REFERENCES
1. Bayoudh, S., Othmane, A., Ponsonnet, L., & Ouada, HB. (2008). Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber.Colloids and Surfaces. A: Physicochemical Engineering Aspects , 318(1-3), 291-300.
2. Hori, K., & Matsumoto S. (2010). Bacterial adhesion: from mechanism to control, Biochemical Engineering Journal ,48(33), 424-434.
3. Liu, Y., Wang, J., Ren, L., Tu, Q., Liu, W., Wang, X., Liu, R., Zhang, Y., & Wang, J. (2011). Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors. Journal of Pharmaceutical Analysis , 1(3), 175-183.
4. Bouwer, E. J., & Zehnder, A. J. (1993). Bioremediation of organic compounds-putting microbial-metabolism to work. Trends in Biotechnology , 11(8), 360-367.
5. Macdonald, J. A., & Rittmann, B. E. (1993) Performance standards for in situ bioremediation. Environmental Science Technology , 27(10), 1974-1979.
6. Marjaka, I. W., Miyanaga, K., Hori, K., Tanji, Y., & Unno, H. (2003). Augmentation of self-purification capacity of sewer pipe by immobilizing microbes on the pipe surface. Biochemical Engineering Journal , 15(1), 69-75.
7. Hori, K., Yamashita, S., Ishii, S., Kitagawa, M., Tanji, Y., & Unno, H. (2001). Isolation, characterization and application to off-gas treatment of toluene-degrading bacteri. Journal of Chemical Engineering of Japan ,9(31), 1120-1126.
8. Espinosa-Urgel, M., Salido, A., & Ramos, J. L. (2000). Genetic analysis of functions involved in adhesion of pseudomonas putidato seed. Journal of Bacteriology , 9(182), 2363-2369.
9. Rakotoarivonina, H., Jubelin, G., Hebraud, M., Gaillard-Martinie, B., Forano, E., & Mosoni, P. (2002). Adhesion to cellulose of the gram-positive bacterium ruminococcus albusinvolves type iv pil.Microbiology ,148,1871-1880.
10. Straub H, Bigger C M, Valentin J, Abt, D., Qin, X., Eberl, L., Maniura-Weber, K., & Ren, Q. (2019). Bacterial adhesion on soft materials: passive physicochemical interactions or active bacterial mechanosensing. Advanced Healthcare Materials ,8(8): 1801323
11. Mah, T. F., & O’Toole, G. A. (2011). Mechanisms of biofilm resistance to antimicrobial agent. Trends in Microbiology , 9(1), 34-39
12. Preedy, E., Perni S, Nipiĉ D., Bohinc, K., & Prokopovich, P. (2014). Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir ,30(31), 9466-9476.
13. Landini, P., Antoniani, D., Burgess, J. G., & Nijland, R. (2010). Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersa. Applied Microbiology and Biotechnology ,86(3), 813-823.
14. Ferraris, S., & Spriano, S. (2016). Antibacterial titanium surfaces for medical implants. Materials Science and Engineering: C ,61, 965-978.
15. Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B. Huovinen, P., Jacoby, G., Kishony, R., Kreiswirth, B., & Kutter, E. (2011). Tackling antibiotic resistanc. Nature Reviews Microbiology ,9(12), 894-896.
16. Carniello V, Peterson B W, van der Mei H C, & Busscher, H. B. (2018). Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growt. Advances in Colloid and Interface Science , 261, 1-14.
17. Elbourne, A., Chapman, J., Gelmi, A., & Cozzolino, D. (2019). Bacterial-nanostructure interactions: the role of cell elasticity and adhesion force. Journal of Colloid and Interface Science ,546: 192-210.
18. Connell, J. L., Whiteley, M., & Shear, J. B. (2011). Sociomicrobiology in Engineered Landscape. Nature Chemical Biology ,8(1): 10-13.
19. Sun, J., Qi, Q., & Liu, Z. (2009). Cooperation in the microorganism community and sociomircobiology. International Journal of Stomatology ,36(4),444-447.
