chichkov, B. N., Wu, A. H.
F., Lamb, R., Wang, J. Y., Crawford, R. J., & Ivanova, E. P. (2012).
Air-directed attachment of coccoid bacteria to the surface of
superhydrophobic lotus-like titanium. Biofouling , 28(6), 539-550.
77. Chan, C. W., Carson, L, Smith, G. C., Morelli, A., & Lee, S.
(2017). Enhancing the antibacterial performance of orthopaedic implant
materials by fibre laser surface engineering. Applied Surface
Science ,404, 67-81.
78. Donaghy, C. L., Mcfadden, R., Kelaini, S. & Carson, C. W. (2020).
Creating an antibacterial surface on beta tnzt alloys for hip implant
applications by laser nitriding. Optics & Laser Technology ,121,
105793.
79. Giorgi, C. D., Furlan, V., Demir, A. G., Tallarita, E., Candiani,
G., & Previtali, B. (2017). Laser micropolishing of aisi 304 stainless
steel surfaces for cleanability and bacteria removal capability.Applied Surface Science , 406, 199-211.
80. Zouaghi, S., Six, T., Bellayer, S., Coffinier, Y., Abdallah, M.
Chihib, N. D., André, C., Delaplace, G., & Jimenez, M. (2018).
Atmospheric pressure plasma spraying of silane-based coatings targeting
whey protein fouling and bacterial adhesion management. Applied
Surface Science , 455, 392-402.
81. Gang, G., Wang, Z, Wang H, Zhao, X., & Hu, J. (2012). Effects of
tetrahedral amorphous carbon film deposited on dental cobalt–chromium
alloys on bacterial adhesion. Surface and Coatings Technology ,
206(15), 3386-3392.
82. Sarker, A., Tran, N., Rifai, A., Brandt, M., Tran, P. A., Leary, M.,
Fox, K., & Williams, R. (2019). Rational design of additively
manufactured ti6al4v implants to control staphylococcus aureus biofilm
formation. Materialia , 5, 100250.
83. Zhao, G. L., & Chen, W. N. (2015). Enhanced PVDF membrane
performance via surface modification by functional polymer
poly(n-isopropylacrylamide) to control protein adsorption and bacterial
adhesion. Reactive & Functional Polymers ,97, 19-29.
84. De-La-Pinta, I., Cobos, M., Ibarretxe, J., Montoya, E., Eraso, E.,
Guraya, T., & Quindos, G. (2019). Effect of biomaterials hydrophobicity
and roughness on biofilm development. Journal of Materials
Science: Materials in Medicine , 30(7), 77.
85. Vermeltfoort, P. B. J., van der Mei, H. C., Busscher, H. T.,
Hooymans, G. M. M., & Bruinsma, G. M. (2004). Physicochemical factors
influencing bacterial transfer from contact lenses to surfaces with
different roughness and wettability. Journal of Biomedical
Materials Research , 71B (2), 336-342.
86. Schwibbert, K., Menzel, F., Epperlein, N., Bonse, J., & Krüger, J.
(2019). Bacterial adhesion on femtosecond laser-modified polyethylene.Materials , 12(19), 3107.
87. Yoon, S. H., Rungraeng, N., Song, W., & Jun, S. (2014).
Superhydrophobic and superhydrophilic nanocomposite coatings for
preventing escherichia coli k-12 adhesion on food contact surface.Journal of Food Engineering , 131, 135-141.
88. Jiang, Y., Yin, Y., Zha, X., Dou, X., & Feng, C. (2016).
Wettability Regulated Gram-negative Bacterial Adhesion on Biomimetic
Hierarchical Structures. Chinese Chemical Letters , 28(2017),
813-817.
89. Manoj, T. P., Rasitha, T. P., Vanithakumari, S. C., Anandkumar, B.,
George, R. P. & Philip, J. (2020). A Simple, rapid and single step
method for fabricating superhydrophobic titanium surfaces with improved
water bouncing and self cleaning properties. Applied Surface
Science , 512, 145636.
90. Privett, B. J., Youn, J., Hong, S. A., Lee, J., & Schoenfisch, M.
H. (2011). Antibacterial fluorinated silica colloid superhydrophobic
surfaces. Langmuir the Acs Journal of Surfaces & Colloids ,
27(15), 9597.
91. Crick, C. R., Ismail, S., Pratten, J., & Parkin, I. P. (2011). An
Investigation into bacterial attachment to an elastomeric
superhydrophobic surface prepared via aerosol assisted deposition.Thin Solid Films , 519(11), 3722-3727.
92. Bazaka, O., Bazaka, K., Truong, V. K., Levchenko, I., Jacob, M. V.,
Estrin, Y., Lapovok, R., Chichkov, B. Fadeeva, E., Kingshott, P.,
Crawford, R. J., & Ivanova, P. (2020). Effect of Titanium surface
topography on plasma deposition of antibacterial polymer coatings.Applied Surface Science , 521, 146375.
93. Almaguer-Flores, A., Silva-Bermudez, P., Galicia, R., & Rodil, S.
E. (2015). Bacterial Adhesion on amorphous and crystalline metal oxide
coatings. Materials Science & Engineering C Materials for
Biological Applications , 57, 88-99.
