The inference of selective sweep
The selective sweep was detected by combining the signals of the
fixation index (FST ) between the Chinese and
Indian rhesus macaque, the reduced nucleotide diversity (π) in the
Chinese rhesus population relative to the Indian population
(θπ_India/θπ_China), and the elevated
expected haplotype homozygosity (Ihh12) [72-74]. The consensus of
selective sweep regions was determined as the shared regions among the
top 5% of the empirical distribution of windows with the strongest
signals for all three metrics.
References
1. Accogli, A., et al., Novel CNS malformations and skeletal
anomalies in a patient with Beaulieu-boycott-Innes syndrome. Am J Med
Genet A, 2018. 176 (12): p. 2835-2840.
2. Gibbs, R.A., et al., Evolutionary and biomedical insights from
the rhesus macaque genome. science, 2007. 316 (5822): p.
222-234.
3. Van Rompay, K.K.A., Tackling HIV and AIDS: contributions by
non-human primate models. Lab Animal, 2017. 46 (6): p. 259-270.
4. Shedlock, D.J., G. Silvestri, and D.B. Weiner, Monkeying around
with HIV vaccines: using rhesus macaques to define ’gatekeepers’ for
clinical trials. Nat Rev Immunol, 2009. 9 (10): p. 717-28.
5. Geisbert, T.W., et al., Evaluation in nonhuman primates of
vaccines against Ebola virus. Emerg Infect Dis, 2002. 8 (5): p.
503-7.
6. Urano, E., et al., COVID-19 cynomolgus macaque model reflecting
human COVID-19 pathological conditions. Proceedings of the National
Academy of Sciences, 2021. 118 (43): p. e2104847118.
7. He, W.-t., et al., Broadly neutralizing antibodies to
SARS-related viruses can be readily induced in rhesus macaques. Science
Translational Medicine, 2022. 14 (657): p. eabl9605.
8. Cyranoski, D., Monkeys genetically modified to show autism
symptoms. Nature, 2016. 529 (7587): p. 449-449.
9. Zhao, H., Y.H. Jiang, and Y.Q. Zhang, Modeling autism in
non-human primates: Opportunities and challenges. Autism Res, 2018.11 (5): p. 686-694.
10. Zhou, Y., et al., Atypical behaviour and connectivity in
SHANK3-mutant macaques. Nature, 2019. 570 (7761): p. 326-331.
11. Porras, G., Q. Li, and E. Bezard, Modeling Parkinson’s disease
in primates: The MPTP model. Cold Spring Harb Perspect Med, 2012.2 (3): p. a009308.
12. Potts, L.F., et al., Modeling Parkinson’s disease in monkeys
for translational studies, a critical analysis. Exp Neurol, 2014.256 : p. 133-43.
13. Miwa, Y., et al., Bilateral cataract surgery in a Japanese
macaque (Macaca fuscata): A case report. Clin Case Rep, 2021.9 (11): p. e05112.
14. Lin, K.H., et al., Age-related changes in the rhesus macaque
eye. Experimental Eye Research, 2021. 212 : p. 108754.
15. Cox, L.A., et al., Nonhuman Primates and Translational
Research-Cardiovascular Disease. Ilar j, 2017. 58 (2): p.
235-250.
16. Tollner, T.L., et al., Macaque sperm coating protein DEFB126
facilitates sperm penetration of cervical mucus†. Human Reproduction,
2008. 23 (11): p. 2523-2534.
17. Khampang, S., et al., Blastocyst development after
fertilization with in vitro spermatids derived from nonhuman primate
embryonic stem cells. F&S Science, 2021. 2 (4): p. 365-375.
18. Cooper, E.B., et al., The rhesus macaque as a success story of
the Anthropocene. Elife, 2022. 11 .
19. Warren, W.C., et al., Sequence diversity analyses of an
improved rhesus macaque genome enhance its biomedical utility. Science,
2020. 370 (6523).
20. Weiss, A., et al., Rhesus macaques (Macaca mulatta) as living
fossils of hominoid personality and subjective well-being. J Comp
Psychol, 2011. 125 (1): p. 72-83.
21. Wu, S.-J., et al., Ecological Genetics of Chinese Rhesus
Macaque in Response to Mountain Building: All Things Are Not Equal.PLOS ONE, 2013. 8 (2): p. e55315.