20. Clevenger, K. D., & Fast, W. (2012). “Clicking” on the lights to reveal bacterial social networkin. Chembiochem ,13(4), 508-510.
21 Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganism. Clinical Microbiology Reviews ,15(2), 167-193.
22. Kreve, S., & Reis, A. (2021). Bacterial adhesion to biomaterials: what regulates this attachment? a revie. Japanese Dental Science Review ,57(8), 85-96.
23. Xin, B., Xu, Y., Li, Y., Liu, T., & Yang, D. (2010). Communication and cooperation of different microorganisms within biofilm.Scientia Sinica Vitae ,40(11), 1002-1013.
24. Connell, J. L., Whiteley, M., & Shear, J. B. (2011). Sociomicrobiology in engineered landscape. Nature Chemical Biology ,8(1), 10-13.
25. Stevens, A. M., Schuster, M., & Rumbaugh, K. P. (2010). Working together for the common good: cell-cell communication in bacteri.Journal of Bacteriology ,194(9), 2131-2141.
26. Martin, M., Hölscher, T., Dragoš, A., Cooper, V., & Kovács, Á. T. (2016). Laboratory evolution of microbial interactions in bacterial biofilms. Journal of Bacteriology ,198(19), 2564-2571.
27. Berne, C., Ellison, C. K., Ducret, A., & Brun, Y.V. (2018). Bacterial adhesion at the single-cell level. Nature Reviews Microbiology , 16(10), 616-627.
28. Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E., & Jermakow, K. (2020). Prevention of biofilm formation by quorum quenching. Applied Microbiology and Biotechnology ,104(5), 1871-1881.
29. Harapanahalli, A. K., Younes, J. A., Allan, E.,Ver der Mei, H. C., & Busscher, H. J. (2015). Chemical signals and mechanosensing in bacterial responses to their environment. PLOS Pathogens ,11(8), e1005057
30. Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology ,16(7), 397-409
31. Ma, Z., Huang, X., Cai, Z., & Zhou, J. (2018). Sociological characteristics of biofilms. Scientia Sinica Vitae , 48(5), 521-534.
32. Persat, & Alexandre. (2017). Bacterial mechanotransduction.Current Opinion in Microbiology , 36:1.
33. Li, G., Brown, P. J. B., Tang, J., Xu, J., & Quardokus, E. M. (2011). Surface contact stimulates the just‐in‐time deployment of bacterial adhesins. Molecular Microbiology , 83(1), 41-51.
34. Frank, B. P., & Belfort, G. (2003). Polysaccharides and sticky membrane surfaces: critical ionic effects. Journal of Membrane Science ,212(1/2), 205-212.
35. Walker, S. L., Redman, J. A., & Elimelech, M. (2004). Role of cell surface lipopolysaccharides in escherichia coli k12 adhesion and transport. Langmuir the Acs Journal of Surfaces and Colloids , 20(18), 7736-7746.
36. Renner, L. D., Weibel, & D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin , 36(5), 347-355.
37. Henrichsen, J. (1972). Bacterial surface translocation: a survey and a classification. Bacteriological Reviews , 36(4), 478-503
38. Jarrell, K. F., & McBride, M. J. (2008). The surprisingly diverse ways that prokaryotes move. Nature Reviews Microbiology , 6, 466-476.
39. Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J.R., Hendrixson, D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Müller, A., Dobro, M. J., & Jensen, G. J. (2011). Structural diversity of bacterial flagellar motors. The EMBO Journal , 30(14), 2972-2981.
40. Scharf, B. E., Fahrner, K. A., Turner, L., & Berg, H. C. (1998). Control of direction of flagellar rotation in bacterial chemotaxis.Proceedings of the National Academy of Science , 95(1), 201-206.
41. Kearns, D. B. (2010). A field guide to bacterial swarming motility.Nature Reviews Microbiology , 8(9), 634-644.
42. Skerker, J. M., & Berg, H. C. (2001) Direct observation of extension and retraction of type iv pili. Proceedings of the National Academy of Science , 98(12), 6901-6904.
