REFERENCES
Alexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel
competitors shape species’ responses to climate change. Nature,
525 (7570), 515-518. doi:10.1038/nature14952
Alfaro, B., & Marshall, D. L. (2019). Phenotypic variation of
life-history traits in native, invasive, and landrace populations ofBrassica tournefortii . Ecology and Evolution, 9 (23),
13127-13141. doi:10.1002/ece3.5747
Bajpai, D., & Inderjit, I. (2013). Impact of nitrogen availability and
soil communities on biomass accumulation of an invasive species.AoB PLANTS, 5 (1), plt045. doi:10.1093/aobpla/plt045
Callaway, R. M., & Aschehoug, E. T. (2000). Invasive plants versus
their new and old neighbors: A mechanism for exotic invasion.Science, 290 (5491), 521-523. doi:10.1126/science.290.5491.521
Darling, E. S., & Cote, I. M. (2008). Quantifying the evidence for
ecological synergies. Ecology Letters, 11 (12), 1278-1286.
doi:10.1111/j.1461-0248.2008.01243.x
Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating
resources in plant communities: a general theory of invasibility.Journal of Ecology, 88 (3), 528-534.
doi:10.1046/j.1365-2745.2000.00473.x
Dawson, W., Rohr, R. P., van Kleunen, M., & Fischer, M. (2012). Alien
plant species with a wider global distribution are better able to
capitalize on increased resource availability. New Phytologist,
194 (3), 859-867. doi:10.1111/j.1469-8137.2012.04104.x
Dematteis, B., Ferrucci, M. S., & Coulleri, J. P. (2020). Morphological
differentiation across the invasive range in Senecio
madagascariensis populations. Scientific reports, 10 (1), 20045.
doi:10.1038/s41598-020-76922-5
Du, Z. Z., Yan, P., Ren, S., Shan, Cao, T., & Huang, G. (2014). Three
new exotic plant species of Asteraceae in Xinjiang. Arid Zone
Research, 31 (5), 863-865. doi:10.13866/j.azr.2014.05.13
Eller, C. B., & Oliveira, R. S. (2017). Effects of nitrogen
availability on the competitive interactions between an invasive and a
native grass from Brazilian Cerrado. Plant and Soil, 410 (1-2),
63-72. doi:10.1007/s11104-016-2984-0
Eskelinen, A., & Harrison, S. (2014). Exotic plant invasions under
enhanced rainfall are constrained by soil nutrients and competition.Ecology, 95 (3), 682-692. doi:10.1890/13-0288.1
Farooq, S., Tad, S., Onen, H., Gunal, H., Caldiran, U., & Ozaslan, C.
(2017). Range expansion potential of two co-occurring invasive vines to
marginal habitats in Turkey. Acta Oecologica-International Journal
of Ecology, 84 (1), 23-33. doi:10.1016/j.actao.2017.08.004
Feng, Y. L., Lei, Y. B., Wang, R. F., Callaway, R. M., Valiente-Banuet,
A., Inderjit, . . . Zheng, Y. L. (2009). Evolutionary tradeoffs for
nitrogen allocation to photosynthesis versus cell walls in an invasive
plant. Proceedings of the National Academy of Sciences of the
United States of America, 106 (6), 1853-1856.
doi:10.1073/pnas.0808434106
Feng, Y. L., Li, Y. P., Wang, R. F., Callaway, R. M., Valiente-Banuet,
A., & Inderjit. (2011). A quicker return energy-use strategy by
populations of a subtropical invader in the non-native range: a
potential mechanism for the evolution of increased competitive ability.Journal of Ecology, 99 (5), 1116-1123.
doi:10.1111/j.1365-2745.2011.01843.x
Halbritter, A. H., Billeter, R., Edwards, P. J., & Alexander, J. M.
(2015). Local adaptation at range edges: comparing elevation and
latitudinal gradients. Journal of Evolutionary Biology, 28 (10),
1849-1860. doi:10.1111/jeb.12701
He, J. Y., Yang, X., & Shi, S. D. (2020). Effects of the invasive weed,Galinsoga quadriradiata Ruiz et Pav. on plant diversity in Hohhot
City, Inner Mongolia. Journal of Biosafety, 29 (2), 129-134.
doi:10.3969/j.issn.2095-1787.2020002.008
Helsen, K., Acharya, K. P., Graae, B. J., De Kort, H., Brunet, J.,
Chabrerie, O., . . . Pelabon, C. (2020). Earlier onset of flowering and
increased reproductive allocation of an annual invasive plant in the
north of its novel range. Annals of Botany, 126 (6), 1005-1016.
doi:10.1093/aob/mcaa110
Huang, F. F., Lankau, R., & Peng, S. L. (2018). Coexistence via
coevolution driven by reduced allelochemical effects and increased
tolerance to competition between invasive and native plants. New
Phytologist, 218 (1), 357-369. doi:10.1111/nph.14937
Kabuce, N., & Priede, N. (2010). NOBANIS-invasive alien species fact
sheet Galinsoga quadriradiat .-From: Online Database of the
European Network on Invasive Alien Species – NOBANISwww.nobanis.org, Date of access
12/12/2021. .