22. Hasan, M.K., et al., Distribution of Rhesus Macaques (Macaca
mulatta) in Bangladesh: Inter-population Variation in Group Size and
Composition. Primate Conservation, 2013. 26 (1): p. 125-132, 8.
23. Hernandez, R.D., et al., Demographic histories and patterns of
linkage disequilibrium in Chinese and Indian rhesus macaques. Science,
2007. 316 (5822): p. 240-243.
24. Xue, C., et al., The population genomics of rhesus macaques
(Macaca mulatta) based on whole-genome sequences. Genome research,
2016. 26 (12): p. 1651-1662.
25. Bimber, B.N., et al., mGAP: the macaque genotype and phenotype
resource, a framework for accessing and interpreting macaque variant
data, and identifying new models of human disease. BMC Genomics, 2019.20 (1): p. 176.
26. Liu, Z., et al., Population genomics of wild Chinese rhesus
macaques reveals a dynamic demographic history and local adaptation,
with implications for biomedical research. GigaScience, 2018.7 (9).
27. Chen, J., et al., The de novo assembly of a European wild boar
genome revealed unique patterns of chromosomal structural variations and
segmental duplications. Animal Genetics, 2022. 53 (3): p.
281-292.
28. Vicoso, B. and B. Charlesworth, Evolution on the X chromosome:
unusual patterns and processes. Nature Reviews Genetics, 2006.7 (8): p. 645-653.
29. Villegas-Mirón, P., et al., Chromosome X-wide Analysis of
Positive Selection in Human Populations: Common and Private Signals of
Selection and its Impact on Inactivated Genes and Enhancers. Frontiers
in Genetics, 2021. 12 .
30. Bechsgaard, J., et al., Evidence for Faster X Chromosome
Evolution in Spiders. Molecular Biology and Evolution, 2019.36 (6): p. 1281-1293.
31. Liu, Y., et al., DNA methylation-calling tools for Oxford
Nanopore sequencing: a survey and human epigenome-wide evaluation.Genome Biology, 2021. 22 (1): p. 295.
32. Akbari, V., et al., Genome-wide detection of imprinted
differentially methylated regions using nanopore sequencing. Elife,
2022. 11 .
33. Spence, J.P. and Y.S. Song, Inference and analysis of
population-specific fine-scale recombination maps across 26 diverse
human populations. Science Advances, 2019. 5 (10): p. eaaw9206.
34. He, Y., et al., Long-read assembly of the Chinese rhesus
macaque genome and identification of ape-specific structural variants.Nature Communications, 2019. 10 (1): p. 4233.
35. Alhakami, H., H. Mirebrahim, and S. Lonardi, A comparative
evaluation of genome assembly reconciliation tools. Genome Biol, 2017.18 (1): p. 93.
36. Deamer, D., M. Akeson, and D. Branton, Three decades of
nanopore sequencing. Nature biotechnology, 2016. 34 (5): p.
518-524.
37. Loman, N.J., J. Quick, and J.T. Simpson, A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature
methods, 2015. 12 (8): p. 733-735.
38. Jain, M., et al., Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nature Biotechnology, 2018.36 (4): p. 338-345.
39. Xie, H., et al., De novo assembly of human genome at
single-cell levels. Nucleic Acids Research, 2022. 50 (13): p.
7479-7492.
40. Nurk, S., et al., The complete sequence of a human genome.Science, 2022. 376 (6588): p. 44-53.
41. Jain, M., et al., Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nature biotechnology, 2018.36 (4): p. 338-345.
42. Edwards, R.J., et al., Chromosome-length genome assembly and
structural variations of the primal Basenji dog (Canis lupus familiaris)
genome. BMC Genomics, 2021. 22 (1): p. 188.
43. Chueca, L.J., et al., De novo Genome Assembly of the Raccoon
Dog (Nyctereutes procyonoides). Frontiers in Genetics, 2021.12 .
44. Wang, C., et al., A novel canine reference genome resolves
genomic architecture and uncovers transcript complexity. Communications
Biology, 2021. 4 (1): p. 185.
45. Dhar, R., et al., De novo assembly of the Indian blue peacock
(Pavo cristatus) genome using Oxford Nanopore technology and Illumina
sequencing. GigaScience, 2019. 8 (5).
46. Warren, W.C., et al., A New Chicken Genome Assembly Provides
Insight into Avian Genome Structure. G3
Genes|Genomes|Genetics, 2017. 7 (1): p.
109-117.