43. Belas, & Robert. (2014). Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends in Microbiology , 22(9), 517-527.
44. Berg, & Howard C. (2003). The Rotary Motor of Bacterial flagella.Annual Review of Biochemistry , 72(1), 19.
45. Hazelbauer, G. L., Falke, J. J., & Parkinson, J. S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends in Biochemical Sciences , 33(1), 9-19.
46 Ma, L., Jackson, K. D., Landry, R. M., & Wozniak, D. J. (2006). Analysis of pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. Journal of bacteriology , 188(23), 8213-8221.
47. Klapper, I, Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P. (2002). Viscoelastic Fluid description of bacterial biofilm material properties. Biotechnology and Bioengineering , 80(3), 298-296.
48. Cense, A. W., Peeters, E., Gottenbos, B., Baaijens, F. P. T., Nuijs, A. M., & Dongen, M. E. H. (2006). Mechanical properties and failure of streptococcus mutans biofilms, studied using a microindentation device.Journal of Microbiological Methods , 67(3), 463-472.
49. Satoshi, T., Hirotoshi, A., Hiroshi, H., Atsushi, Y., & Akira, H. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. Fems Microbiology Letters , 223(2), 287-292.
50. Harimawan, A., & Ting, P. Y. (2016). Investigation of extracellular polymeric substances (eps) properties of p. aeruginosa and b. subtilis and their role in bacterial adhesion. Colloids and Surfaces B: Biointerfaces , 146,459-467.
51. Zhang, T. (2019). Single-cell analysis of microbial initial adhesion at the interface. PhD Thesis, University of Science and Technology of China .
52. Yang, K., Shi, J. R., Wang, L., Chen, Y., Liang, L., & Wang, L. (2022). Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review. Journal of Materials Science & Technology , 99, 82-100.
53. Ivanova, E. P., Truong, V. K., Wang, J. Y., Berndt, C. C., Jones, R. T. Yusuf, L. L., Peake, I., Schmidt, H. W., Fluke, C., & Barnes, D. (2010). Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir , 26(3), 1973-1982.
54. Mitik-Dineva, N., Wang, J., Mocanasu, R. C., Stoddart, P. R., Crawford, R. J., & Ivanova, E. P. (2008). Impact of nano-topography on bacterial attachment. Biotechnology Journal , 3(4), 536-544.
55. Mitik-Dineva, N., Wang, J., Truong, V. K., Stoddart, P. R., Malherbe, F., Crawford, R. J., & Ivanova, E. P. (2009). Escherichia coli, pseudomonas aeruginosa, and staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Current Microbiology , 58(3), 268-273.
56. Lüdecke, C., Bossert, J., Roth, M., & Jandt, K. D. (2013). Physical Vapor deposited titanium thin films for biomedical applications: reproducibility of nanoscale surface roughness and microbial adhesion properties. Applied Surface Science , 280(9), 578-589.
57. Spengler, C., Nolle, F., Mischo, J., Faidt, T., Grandthyll, S, Thewes, N., Koch, M, k Müller, F., Bischof, M., Klatt, M. A., & Jacobs, K. (2019). Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. Nanoscale , 11(42), 19713-19722.
58. Yoda, I., Koseki, H., Tomita, M., Shida, T., Horiuchi, H.,Sakoda, H.,Osaki, M. & (2014). Effect of surface roughness of biomaterials on staphylococcus epidermidis adhesion. BMC Microbiology ,2014(1), 1-7.
59. Azelmad, K., Hamadi, F., Mimouni, R., Amzil, K, & Boulani, E. L. (2017). Adhesion of staphylococcus aureus and staphylococcus xylosus to materials commonly found in catering and domestic kitchens. Food Control ,73, 156-163.
60. Kaliaraj, G. S., Bavanilathamuthiah, M., Kirubaharan, K., Ramachandran, D., Dharini, T., Viswanathan, K., & Vishwakarm, V. (2016). Bio-inspired ysz coated titanium by eb-pvd for biomedical application. Surface and Coatings Technology , 307, 227-235.
61. Merghni, A., Kammoun, D., Hentati, H., Janel, S., a Popoff, M., k Lafont, F., Aouni, M., & Mastouri, M. (2016). Quantification of staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy. Applied Surface Science ,379, 323-330.