94. Qi, M., Gong, X., Wu, B., & Zhang, G. (2017). Landing dynamics of
swimming bacteria on a polymeric surface: effect of surface properties.Langmuir , 33(14), 3525-3533.
95. Tang, H., Cao, T., Liang, X., Wang, A., Salley, S. O. McAllister II,
J., & Simon Ng, K. Y. (2009). Influence of silicone surface roughness
and hydrophobicity on adhesion and colonization of staphylococcus
epidermidis. Journal of Biomedical Materials Research Part A , 88A
(2), 454-463.
96. Abban, S., & Jakobsen, M., Jespersen, L. (2012). Attachment
behaviour of escherichia coli k12 and salmonella typhimurium p6 on food
contact surfaces for food transportation. Food
Microbiology ,31(2), 139-147.
97. Kriegel, A. T., & Ducker, W. A. (2019). Removal of bacteria from
solids by bubbles: effect of solid wettability, interaction geometry,
and liquid–vapor interface velocity. Langmuir ,35(39),
12817-12830.
98. Zhang, J., Huang, J. L., Say, C., Dorit, R. L., & Queeney, K. T.
(2018). Deconvoluting the effects of surface chemistry and nanoscale
topography: pseudomonas aeruginosa biofilm nucleation on si-based
substrates. Journal of Colloid & Interface Science ,519, 203-213.
99. Wang, T., Huang, L., Liu, Y., Li, X., Liu, C., Handschuh-Wang, S.
Xu, Y., Zhao, Y., & Tang, Y. (2020). Robust biomimetic hierarchical
diamond architecture with a self-cleaning, antibacterial, and
antibiofouling surface. ACS Applied Materials &
Interfaces ,12(21), 24432-24441.
100. Pan, Q. F., Cao, Y., Xue, W., Zhu, D, & Liu, W. (2019). Picosecond
laser textured stainless steel superhydrophobic surface with
antibacterial adhesion property. Langmuir ,35(35), 11414-11421.
101. Mateescu, M., Knopf, S., Mermet, F. Lavalle, P., & Vonna, L.
(2019). On the role of trapped air in the attachment of staphylococcus
aureus on superhydrophobic silicone elastomer surfaces textured by a
femtosecond laser. Langmuir , 36, 1103-1112.
102. Lin, J., Cai, X., Liu, N., & GUO, Z. (2020).
Anti-liquid-interfering and bacterially antiadhesive strategy for highly
stretchable and ultrasensitive strain sensors based on cassie-baxter
wetting state. Advanced Functional Materials , 2000398.
103. Gao, G., Lange, D., Hilpert, K., Kindrachuk, J., Zou, Y., Cheng, J.
T. J. Kazemzadeh-Narbat, M., Yu, K., Wang, R., Straus, S. K., Brooks, D.
E., Chew, B. H., Hancock, R. E. W., & Kizhakkedathu, J. N. (2011). The
Biocompatibility and biofilm resistanceof implant coatings based on
hydrophilic polymer brushes conjugated with antimicrobial peptides.Biomaterials , 32, 3899-3909.
104. Hu, X., Neoh, K. G., Zhang, J., Kang, E., &Wang, W. (2012).
Immobilization strategy for optimizing vegf’s concurrent bioactivity
towards endothelial cells and osteoblasts on implant surfaces.Biomaterials. 33(32), 8082-8093.
105. Liu, C., Zhang, D., He, Y., Zhao, X., & Bai, R. (2010).
Modification of membrane surface for anti-biofouling performance: effect
of anti-adhesion and anti-bacteria approaches. Journal of Membrane
Science , 346(1), 121-130.
106. Gottenbos, B., Grijpma, D. W., Van der Mei, H. C., Jan, F., &
Busscher, H. J. (2001). Antimicrobial effects of positively charged
surfaces on adhering gram-positive and gram-negative bacteria.
Journal of Antimicrobial Chemotherapy , 48(1), 7-13.
107. Jucker, B. A., Harms, H., & Zehnder, A. J. (1996). Adhesion of the
positively charged bacterium stenotrophomonas (xanthomonas) maltophilia
70401 to glass and teflon. Journal of Bacteriology , 178,
5472-5479.
108. Boks, N. P., Norde, W, van der Mei H C, & Busscher, H. J., (2008).
Forces involved in bacterial adhesion to hydrophilic and hydrophobic
surfaces. Microbiology , 154(10), 3122-3133.
109. Busscher, H. J., & van der Mei H C. (2006). Microbial Adhesion in
flow displacement systems. Clinical Microbiology Reviews , 19(1),
127-141.
110. Kalasin, S., Dabkowski, J., Nüsslein, K., & Santore, M. M. (2010).
The role of nano-scale heterogeneous electrostatic interactions in
initial bacterial adhesion from flow: a case study with staphylococcus
aureus. Colloids and Surfaces B: Biointerfaces , 76(2), 489-495.
111. Zhang, R. (2017). Study of the surface adhesion and motility
mechanisms of pseudomonas aeruginosa. PhD Thesis .