47. Choi, J.Y., et al., Nanopore sequencing-based genome assembly
and evolutionary genomics of circum-basmati rice. Genome Biology, 2020.21 (1): p. 21.
48. Tanaka, T., et al., De novo Genome Assembly of the indica Rice
Variety IR64 Using Linked-Read Sequencing and Nanopore Sequencing. G3
(Bethesda), 2020. 10 (5): p. 1495-1501.
49. Wu, T., et al., The De Novo Genome Assembly of Olea europaea
subsp. cuspidate, a Widely Distributed Olive Close Relative. Frontiers
in Genetics, 2022. 13 .
50. Song, D., et al., Chromosome-Level Genome Assembly of the
Burbot (Lota lota) Using Nanopore and Hi-C Technologies. Frontiers in
Genetics, 2021. 12 .
51. Sun, L., et al., Chromosome-level genome assembly of a
cyprinid fish Onychostoma macrolepis by integration of nanopore
sequencing, Bionano and Hi-C technology. Molecular Ecology Resources,
2020. 20 (5): p. 1361-1371.
52. Kim, B.Y., et al., Highly contiguous assemblies of 101
drosophilid genomes. eLife, 2021. 10 : p. e66405.
53. Goel, M., et al., SyRI: finding genomic rearrangements and
local sequence differences from whole-genome assemblies. Genome
Biology, 2019. 20 (1): p. 277.
54. Liu, B., et al., Estimation of genomic characteristics by
analyzing k-mer frequency in de novo genome projects. arXiv preprint
arXiv:1308.2012, 2013.
55. Gavrielatos, M., et al., Benchmarking of next and third
generation sequencing technologies and their associated algorithms for
de novo genome assembly. Molecular Medicine Reports, 2021.23 (4): p. 1-1.
56. Johnson, L.K., et al., Draft genome assemblies using
sequencing reads from Oxford Nanopore Technology and Illumina platforms
for four species of North American Fundulus killifish. Gigascience,
2020. 9 (6): p. giaa067.
57. Manni, M., et al., BUSCO: Assessing Genomic Data Quality and
Beyond. Current Protocols, 2021. 1 (12): p. e323.
58. Soneson, C., et al., A comprehensive examination of Nanopore
native RNA sequencing for characterization of complex transcriptomes.Nature Communications, 2019. 10 (1): p. 3359.
59. van Belzen, I.A.E.M., et al., Structural variant detection in
cancer genomes: computational challenges and perspectives for precision
oncology. npj Precision Oncology, 2021. 5 (1): p. 15.
60. Cretu Stancu, M., et al., Mapping and phasing of structural
variation in patient genomes using nanopore sequencing. Nature
Communications, 2017. 8 (1): p. 1326.
61. Fu, Y., et al., Vulcan: Improved long-read mapping and
structural variant calling via dual-mode alignment. GigaScience, 2021.10 (9).
62. Wu, Z., et al., Structural variants in the Chinese population
and their impact on phenotypes, diseases and population adaptation.Nature Communications, 2021. 12 (1): p. 6501.
63. Meisel, R.P. and T. Connallon, The faster-X effect:
integrating theory and data. Trends in Genetics, 2013. 29 (9):
p. 537-544.
64. Schatz, M.C., Nanopore sequencing meets epigenetics. Nature
Methods, 2017. 14 (4): p. 347-348.
65. Simpson, J.T., et al., Detecting DNA cytosine methylation
using nanopore sequencing. Nature Methods, 2017. 14 (4): p.
407-410.
66. Stankiewicz, P. and J.R. Lupski, Genome architecture,
rearrangements and genomic disorders. Trends in Genetics, 2002.18 (2): p. 74-82.
67. Singhal, S., et al., Stable recombination hotspots in birds.Science, 2015. 350 (6263): p. 928-932.
68. Tortereau, F., et al., A high density recombination map of the
pig reveals a correlation between sex-specific recombination and GC
content. BMC Genomics, 2012. 13 (1): p. 586.
69. Dreissig, S., et al., Natural variation in meiotic
recombination rate shapes introgression patterns in intraspecific
hybrids between wild and domesticated barley. New Phytologist, 2020.228 (6): p. 1852-1863.
70. Huang, K., et al., Mutation Load in Sunflower Inversions Is
Negatively Correlated with Inversion Heterozygosity. Molecular Biology
and Evolution, 2022. 39 (5).
71. Pritchard, J.K., J.K. Pickrell, and G. Coop, The genetics of
human adaptation: hard sweeps, soft sweeps, and polygenic adaptation.Curr Biol, 2010. 20 (4): p. R208-15.
