REFERENCES
1. Corno, G., J. Villiger, and J. Pernthaler, Coaggregation in a microbial predator–prey system affects competition and trophic transfer efficiency. Ecology, 2013. 94 (4): p. 870-881.
2. Burkepile, D.E., et al., Chemically mediated competition between microbes and animals: microbes as consumers in food webs.Ecology, 2006. 87 (11): p. 2821-2831.
3. LaSarre, B., et al., Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. The ISME journal, 2017.11 (2): p. 337-348.
4. Faust, K., et al., Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol., 2012. 8 (7): p. e1002606.
5. Barberán, A., et al., Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME journal, 2012. 6 (2): p. 343-351.
6. Widder, S., et al., Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl. Acad. Sci. U. S. A., 2014. 111 (35): p. 12799-12804.
7. Bray, J.R. and J.T. Curtis, An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 1957.27 (4): p. 325-349.
8. Pearson, K., DETERMINATION OF THE COEFFICIENT OF CORRELATION.Science, 1909. 30 (757): p. 23-25.
9. Spearman, C., Measurement of association, Part II. Correction of ‘systematic deviations’. Am. J. Psychol, 1904. 15 : p. 88-101.
10. Haas, B.J., et al., Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 2011. 21 (3): p. 494-504.
11. Huse, S.M., et al., Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology, 2010. 12 (7): p. 1889-1898.
12. Kuczynski, J., et al., Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods, 2010. 7 (10): p. 813-819.
13. Weiss, S., et al., Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J., 2016. 10 (7): p. 1669-1681.
14. Ban, Y., L. An, and H. Jiang, Investigating microbial co-occurrence patterns based on metagenomic compositional data.Bioinformatics, 2015. 31 (20): p. 3322-3329.
15. Dugas, L.R., et al., Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women. Sci. Rep., 2018. 8 (1): p. 17135.
16. Lozupone, C., et al., Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 2012.22 (10): p. 1974-1984.
17. Benjamini, Y. and Y. Hochberg, On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics.J. Educ. Behav. Stat., 2000. 25 (1): p. 60-83.
18. Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008.9 : p. 559.
19. Wilcox, R.R., Introduction to Robust Estimation and Hypothesis Testing . 2011: Academic Press.
20. Barabási, A.-L. and R. Albert, Emergence of Scaling in Random Networks. Science, 1999. 286 (5439): p. 509-512.
21. Castillo, J.D., J.M. Vivanco, and D.K. Manter, Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils. Microb. Ecol., 2017. 74 (4): p. 888-900.
22. Tong, M., et al., Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. The ISME Journal, 2014. 8 (11): p. 2193-2206.
23. Yin, J., et al., Lysine Restriction Affects Feed Intake and Amino Acid Metabolism via Gut Microbiome in Piglets. Cell. Physiol. Biochem., 2017. 44 (5): p. 1749-1761.
24. Younge, N., Q. Yang, and P.C. Seed, Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy. J. Pediatr., 2017. 181 : p. 93-101.e6.
25. Jackson, M.A., et al., Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ, 2018. 6 : p. e4303.
26. Gloor, G.B., et al., Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology, 2017. 8 .
27. Broido, A.D. and A. Clauset, Scale-free networks are rare.Nat. Commun., 2019. 10 (1): p. 1017.
28. Mandal, S., et al., Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis., 2015. 26 : p. 27663.
29. Paulson, J.N., et al., Differential abundance analysis for microbial marker-gene surveys. Nat. Methods, 2013. 10 (12): p. 1200-1202.
30. Blondel, V.D., et al., Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008. 2008 (10): p. P10008.
31. Frøslev, T.G., et al., Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature Communications, 2017. 8 (1): p. 1188.
32. Faust, K. and J. Raes, CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016. 5 : p. 1519.
33. Grüning, B., et al., Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods, 2018.15 (7): p. 475-476.
34. Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019. 37 (8): p. 852-857.
35. Himsolt, M., GML: A portable graph file format . 1997, Technical report, Universitat Passau.
36. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003. 13 (11): p. 2498-2504.
37. McDonald, D., et al., The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.Gigascience, 2012. 1 (1): p. 7.
38. Friedman, J. and E.J. Alm, Inferring correlation networks from genomic survey data. PLoS Comput. Biol., 2012. 8 (9): p. e1002687.
39. Watts, S.C., et al., FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics, 2019.35 (6): p. 1064-1066.
40. Fernandes, A.D., et al., Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2014. 2 (1): p. 15.
41. Tsilimigras, M.C.B. and A.A. Fodor, Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Annals of Epidemiology, 2016. 26 (5): p. 330-335.
42. Rosenberg, A. and J. Hirschberg. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure . 2007. Prague, Czech Republic: Association for Computational Linguistics.
43. [dataset] Noguera-Julian, M., et al., Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine, 2016.5 : p. 135-146. IrsiCaixa Foundation. human gut metagenome, Human feces metagenome 16s rDNA sequencing. 2015/12. In: BioProject [Internet]. Bethesda, MD: National Library of Medicine (US), National Center for Biotechnology Information; 2011-. Available from: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA307231. NCBI:BioProject: PRJNA307231.
44. Bushnell, B., J. Rood, and E. Singer, BBMerge – Accurate paired shotgun read merging via overlap. PLOS ONE, 2017.12 (10): p. e0185056.
45. Callahan, B.J., et al., DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 2016.13 (7): p. 581-3.
46. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010. 26 (19): p. 2460-2461.
47. Caporaso, J.G., et al., QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 2010.7 (5): p. 335-336.
48. Janssen, S., et al., Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems, 2018. 3 (3).
49. Mirarab, S., N. Nguyen, and T. Warnow, SEPP: SATé-enabled phylogenetic placement. Pac. Symp. Biocomput., 2012: p. 247-258.
50. Cock, P.J.A., et al., Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009. 25 (11): p. 1422-1423.
51. Talevich, E., et al., Bio.Phylo: A unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython.BMC Bioinformatics, 2012. 13 (1): p. 209.
52. [dataset] Thompson, L.R., et al., A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 2017.551 (7681): p. 457-463. QIITA; https://qiita.ucsd.edu/study/description/1041
53. Gonzalez, A., et al., Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods, 2018. 15 (10): p. 796-798.
54. Rognes, T., et al., VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016. 4 : p. e2584.
55. Zaneveld, J.R., et al., Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Research, 2010. 38 (12): p. 3869-3879.
56. Armstrong, A.J.S., et al., Systems Analysis of Gut Microbiome Influence on Metabolic Disease in HIV-Positive and High-Risk Populations. mSystems, 2021. 6 (3).
57. Baldassano, S.N. and D.S. Bassett, Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease. Sci Rep, 2016. 6 : p. 26087.
58. Armstrong, A.J.S., et al., An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome, 2018.6 (1): p. 198.
59. Dillon, S.M., et al., An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunology, 2014. 7 (4): p. 983-994.
60. Lozupone, C.A., et al., Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe, 2013.14 (3): p. 329-339.
61. De Maesschalck, C., et al., Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. International Journal of Systematic and Evolutionary Microbiology, 2014.64 (Pt_11): p. 3877-3884.
62. Gianella, S., et al., Associations between virologic and immunologic dynamics in blood and in the male genital tract. J. Virol., 2012. 86 (3): p. 1307-1315.
63. Palmer, C.D., et al., Enhanced immune activation linked to endotoxemia in HIV-1 seronegative MSM. AIDS, 2014. 28 (14): p. 2162-2166.
64. Bajaj, J.S., et al., Linkage of gut microbiome with cognition in hepatic encephalopathy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012. 302 (1): p. G168-G175.