62. Lu, A., Gao, Y., Jin, T., Luo, X., & Shang, Z. (2019). Effects of surface roughness and texture on the bacterial adhesion on the bearing surface of bio-ceramic joint implants: an in vitro study. Ceramics International ,46(5), 6550-6559.
63. Seddiki, O., Harnagea, C., Levesque, L., Mamtovani, D., & Rosei, F. (2014). Evidence of antibacterial activity on titanium surfaces through nanotextures. Applied Surface Science ,308, 275-284.
64. Kumar, S. S., Hiremath, S. S., Ramachandran, B., & Muthuvijayan, V. (2019). Effect of surface finish on wettability and bacterial adhesion of micromachined biomaterials. Biotribology ,18, 100095.
65. Wassmann, T., Kreis, S., Behr, M., & Buergers, R. (2017). The Influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants.International Journal of Implant Dentistry ,3(1), 32.
66. Bohinc, K., Dražić, G., Abram, A., Jevšnik, M., Jeršek, B., Nipič, D., Kurinčič, M., & Raspor, P. (2016). Metal surface characteristics dictate bacterial adhesion capacity. International Journal of Adhesion & Adhesives , 68, 39-46
67. Almaguer-Flores, A., Ximenez-Fyvie, L. A., & Rodil, S. E. (2015).Oral Bacterial adhesion on amorphous carbon and titanium films: effect of surface roughness and culture media. Journal Biomedical Materials Research Part B: Applied Biomaterials , 92 B (1), 196-204.
68. Alam, F., & Balani, K. (2017). Adhesion force of staphylococcus aureus on various biomaterial surfaces. Journal of the Mechanical Behavior of Biomedical Materials ,65, 872-880.
69. Mei, L., Busscher, H. J., Mei, H., & Ren, Y. (2011). Influence of surface roughness on streptococcal adhesion forces to composite resin.Dental Materials , 27(8), 770-778.
70. Wang, C., Zhao, Y, Zheng, S. Xue, J., Zhou, J., Tang, Y., Jiang, L., & Li, W. (2015).
Effect of Enamel morphology on nanoscale adhesion forces of streptococcal bacteria: an afm study. Scanning, 37(5), 313-321.
71. Ortega, M. P., Hagiwara, T., Watanabe, H., & Sakiyama, T. (2010). Adhesion behavior and removability of escherichia coli on stainless steel surface. Food Control ,21(4), 573-578.
72. Siegismund, D., Undisz, A., Germerodt, S., Schuster, S., & Rettrnmayr, M. (2014). Quantification of the interaction between biomaterial surfaces and bacteria by 3-d modeling. Acta Biomaterialia ,10(1), 267-275.
73. Lorenzetti, M., Dogša, I., Stošicki, T., Stopar, D., Kalin, M., Kobe, S., & Novak, S. (2014). The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Applied Materials & Interfaces , 7(3), 1644-1651.
74. Beaussart A, Elkiratchatel S, Herman P, Alsteens, D., Mahillon, J., Hols, P., & Dufreˆne, Y. F. (2013). Single-cell Force Spectroscopy of Probiotic Bacteria. Biophysical Journal , 104(9), 1886-1892.
75. Fadeeva, E., Truong, V. K., Stiesch, M., Chichkov, B. N., Crawford, R. J., Wang, J., & Ivanova, E. P. (2011). Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir , 27(6), 3012-3019.
76. Truong, V. K., Webb, H. K., Fadeeva, E., Chichkov, B. N., Wu, A. H. F., Lamb, R., Wang, J. Y., Crawford, R. J., & Ivanova, E. P. (2012). Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling , 28(6), 539-550.
77. Chan, C. W., Carson, L, Smith, G. C., Morelli, A., & Lee, S. (2017). Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Applied Surface Science ,404, 67-81.
78. Donaghy, C. L., Mcfadden, R., Kelaini, S. & Carson, C. W. (2020). Creating an antibacterial surface on beta tnzt alloys for hip implant applications by laser nitriding. Optics & Laser Technology ,121, 105793.