72. Harris, A.M., N.R. Garud, and M. DeGiorgio, Detection and
Classification of Hard and Soft Sweeps from Unphased Genotypes by
Multilocus Genotype Identity. Genetics, 2018. 210 (4): p.
1429-1452.
73. Porto-Neto, L.R., et al., Detection of Signatures of Selection
Using FST , in Genome-Wide Association Studies and Genomic
Prediction , C. Gondro, J. van der Werf, and B. Hayes, Editors. 2013,
Humana Press: Totowa, NJ. p. 423-436.
74. James, J., D. Castellano, and A. Eyre-Walker, DNA sequence
diversity and the efficiency of natural selection in animal
mitochondrial DNA. Heredity, 2017. 118 (1): p. 88-95.
75. Meier, N., et al., Exome sequencing of fetal anomaly
syndromes: novel phenotype–genotype discoveries. European Journal of
Human Genetics, 2019. 27 (5): p. 730-737.
76. Zhang, K.-J., et al., An association study between IL1RAPL2
gene and non-specific mental retardation in Chinese children. Genes &
Genomics, 2010. 32 (2): p. 159-164.
77. Kantojärvi, K., et al., Fine mapping of Xq11. 1‐q21. 33 and
mutation screening of RPS6KA6, ZNF711, ACSL4, DLG3, and IL1RAPL2 for
autism spectrum disorders (ASD). Autism Research, 2011. 4 (3):
p. 228-233.
78. Evans, B.J., et al., Speciation over the edge: gene flow among
non-human primate species across a formidable biogeographic barrier.Royal Society Open Science, 2017. 4 (10): p. 170351.
79. Chen, L., et al., Association of structural variation with
cardiometabolic traits in Finns. The American Journal of Human
Genetics, 2021. 108 (4): p. 583-596.
80. Collins, R.L., et al., A structural variation reference for
medical and population genetics. Nature, 2020. 581 (7809): p.
444-451.
81. Stankiewicz, P. and J.R. Lupski, Structural variation in the
human genome and its role in disease. Annu Rev Med, 2010. 61 :
p. 437-55.
82. Charlesworth, B., J.A. Coyne, and N.H. Barton, The Relative
Rates of Evolution of Sex Chromosomes and Autosomes. The American
Naturalist, 1987. 130 (1): p. 113-146.
83. Mank, J.E., et al., Effective Population Size And The Faster-x
Effect: Empirical Results And Their Interpretation. Evolution, 2010.64 (3): p. 663-674.
84. Ellegren, H. and J. Parsch, The evolution of sex-biased genes
and sex-biased gene expression. Nat Rev Genet, 2007. 8 (9): p.
689-98.
85. Guitton, R., G.S. Nido, and C. Tzoulis, No evidence of
extensive non-CpG methylation in mtDNA. Nucleic Acids Research, 2022.50 (16): p. 9190-9194.
86. Hong, E.E., et al., Regionally Specific and Genome-Wide
Analyses Conclusively Demonstrate the Absence of CpG Methylation in
Human Mitochondrial DNA. Molecular and Cellular Biology, 2013.33 (14): p. 2683-2690.
87. Maekawa, M., et al., Methylation of Mitochondrial DNA Is Not a
Useful Marker for Cancer Detection. Clinical Chemistry, 2004.50 (8): p. 1480-1481.
88. Bianchessi, V., et al., Methylation profiling by bisulfite
sequencing analysis of the mtDNA Non-Coding Region in replicative and
senescent Endothelial Cells. Mitochondrion, 2016. 27 : p.
40-47.
89. Feng, S., et al., Correlation between increased ND2 expression
and demethylated displacement loop of mtDNA in colorectal cancer.Molecular medicine reports, 2012. 6 (1): p. 125-130.
90. Tang, C.S.M. and R.J. Epstein, A Structural Split in the Human
Genome. PLOS ONE, 2007. 2 (7): p. e603.
91. Nakken, S., et al., Large-scale inference of the point
mutational spectrum in human segmental duplications. BMC Genomics,
2009. 10 (1): p. 43.
92. Kong, A., et al., Recombination rate and reproductive success
in humans. Nature genetics, 2004. 36 (11): p. 1203-1206.
93. Fang, O., et al., Genome Duplication Increases Meiotic
Recombination Frequency: A Saccharomyces cerevisiae Model. Molecular
biology and evolution, 2021. 38 (3): p. 777-787.
