REFERENCES
1. Corno, G., J. Villiger, and J. Pernthaler, Coaggregation in a
microbial predator–prey system affects competition and trophic transfer
efficiency. Ecology, 2013. 94 (4): p. 870-881.
2. Burkepile, D.E., et al., Chemically mediated competition
between microbes and animals: microbes as consumers in food webs.Ecology, 2006. 87 (11): p. 2821-2831.
3. LaSarre, B., et al., Microbial mutualism dynamics governed by
dose-dependent toxicity of cross-fed nutrients. The ISME journal, 2017.11 (2): p. 337-348.
4. Faust, K., et al., Microbial co-occurrence relationships in the
human microbiome. PLoS Comput. Biol., 2012. 8 (7): p. e1002606.
5. Barberán, A., et al., Using network analysis to explore
co-occurrence patterns in soil microbial communities. The ISME journal,
2012. 6 (2): p. 343-351.
6. Widder, S., et al., Fluvial network organization imprints on
microbial co-occurrence networks. Proc. Natl. Acad. Sci. U. S. A.,
2014. 111 (35): p. 12799-12804.
7. Bray, J.R. and J.T. Curtis, An Ordination of the Upland Forest
Communities of Southern Wisconsin. Ecological Monographs, 1957.27 (4): p. 325-349.
8. Pearson, K., DETERMINATION OF THE COEFFICIENT OF CORRELATION.Science, 1909. 30 (757): p. 23-25.
9. Spearman, C., Measurement of association, Part II. Correction
of ‘systematic deviations’. Am. J. Psychol, 1904. 15 : p.
88-101.
10. Haas, B.J., et al., Chimeric 16S rRNA sequence formation and
detection in Sanger and 454-pyrosequenced PCR amplicons. Genome
Research, 2011. 21 (3): p. 494-504.
11. Huse, S.M., et al., Ironing out the wrinkles in the rare
biosphere through improved OTU clustering. Environmental Microbiology,
2010. 12 (7): p. 1889-1898.
12. Kuczynski, J., et al., Microbial community resemblance methods
differ in their ability to detect biologically relevant patterns. Nat.
Methods, 2010. 7 (10): p. 813-819.
13. Weiss, S., et al., Correlation detection strategies in
microbial data sets vary widely in sensitivity and precision. ISME J.,
2016. 10 (7): p. 1669-1681.
14. Ban, Y., L. An, and H. Jiang, Investigating microbial
co-occurrence patterns based on metagenomic compositional data.Bioinformatics, 2015. 31 (20): p. 3322-3329.
15. Dugas, L.R., et al., Decreased microbial co-occurrence network
stability and SCFA receptor level correlates with obesity in
African-origin women. Sci. Rep., 2018. 8 (1): p. 17135.
16. Lozupone, C., et al., Identifying genomic and metabolic
features that can underlie early successional and opportunistic
lifestyles of human gut symbionts. Genome Research, 2012.22 (10): p. 1974-1984.
17. Benjamini, Y. and Y. Hochberg, On the Adaptive Control of the
False Discovery Rate in Multiple Testing With Independent Statistics.J. Educ. Behav. Stat., 2000. 25 (1): p. 60-83.
18. Langfelder, P. and S. Horvath, WGCNA: an R package for
weighted correlation network analysis. BMC Bioinformatics, 2008.9 : p. 559.
19. Wilcox, R.R., Introduction to Robust Estimation and Hypothesis
Testing . 2011: Academic Press.
20. Barabási, A.-L. and R. Albert, Emergence of Scaling in Random
Networks. Science, 1999. 286 (5439): p. 509-512.
21. Castillo, J.D., J.M. Vivanco, and D.K. Manter, Bacterial
Microbiome and Nematode Occurrence in Different Potato Agricultural
Soils. Microb. Ecol., 2017. 74 (4): p. 888-900.
22. Tong, M., et al., Reprograming of gut microbiome energy
metabolism by the FUT2 Crohn’s disease risk polymorphism. The ISME
Journal, 2014. 8 (11): p. 2193-2206.