79. Giorgi, C. D., Furlan, V., Demir, A. G., Tallarita, E., Candiani, G., & Previtali, B. (2017). Laser micropolishing of aisi 304 stainless steel surfaces for cleanability and bacteria removal capability.Applied Surface Science , 406, 199-211.
80. Zouaghi, S., Six, T., Bellayer, S., Coffinier, Y., Abdallah, M. Chihib, N. D., André, C., Delaplace, G., & Jimenez, M. (2018). Atmospheric pressure plasma spraying of silane-based coatings targeting whey protein fouling and bacterial adhesion management. Applied Surface Science , 455, 392-402.
81. Gang, G., Wang, Z, Wang H, Zhao, X., & Hu, J. (2012). Effects of tetrahedral amorphous carbon film deposited on dental cobalt–chromium alloys on bacterial adhesion. Surface and Coatings Technology , 206(15), 3386-3392.
82. Sarker, A., Tran, N., Rifai, A., Brandt, M., Tran, P. A., Leary, M., Fox, K., & Williams, R. (2019). Rational design of additively manufactured ti6al4v implants to control staphylococcus aureus biofilm formation. Materialia , 5, 100250.
83. Zhao, G. L., & Chen, W. N. (2015). Enhanced PVDF membrane performance via surface modification by functional polymer poly(n-isopropylacrylamide) to control protein adsorption and bacterial adhesion. Reactive & Functional Polymers ,97, 19-29.
84. De-La-Pinta, I., Cobos, M., Ibarretxe, J., Montoya, E., Eraso, E., Guraya, T., & Quindos, G. (2019). Effect of biomaterials hydrophobicity and roughness on biofilm development. Journal of Materials Science: Materials in Medicine , 30(7), 77.
85. Vermeltfoort, P. B. J., van der Mei, H. C., Busscher, H. T., Hooymans, G. M. M., & Bruinsma, G. M. (2004). Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability. Journal of Biomedical Materials Research , 71B (2), 336-342.
86. Schwibbert, K., Menzel, F., Epperlein, N., Bonse, J., & Krüger, J. (2019). Bacterial adhesion on femtosecond laser-modified polyethylene.Materials , 12(19), 3107.
87. Yoon, S. H., Rungraeng, N., Song, W., & Jun, S. (2014). Superhydrophobic and superhydrophilic nanocomposite coatings for preventing escherichia coli k-12 adhesion on food contact surface.Journal of Food Engineering , 131, 135-141.
88. Jiang, Y., Yin, Y., Zha, X., Dou, X., & Feng, C. (2016). Wettability Regulated Gram-negative Bacterial Adhesion on Biomimetic Hierarchical Structures. Chinese Chemical Letters , 28(2017), 813-817.
89. Manoj, T. P., Rasitha, T. P., Vanithakumari, S. C., Anandkumar, B., George, R. P. & Philip, J. (2020). A Simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties. Applied Surface Science , 512, 145636.
90. Privett, B. J., Youn, J., Hong, S. A., Lee, J., & Schoenfisch, M. H. (2011). Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir the Acs Journal of Surfaces & Colloids , 27(15), 9597.
91. Crick, C. R., Ismail, S., Pratten, J., & Parkin, I. P. (2011). An Investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition.Thin Solid Films , 519(11), 3722-3727.
92. Bazaka, O., Bazaka, K., Truong, V. K., Levchenko, I., Jacob, M. V., Estrin, Y., Lapovok, R., Chichkov, B. Fadeeva, E., Kingshott, P., Crawford, R. J., & Ivanova, P. (2020). Effect of Titanium surface topography on plasma deposition of antibacterial polymer coatings.Applied Surface Science , 521, 146375.
93. Almaguer-Flores, A., Silva-Bermudez, P., Galicia, R., & Rodil, S. E. (2015). Bacterial Adhesion on amorphous and crystalline metal oxide coatings. Materials Science & Engineering C Materials for Biological Applications , 57, 88-99.
94. Qi, M., Gong, X., Wu, B., & Zhang, G. (2017). Landing dynamics of swimming bacteria on a polymeric surface: effect of surface properties.Langmuir , 33(14), 3525-3533.