94. Ohno, S., Evolution by gene duplication . 1970: Springer
Science & Business Media.
95. Dapper, A.L. and B.A. Payseur, Connecting theory and data to
understand recombination rate evolution. Philosophical Transactions of
the Royal Society B: Biological Sciences, 2017. 372 (1736): p.
20160469.
96. Parihar, R. and S. Ganesh, The SCN1A gene variants and
epileptic encephalopathies. Journal of Human Genetics, 2013.58 (9): p. 573-580.
97. Piccini, M., et al., FACL4, a New Gene Encoding Long-Chain
Acyl-CoA Synthetase 4, Is Deleted in a Family with Alport Syndrome,
Elliptocytosis, and Mental Retardation. Genomics, 1998. 47 (3):
p. 350-358.
98. Allen, K.M., et al., PAK3 mutation in nonsyndromic X-linked
mental retardation. Nature Genetics, 1998. 20 (1): p. 25-30.
99. Lindhurst, M.J., et al., Knockout of Slc25a19 causes
mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS
malformations, and anemia. Proceedings of the National Academy of
Sciences, 2006. 103 (43): p. 15927-15932.
100. Spiegel, R., et al., SLC25A19 mutation as a cause of
neuropathy and bilateral striatal necrosis. Annals of Neurology, 2009.66 (3): p. 419-424.
101. Bottega, R., et al., Functional analysis of the third
identified SLC25A19 mutation causative for the thiamine metabolism
dysfunction syndrome 4. Journal of Human Genetics, 2019.64 (11): p. 1075-1081.
102. Wick, R.R., L.M. Judd, and K.E. Holt, Performance of neural
network basecalling tools for Oxford Nanopore sequencing. Genome
Biology, 2019. 20 (1): p. 129.
103. Chen, Y., et al., Efficient assembly of nanopore reads via
highly accurate and intact error correction. Nature Communications,
2021. 12 (1): p. 60.
104. Alonge, M., et al., RaGOO: fast and accurate reference-guided
scaffolding of draft genomes. Genome biology, 2019. 20 (1): p.
1-17.
105. Vaser, R., et al., Fast and accurate de novo genome assembly
from long uncorrected reads. Genome Res, 2017. 27 (5): p.
737-746.
106. Walker, B.J., et al., Pilon: An Integrated Tool for
Comprehensive Microbial Variant Detection and Genome Assembly
Improvement. PLOS ONE, 2014. 9 (11): p. e112963.
107. Jackman, S.D., et al., Tigmint: correcting assembly errors
using linked reads from large molecules. BMC Bioinformatics, 2018.19 (1): p. 393.
108. Chen, Y., et al., Accurate long-read de novo assembly
evaluation with Inspector. Genome Biology, 2021. 22 (1): p.
312.
109. Li, H., Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics, 2018. 34 (18): p. 3094-3100.
110. Gurevich, A., et al., QUAST: quality assessment tool for
genome assemblies. Bioinformatics, 2013. 29 (8): p. 1072-1075.
111. Cantarel, B.L., et al., MAKER: an easy-to-use annotation
pipeline designed for emerging model organism genomes. Genome research,
2008. 18 (1): p. 188-196.
112. Dobin, A., et al., STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 2013. 29 (1): p. 15-21.
113. Kovaka, S., et al., Transcriptome assembly from long-read
RNA-seq alignments with StringTie2. Genome Biology, 2019.20 (1): p. 278.
114. Kiełbasa, S.M., et al., Adaptive seeds tame genomic sequence
comparison. Genome Research, 2011. 21 (3): p. 487-493.
115. Tarasov, A., et al., Sambamba: fast processing of NGS
alignment formats. Bioinformatics, 2015. 31 (12): p. 2032-2034.
116. Sedlazeck, F.J., et al., Accurate detection of complex
structural variations using single-molecule sequencing. Nature Methods,
2018. 15 (6): p. 461-468.
117. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 2010.26 (6): p. 841-842.
118. Greenberg, M.V. and D. Bourc’his, The diverse roles of DNA
methylation in mammalian development and disease. Nature reviews
Molecular cell biology, 2019. 20 (10): p. 590-607.
119. Steinrücken, M., et al., Inference of complex population
histories using whole-genome sequences from multiple populations.Proceedings of the National Academy of Sciences, 2019. 116 (34):
p. 17115-17120.