Kersting, D. K., Cebrian, E., Casado, C., Teixido, N., Garrabou, J., &
Linares, C. (2015). Experimental evidence of the synergistic effects of
warming and invasive algae on a temperate reef-builder coral.Scientific reports, 5 , 18635. doi:10.1038/srep18635
Kilkenny, F. F., & Galloway, L. F. (2016). Evolution of marginal
populations of an invasive vine increases the likelihood of future
spread. New Phytologist, 209 (4), 1773-1780. doi:10.1111/nph.13702
Lankau, R. A. (2013). Species invasion alters local adaptation to soil
communities in a native plant. Ecology, 94 (1), 32-40.
doi:10.1890/12-0675.1
Leger, E. A., & Espeland, E. K. (2010). Coevolution between native and
invasive plant competitors: implications for invasive species
management. Evolutionary Applications, 3 (2), 169-178.
doi:10.1111/j.1752-4571.2009.00105.x
Liu, G., Gao, Y., Huang, F. F., Yuan, M. Y., & Peng, S. L. (2016a). The
invasion of coastal areas in south China by Ipomoea cairica may
be accelerated by the ecotype being more locally adapted to salt stress.PLoS One, 11 (2), e0149262 doi:10.1371/journal.pone.0149262
Liu, G., Liu, R. L., Zhang, W. G., Yang, Y. B., Bi, X. Q., Li, M. Z., .
. . Zhu, Z. H. (2021a). Arbuscular mycorrhizal colonization rate of an
exotic plant, Galinsoga quadriradiata , in mountain ranges changes
with altitude. Mycorrhiza, 31 (2), 161-171.
doi:10.1007/s00572-020-01009-y
Liu, G., Yang, Y. B., & Zhu, Z. H. (2018). Elevated nitrogen allows the
weak invasive plant Galinsoga quadriradiata to become more
vigorous with respect to inter-specific competition. Scientific
reports, 8 (1), 3136. doi:10.1038/s41598-018-21546-z
Liu, G., Zhang, L. L., Kong, B. B., Wei, X. H., & Zhu, Z. H. (2016b).
The population growth dynamic of Galinsoga quadriradiata Ruiz &
Pav. on Qinling-Bashan Mountain. Acta Ecologica Sinica, 36 (11),
3350-3361. doi:10.5846/stxb201506301371
Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wei, J., . . . Wong, A. Y.
H. (2020). Reviewing global estimates of surface reactive nitrogen
concentration and deposition using satellite retrievals.Atmospheric Chemistry and Physics, 20 (14), 8641-8658.
doi:10.5194/acp-20-8641-2020
Liu, M. C., Kong, D. L., Lu, X. R., Huang, K., Wang, S., Wang, W. B., .
. . Feng, Y. L. (2017a). Higher photosynthesis, nutrient- and energy-use
efficiencies contribute to invasiveness of exotic plants in a nutrient
poor habitat in northeast China. Physiologia Plantarum, 160 (4),
373-382. doi:10.1111/ppl.12566
Liu, R. L., Yang, Y. B., Lee, B. R., Liu, G., Zhang, W. G., Chen, X. Y.,
. . . Zhu, Z. H. (2021b). The dispersal-related traits of an invasive
plant Galinsoga quadriradiata correlate with elevation during
range expansion into mountain ranges. AoB PLANTS, 13 (3), plab008.
doi:10.1093/aobpla/plab008
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L.,
. . . Zhang, F. S. (2013). Enhanced nitrogen deposition over China.Nature, 494 (7438), 459-462. doi:10.1038/nature11917
Liu, Y., Oduor, A. M. O., Zhang, Z., Manea, A., Tooth, I. M., Leishman,
M. R., . . . van Kleunen, M. (2017b). Do invasive alien plants benefit
more from global environmental change than native plants? Global
Change Biology, 23 (8), 3363-3370. doi:10.1111/gcb.13579
Liu, Y. Y., Sun, Y., Muller-Scharer, H., Yan, R., Zhou, Z. X., Wang, Y.
J., & Yu, F. H. (2019). Do invasive alien plants differ from
non-invasives in dominance and nitrogen uptake in response to variation
of abiotic and biotic environments under global anthropogenic change?Science of the Total Environment, 672 , 634-642.
doi:10.1016/j.scitotenv.2019.04.024
Luo, Y. J., Guo, W. H., Yuan, Y. F., Liu, J., Du, N., & Wang, R. Q.