95. Tang, H., Cao, T., Liang, X., Wang, A., Salley, S. O. McAllister II, J., & Simon Ng, K. Y. (2009). Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of staphylococcus epidermidis. Journal of Biomedical Materials Research Part A , 88A (2), 454-463.
96. Abban, S., & Jakobsen, M., Jespersen, L. (2012). Attachment behaviour of escherichia coli k12 and salmonella typhimurium p6 on food contact surfaces for food transportation. Food Microbiology ,31(2), 139-147.
97. Kriegel, A. T., & Ducker, W. A. (2019). Removal of bacteria from solids by bubbles: effect of solid wettability, interaction geometry, and liquid–vapor interface velocity. Langmuir ,35(39), 12817-12830.
98. Zhang, J., Huang, J. L., Say, C., Dorit, R. L., & Queeney, K. T. (2018). Deconvoluting the effects of surface chemistry and nanoscale topography: pseudomonas aeruginosa biofilm nucleation on si-based substrates. Journal of Colloid & Interface Science ,519, 203-213.
99. Wang, T., Huang, L., Liu, Y., Li, X., Liu, C., Handschuh-Wang, S. Xu, Y., Zhao, Y., & Tang, Y. (2020). Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface. ACS Applied Materials & Interfaces ,12(21), 24432-24441.
100. Pan, Q. F., Cao, Y., Xue, W., Zhu, D, & Liu, W. (2019). Picosecond laser textured stainless steel superhydrophobic surface with antibacterial adhesion property. Langmuir ,35(35), 11414-11421.
101. Mateescu, M., Knopf, S., Mermet, F. Lavalle, P., & Vonna, L. (2019). On the role of trapped air in the attachment of staphylococcus aureus on superhydrophobic silicone elastomer surfaces textured by a femtosecond laser. Langmuir , 36, 1103-1112.
102. Lin, J., Cai, X., Liu, N., & GUO, Z. (2020). Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state. Advanced Functional Materials , 2000398.
103. Gao, G., Lange, D., Hilpert, K., Kindrachuk, J., Zou, Y., Cheng, J. T. J. Kazemzadeh-Narbat, M., Yu, K., Wang, R., Straus, S. K., Brooks, D. E., Chew, B. H., Hancock, R. E. W., & Kizhakkedathu, J. N. (2011). The Biocompatibility and biofilm resistanceof implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides.Biomaterials , 32, 3899-3909.
104. Hu, X., Neoh, K. G., Zhang, J., Kang, E., &Wang, W. (2012). Immobilization strategy for optimizing vegf’s concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces.Biomaterials. 33(32), 8082-8093.
105. Liu, C., Zhang, D., He, Y., Zhao, X., & Bai, R. (2010). Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches. Journal of Membrane Science , 346(1), 121-130.
106. Gottenbos, B., Grijpma, D. W., Van der Mei, H. C., Jan, F., & Busscher, H. J. (2001). Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. Journal of Antimicrobial Chemotherapy , 48(1), 7-13.
107. Jucker, B. A., Harms, H., & Zehnder, A. J. (1996). Adhesion of the positively charged bacterium stenotrophomonas (xanthomonas) maltophilia 70401 to glass and teflon. Journal of Bacteriology , 178, 5472-5479.
108. Boks, N. P., Norde, W, van der Mei H C, & Busscher, H. J., (2008). Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology , 154(10), 3122-3133.
109. Busscher, H. J., & van der Mei H C. (2006). Microbial Adhesion in flow displacement systems. Clinical Microbiology Reviews , 19(1), 127-141.
110. Kalasin, S., Dabkowski, J., Nüsslein, K., & Santore, M. M. (2010). The role of nano-scale heterogeneous electrostatic interactions in initial bacterial adhesion from flow: a case study with staphylococcus aureus. Colloids and Surfaces B: Biointerfaces , 76(2), 489-495.
111. Zhang, R. (2017). Study of the surface adhesion and motility mechanisms of pseudomonas aeruginosa. PhD Thesis .