23. Yin, J., et al., Lysine Restriction Affects Feed Intake and
Amino Acid Metabolism via Gut Microbiome in Piglets. Cell. Physiol.
Biochem., 2017. 44 (5): p. 1749-1761.
24. Younge, N., Q. Yang, and P.C. Seed, Enteral High
Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of
the Intestinal Microbiome in Premature Infants with an Enterostomy. J.
Pediatr., 2017. 181 : p. 93-101.e6.
25. Jackson, M.A., et al., Detection of stable community
structures within gut microbiota co-occurrence networks from different
human populations. PeerJ, 2018. 6 : p. e4303.
26. Gloor, G.B., et al., Microbiome Datasets Are Compositional:
And This Is Not Optional. Frontiers in Microbiology, 2017. 8 .
27. Broido, A.D. and A. Clauset, Scale-free networks are rare.Nat. Commun., 2019. 10 (1): p. 1017.
28. Mandal, S., et al., Analysis of composition of microbiomes: a
novel method for studying microbial composition. Microb. Ecol. Health
Dis., 2015. 26 : p. 27663.
29. Paulson, J.N., et al., Differential abundance analysis for
microbial marker-gene surveys. Nat. Methods, 2013. 10 (12): p.
1200-1202.
30. Blondel, V.D., et al., Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment,
2008. 2008 (10): p. P10008.
31. Frøslev, T.G., et al., Algorithm for post-clustering curation
of DNA amplicon data yields reliable biodiversity estimates. Nature
Communications, 2017. 8 (1): p. 1188.
32. Faust, K. and J. Raes, CoNet app: inference of biological
association networks using Cytoscape. F1000Research, 2016. 5 :
p. 1519.
33. Grüning, B., et al., Bioconda: sustainable and comprehensive
software distribution for the life sciences. Nature Methods, 2018.15 (7): p. 475-476.
34. Bolyen, E., et al., Reproducible, interactive, scalable and
extensible microbiome data science using QIIME 2. Nature Biotechnology,
2019. 37 (8): p. 852-857.
35. Himsolt, M., GML: A portable graph file format . 1997,
Technical report, Universitat Passau.
36. Shannon, P., et al., Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res.,
2003. 13 (11): p. 2498-2504.
37. McDonald, D., et al., The Biological Observation Matrix (BIOM)
format or: how I learned to stop worrying and love the ome-ome.Gigascience, 2012. 1 (1): p. 7.
38. Friedman, J. and E.J. Alm, Inferring correlation networks from
genomic survey data. PLoS Comput. Biol., 2012. 8 (9): p.
e1002687.
39. Watts, S.C., et al., FastSpar: rapid and scalable correlation
estimation for compositional data. Bioinformatics, 2019.35 (6): p. 1064-1066.
40. Fernandes, A.D., et al., Unifying the analysis of
high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA
gene sequencing and selective growth experiments by compositional data
analysis. Microbiome, 2014. 2 (1): p. 15.
41. Tsilimigras, M.C.B. and A.A. Fodor, Compositional data
analysis of the microbiome: fundamentals, tools, and challenges. Annals
of Epidemiology, 2016. 26 (5): p. 330-335.
42. Rosenberg, A. and J. Hirschberg. V-Measure: A Conditional
Entropy-Based External Cluster Evaluation Measure . 2007. Prague, Czech
Republic: Association for Computational Linguistics.
43. [dataset] Noguera-Julian, M., et al., Gut Microbiota
Linked to Sexual Preference and HIV Infection. EBioMedicine, 2016.5 : p. 135-146. IrsiCaixa Foundation. human gut metagenome,
Human feces metagenome 16s rDNA sequencing. 2015/12. In: BioProject
[Internet]. Bethesda, MD: National Library of Medicine (US),
National Center for Biotechnology Information; 2011-. Available from:
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA307231. NCBI:BioProject:
PRJNA307231.