(2014). Increased nitrogen deposition alleviated the competitive effects
of the introduced invasive plant Robinia pseudoacacia on the
native tree Quercus acutissima . Plant and Soil, 385 (1-2),
63-75. doi:10.1007/s11104-014-2227-1
McCarthy, M. C., & Enquist, B. J. (2007). Consistency between an
allometric approach and optimal partitioning theory in global patterns
of plant biomass allocation. Functional Ecology, 21 (4), 713-720.
doi:10.1111/j.1365-2435.2007.01276.x
Miller, T. E. X., Angert, A. L., Brown, C. D., Lee-Yaw, J. A., Lewis,
M., Lutscher, F., . . . Williams, J. L. (2020). Eco-evolutionary
dynamics of range expansion. Ecology, 101 (10), e03139.
doi:10.1002/ecy.3139
Mitchell, C. E., Agrawal, A. A., Bever, J. D., Gilbert, G. S., Hufbauer,
R. A., Klironomos, J. N., . . . Vazquez, D. P. (2006). Biotic
interactions and plant invasions. Ecology Letters, 9 (6), 726-740.
doi:10.1111/j.1461-0248.2006.00908.x
NeSmith, J. E., Alba, C., & Flory, S. L. (2018). Experimental drought
and plant invasion additively suppress primary pine species of
southeastern US forests. Forest Ecology and Management, 411 (1),
158-165. doi:10.1016/j.foreco.2017.12.045
Nordin, A., Strengbom, J., Witzell, J., Näsholm, T., & Ericson, L.
(2005). Nitrogen deposition and the biodiversity of boreal forests:
implications for the nitrogen critical load. Ambio, 34 (1), 20-24.
Oduor, A. M. O. (2013). Evolutionary responses of native plant species
to invasive plants: a review. New Phytologist, 200 (4), 986-992.
doi:10.1111/nph.12429
Oduor, A. M. O. (2022). Native plant species show evolutionary responses
to invasion by Parthenium hysterophorus in an African savanna.New Phytologist, 233 (2), 983-994. doi:doi.org/10.1111/nph.17574
Parepa, M., Kahmen, A., Werner, R. A., Fischer, M., & Bossdorf, O.
(2019). Invasive knotweed has greater nitrogen-use efficiency than
native plants: evidence from a 15N pulse-chasing
experiment. Oecologia, 191 (2), 389-396.
doi:10.1007/s00442-019-04490-1
Phillips, B. L., Brown, G. P., & Shine, R. (2010). Life-history
evolution in range-shifting populations. Ecology, 91 (6),
1617-1627. doi:10.1890/09-0910.1
Puglielli, G., Laanisto, L., Poorter, H., & Niinemets, U. (2021).
Global patterns of biomass allocation in woody species with different
tolerances of shade and drought: evidence for multiple strategies.New Phytologist, 229 (1), 308-322. doi:10.1111/nph.16879
Qin, T. J., Guan, Y. T., Zhang, M. X., Li, H. L., & Yu, F. H. (2018).
Sediment type and nitrogen deposition affect the relationship betweenAlternanthera philoxeroides and experimental wetland plant
communities. Marine and Freshwater Research, 69 (5), 811-822.
doi:10.1071/mf17335
Radford, I. J. (2013). Fluctuating resources, disturbance and plant
strategies: diverse mechanisms underlying plant invasions. Journal
of Arid Land, 5 (3), 284-297. doi:10.1007/s40333-013-0164-0
Saul, W. C., & Jeschke, J. M. (2015). Eco-evolutionary experience in
novel species interactions. Ecology Letters, 18 (3), 236-245.
doi:10.1111/ele.12408
Shen, X. Y., Peng, S. L., Chen, B. M., Pang, J. X., Chen, L. Y., Xu, H.
M., & Hou, Y. P. (2011). Do higher resource capture ability and
utilization efficiency facilitate the successful invasion of native
plants? Biological Invasions, 13 (4), 869-881.
doi:10.1007/s10530-010-9875-8
Sheppard, C. S., & Schurr, F. M. (2019). Biotic resistance or
introduction bias? Immigrant plant performance decreases with residence
times over millennia. Global Ecology and Biogeography, 28 (2),
222-237. doi:10.1111/geb.12844
Shine, R., Brown, G. P., & Phillips, B. L. (2011). An evolutionary
process that assembles phenotypes through space rather than through
time. Proceedings of the National Academy of Sciences of the
United States of America, 108 (14), 5708-5711.
doi:10.1073/pnas.1018989108
Strauss, S. Y., Lau, J. A., & Carroll, S. P. (2006). Evolutionary
responses of natives to introduced species: what do introductions tell
us about natural communities? Ecology Letters, 9 (3), 357-374.
doi:10.1111/j.1461-0248.2005.00874.x
Sun, Y., Collins, A. R., Schaffner, U., & Muller-Scharer, H. (2013).
