References
Puşcaş A, Mureşan V, Socaciu C, Muste S. Oleogels in Food: A Review of
Current and Potential Applications. Foods. 2020;9:70-98.doi:10.3390/foods9010070
Alvarez MD, Cofrades S, Espert M, Sanz T, Salvador A. Development of
Chocolates with Improved Lipid Profile by Replacing Cocoa Butter with an
Oleogel. Gels. 2021;7:20.doi:10.3390/gels7040220
Zeng L, Lin X, Li P, Liu F-Q, Guo H, Li H-H. Recent advances of
organogels: from fabrications and functions to applications. Prog Org
Coat. 2021;159:106417.doi:10.1016/j.porgcoat.2021.106417
Li J-L, Liu X-Y. Architecture of Supramolecular Soft Functional
Materials: From Understanding to Micro-/Nanoscale Engineering. Adv Funct
Mater. 2010;20:3196–3216.doi:10.1002/adfm.201000744
Bayés-García L, Patel AR, Dewettinck K, Rousseau D, Sato K, Ueno S.
Lipid crystallization kinetics — roles of external factors influencing
functionality of end products. Curr Opin Food Sci. 2015;4:32-38.doi:10.1016/j.cofs.2015.04.005
Ashkar A, Laufer S, Rosen-Kligvasser J, Lesmes U, Davidovich-Pinhas M.
Impact of different oil gelators and oleogelation mechanisms on
digestive lipolysis of canola oil oleogels. Food Hydrocoll.
2019;97:105218.doi:10.1016/j.foodhyd.2019.105218
Puşcaş A, Mureşan V, Muste S. Application of Analytical Methods for the
Comprehensive Analysis of Oleogels—A Review. Polymers.
2021;13:1934-1958.doi:10.3390/polym13121934
Rogers MA, Marangoni AG. Solvent-Modulated Nucleation and
Crystallization Kinetics of 12-Hydroxystearic Acid: A Nonisothermal
Approach. Langmuir. 2009;25:8556-8566.doi:10.1021/la8035665
Marangoni AG. Non-isothermal Nucleation Kinetics in Fats. In: Marangoni
AG. Kinetic Analysis of Food Systems. Springer, Cham. 2017. p. 145-160.doi:10.1007/978-3-319-51292-1_9
Toro-Vázquez JF, Briceño-Montelongo M, Dibildox-Alvarado E, Charó-Alonso
M, Reyes-Hernánez J. Crystallization Kinetics of Palm Stearin in Blends
with Sesame Seed Oil. J Am Oil Chem Soc. 2000;77:297-310.doi:10.1007/s11746-000-0049-x
AOCS Official Methods Ce 1h-05 and Ce 2-66 Reapproved 2017, Official
Methods and Recommended Practices of the AOCS 7th Ed.
(American Oil Chemists’ Society, Urbana, IL. USA, 2017)
Aguilar-Zárate M, De la Peña-Gil A, Álvarez-Mitre FM, Charó-Alonso MA,
Toro-Vázquez JF. Vegetable and Mineral Oil Organogels Based on
Monoglyceride and Lecithin Mixtures. Food Biophys. 2019;14:326-345.doi:10.1007/s11483-019-09583-1
García-Andrade M, González-Laredo RF, Rocha-Guzmán NE, Rosas-Flores W,
Moreno-Jiménez MR, Peña-Ramos EA, Gallegos-Infante JA. Influence of
ethyl cellulose in a multicomponent mixture (sorbitan
monopalmitate-vegetable oils) on physicochemical properties of
organogels. Rev Mex Ing Quim. 2020;19:953-968.doi:10.24275/rmiq/Alim801
Giacomozzi AS, Carrín ME, Palla CA. Storage Stability of Oleogels Made
from Monoglycerides and High Oleic Sunflower Oil. Food Biophys.
2021;16:306-316.doi:10.1007/s11483-020-09661-9
López-Martínez A, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso
MA, Marangoni AG, Toro-Vázquez JF. Comparing the crystallization and
rheological behavior of organogels developed by pure and commercial
monoglycerides in vegetable oil. Food Res Int. 2014;64:946–957.doi:10.1016/j.foodres.2014.08.029
Ghosh S, Rousseau D. Freeze–thaw stability of water-in-oil emulsions. J
Colloid Interface Sci. 2009;339:91–102.doi:10.1016/j.jcis.2009.07.047
Vereecken J, Meeussen W, Foubert I, Lesaffer A, Wouters J, Dewettinck K.
Comparing the crystallization and polymorphic behaviour of saturated and
unsaturated monoglycerides. Food Res. Int. 2009;42:1415-1425.doi:10.1016/j.foodres.2009.07.006
Contreras-Ramírez JI, Villanueva-Fierro I, González-Laredo RF,
Toro-Vázquez JF, Pérez-Martínez JD, Rosas-Flores W, Gallegos-Infante JA.
Study of the relationship of hydrogen bonding and hydrophobic
interactions in W/O organogel emulsions by Raman microspectroscopy.
Colloids Interface Sci Commun. 2021;44:100486.doi:10.1016/j.colcom.2021.100486
Palla C, de Vicente J, Carrín ME, Gálvez-Ruiz MJ. Effects of cooling
temperature profiles on the monoglycerides oleogel properties: A
rheo-microscopy study. Food Res Int. 2019;125:108613.doi:10.1016/j.foodres.2019.108613