44. Bushnell, B., J. Rood, and E. Singer, BBMerge – Accurate
paired shotgun read merging via overlap. PLOS ONE, 2017.12 (10): p. e0185056.
45. Callahan, B.J., et al., DADA2: High-resolution sample
inference from Illumina amplicon data. Nat Methods, 2016.13 (7): p. 581-3.
46. Edgar, R.C., Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 2010. 26 (19): p. 2460-2461.
47. Caporaso, J.G., et al., QIIME allows analysis of
high-throughput community sequencing data. Nat. Methods, 2010.7 (5): p. 335-336.
48. Janssen, S., et al., Phylogenetic Placement of Exact Amplicon
Sequences Improves Associations with Clinical Information. mSystems,
2018. 3 (3).
49. Mirarab, S., N. Nguyen, and T. Warnow, SEPP: SATé-enabled
phylogenetic placement. Pac. Symp. Biocomput., 2012: p. 247-258.
50. Cock, P.J.A., et al., Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics,
2009. 25 (11): p. 1422-1423.
51. Talevich, E., et al., Bio.Phylo: A unified toolkit for
processing, analyzing and visualizing phylogenetic trees in Biopython.BMC Bioinformatics, 2012. 13 (1): p. 209.
52. [dataset] Thompson, L.R., et al., A communal catalogue
reveals Earth’s multiscale microbial diversity. Nature, 2017.551 (7681): p. 457-463. QIITA;
https://qiita.ucsd.edu/study/description/1041
53. Gonzalez, A., et al., Qiita: rapid, web-enabled microbiome
meta-analysis. Nat. Methods, 2018. 15 (10): p. 796-798.
54. Rognes, T., et al., VSEARCH: a versatile open source tool for
metagenomics. PeerJ, 2016. 4 : p. e2584.
55. Zaneveld, J.R., et al., Ribosomal RNA diversity predicts
genome diversity in gut bacteria and their relatives. Nucleic Acids
Research, 2010. 38 (12): p. 3869-3879.
56. Armstrong, A.J.S., et al., Systems Analysis of Gut Microbiome
Influence on Metabolic Disease in HIV-Positive and High-Risk
Populations. mSystems, 2021. 6 (3).
57. Baldassano, S.N. and D.S. Bassett, Topological distortion and
reorganized modular structure of gut microbial co-occurrence networks in
inflammatory bowel disease. Sci Rep, 2016. 6 : p. 26087.
58. Armstrong, A.J.S., et al., An exploration of Prevotella-rich
microbiomes in HIV and men who have sex with men. Microbiome, 2018.6 (1): p. 198.
59. Dillon, S.M., et al., An altered intestinal mucosal microbiome
in HIV-1 infection is associated with mucosal and systemic immune
activation and endotoxemia. Mucosal Immunology, 2014. 7 (4): p.
983-994.
60. Lozupone, C.A., et al., Alterations in the gut microbiota
associated with HIV-1 infection. Cell Host Microbe, 2013.14 (3): p. 329-339.
61. De Maesschalck, C., et al., Faecalicoccus acidiformans gen.
nov., sp. nov., isolated from the chicken caecum, and reclassification
of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme
(Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as
Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov.,
comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov.,
respectively, within the family Erysipelotrichaceae. International
Journal of Systematic and Evolutionary Microbiology, 2014.64 (Pt_11): p. 3877-3884.
62. Gianella, S., et al., Associations between virologic and
immunologic dynamics in blood and in the male genital tract. J. Virol.,
2012. 86 (3): p. 1307-1315.
63. Palmer, C.D., et al., Enhanced immune activation linked to
endotoxemia in HIV-1 seronegative MSM. AIDS, 2014. 28 (14): p.
2162-2166.
64. Bajaj, J.S., et al., Linkage of gut microbiome with cognition
in hepatic encephalopathy. American Journal of
Physiology-Gastrointestinal and Liver Physiology, 2012. 302 (1):
p. G168-G175.