Dissecting impact of plant invaders: do invaders behave differently in
the new range? Ecology, 94 (10), 2124-2130. doi:10.1890/12-1910.1
Sun, Z. K., & He, W. M. (2018). Invasive Solidago canadensisversus its new and old neighbors: their competitive tolerance depends on
soil microbial guilds. Flora, 248 (1), 43-47.
doi:10.1016/j.flora.2018.08.015
Tabassum, S., & Leishman, M. R. (2020). Mixed evidence for shifts to
faster carbon capture strategies towards range edges of two coastal
invasive plants in eastern Australia. Biological Invasions,
22 (2), 563-575. doi:10.1007/s10530-019-02111-9
Valliere, J. M., Irvine, I. C., Santiago, L., & Allen, E. B. (2017).
High N, dry: Experimental nitrogen deposition exacerbates native shrub
loss and nonnative plant invasion during extreme drought. Global
Change Biology, 23 (10), 4333-4345. doi:10.1111/gcb.13694
Vilà, M., & Weiner, J. (2004). Are invasive plant species better
competitors than native plant species? – evidence from pair-wise
experiments. Oikos, 105 (2), 229-238.
doi:https://doi.org/10.1111/j.0030-1299.2004.12682.x
Wang, C. Y., Liu, J., Xiao, H. G., Zhou, J. W., & Du, D. L. (2017).
Nitrogen deposition influences the allelopathic effect of an invasive
plant on the reproduction of a native plant: Solidago canadensisversus Pterocypsela laciniata . Polish Journal of Ecology,
65 (1), 87-96. doi:10.3161/15052249pje2017.65.1.008
Xu, W., Zhang, L., & Liu, X. J. (2019). A database of atmospheric
nitrogen concentration and deposition from the nationwide monitoring
network in China. Scientific Data, 6 (1), 51.
doi:10.1038/s41597-019-0061-2
Yang, Y. B., Liu, G., Shi, X., Zhang, W. G., Cai, X. W., Ren, Z. L., . .
. Nie, H. (2018). Where will invasive plants colonize in response to
climate change: predicting the invasion of Galinsoga
quadriradiata in China. International Journal of Environmental
Research, 12 (6), 929-938. doi:10.1007/s41742-018-0146-3
Ye, Z. P., Suggett, D. J., Robakowski, P., & Kang, H. J. (2013). A
mechanistic model for the photosynthesis-light response based on the
photosynthetic electron transport of photosystem II in
C3 and C4 species. New
Phytologist, 199 (1), 110-120. doi:10.1111/nph.12242
Yu, G. R., Jia, Y. L., He, N. P., Zhu, J. X., Chen, Z., Wang, Q. F., . .
. Goulding, K. (2019). Stabilization of atmospheric nitrogen deposition
in China over the past decade. Nature Geoscience, 12 (6),
424–429. doi:10.1038/s41561-019-0352-4
Yu, H., Le Roux, J. J., Jiang, Z., Sun, F., Peng, C., & Li, W. (2020).
Soil nitrogen dynamics and competition during plant invasion: insights
from Mikania micrantha invasions in China. New Phytologist,
229 (6), 3440-3452. doi:10.1111/nph.17125
Zhang, C. H., Guo, H. R., Huang, H., Ma, T. Y., Song, W., Chen, C. J.,
& Liu, X. Y. (2021). Atmospheric nitrogen deposition and its responses
to anthropogenic emissions in a global hotspot region. Atmospheric
Research, 248 (1), 105137. doi:10.1016/j.atmosres.2020.105137
Zhang, W. G., Chen, X. Y., Liu, R. L., Song, X. J., Liu, G., Zou, J. B.,
. . . Cui, L. J. (2022). Realized niche shift associated withGalinsoga quadriradiata (Asteraceae) invasion in China.Journal of Plant Ecology, 15 (3), 538-548. doi:10.1093/jpe/rtab086
Zhang, Z., & van Kleunen, M. (2019). Common alien plants are more
competitive than rare natives but not than common natives. Ecology
Letters, 22 (9), 1378-1386. doi:10.1111/ele.13320
Zhao, Y. H., Zhang, L., Chen, Y. F., Liu, X. J., Xu, W., Pan, Y. P., &
Duan, L. (2017). Atmospheric nitrogen deposition to China: A model
analysis on nitrogen budget and critical load exceedance.Atmospheric Environment, 153 (1), 32-40.
doi:10.1016/j.atmosenv.2017.01.018
Zheng, Y. L., Burns, J. H., Liao, Z. Y., Li, W. T., & Li, L. (2020).
Nutrient fluctuation has different effects on a tropical invader in
communities from the native and non-native range. Environmental
and Experimental Botany, 178 (1), 104193.
doi:10.1016/j.envexpbot.2020.104193