The inference of selective sweep
The selective sweep was detected by combining the signals of the fixation index (FST ) between the Chinese and Indian rhesus macaque, the reduced nucleotide diversity (π) in the Chinese rhesus population relative to the Indian population (θπ_Indiaπ_China), and the elevated expected haplotype homozygosity (Ihh12) [72-74]. The consensus of selective sweep regions was determined as the shared regions among the top 5% of the empirical distribution of windows with the strongest signals for all three metrics.
References
1. Accogli, A., et al., Novel CNS malformations and skeletal anomalies in a patient with Beaulieu-boycott-Innes syndrome. Am J Med Genet A, 2018. 176 (12): p. 2835-2840.
2. Gibbs, R.A., et al., Evolutionary and biomedical insights from the rhesus macaque genome. science, 2007. 316 (5822): p. 222-234.
3. Van Rompay, K.K.A., Tackling HIV and AIDS: contributions by non-human primate models. Lab Animal, 2017. 46 (6): p. 259-270.
4. Shedlock, D.J., G. Silvestri, and D.B. Weiner, Monkeying around with HIV vaccines: using rhesus macaques to define ’gatekeepers’ for clinical trials. Nat Rev Immunol, 2009. 9 (10): p. 717-28.
5. Geisbert, T.W., et al., Evaluation in nonhuman primates of vaccines against Ebola virus. Emerg Infect Dis, 2002. 8 (5): p. 503-7.
6. Urano, E., et al., COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proceedings of the National Academy of Sciences, 2021. 118 (43): p. e2104847118.
7. He, W.-t., et al., Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. Science Translational Medicine, 2022. 14 (657): p. eabl9605.
8. Cyranoski, D., Monkeys genetically modified to show autism symptoms. Nature, 2016. 529 (7587): p. 449-449.
9. Zhao, H., Y.H. Jiang, and Y.Q. Zhang, Modeling autism in non-human primates: Opportunities and challenges. Autism Res, 2018.11 (5): p. 686-694.
10. Zhou, Y., et al., Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 2019. 570 (7761): p. 326-331.
11. Porras, G., Q. Li, and E. Bezard, Modeling Parkinson’s disease in primates: The MPTP model. Cold Spring Harb Perspect Med, 2012.2 (3): p. a009308.
12. Potts, L.F., et al., Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol, 2014.256 : p. 133-43.
13. Miwa, Y., et al., Bilateral cataract surgery in a Japanese macaque (Macaca fuscata): A case report. Clin Case Rep, 2021.9 (11): p. e05112.
14. Lin, K.H., et al., Age-related changes in the rhesus macaque eye. Experimental Eye Research, 2021. 212 : p. 108754.
15. Cox, L.A., et al., Nonhuman Primates and Translational Research-Cardiovascular Disease. Ilar j, 2017. 58 (2): p. 235-250.
16. Tollner, T.L., et al., Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus†. Human Reproduction, 2008. 23 (11): p. 2523-2534.
17. Khampang, S., et al., Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F&S Science, 2021. 2 (4): p. 365-375.
18. Cooper, E.B., et al., The rhesus macaque as a success story of the Anthropocene. Elife, 2022. 11 .
19. Warren, W.C., et al., Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020. 370 (6523).
20. Weiss, A., et al., Rhesus macaques (Macaca mulatta) as living fossils of hominoid personality and subjective well-being. J Comp Psychol, 2011. 125 (1): p. 72-83.
21. Wu, S.-J., et al., Ecological Genetics of Chinese Rhesus Macaque in Response to Mountain Building: All Things Are Not Equal.PLOS ONE, 2013. 8 (2): p. e55315.
22. Hasan, M.K., et al., Distribution of Rhesus Macaques (Macaca mulatta) in Bangladesh: Inter-population Variation in Group Size and Composition. Primate Conservation, 2013. 26 (1): p. 125-132, 8.
23. Hernandez, R.D., et al., Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science, 2007. 316 (5822): p. 240-243.
24. Xue, C., et al., The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences. Genome research, 2016. 26 (12): p. 1651-1662.
25. Bimber, B.N., et al., mGAP: the macaque genotype and phenotype resource, a framework for accessing and interpreting macaque variant data, and identifying new models of human disease. BMC Genomics, 2019.20 (1): p. 176.
26. Liu, Z., et al., Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research. GigaScience, 2018.7 (9).
27. Chen, J., et al., The de novo assembly of a European wild boar genome revealed unique patterns of chromosomal structural variations and segmental duplications. Animal Genetics, 2022. 53 (3): p. 281-292.
28. Vicoso, B. and B. Charlesworth, Evolution on the X chromosome: unusual patterns and processes. Nature Reviews Genetics, 2006.7 (8): p. 645-653.
29. Villegas-Mirón, P., et al., Chromosome X-wide Analysis of Positive Selection in Human Populations: Common and Private Signals of Selection and its Impact on Inactivated Genes and Enhancers. Frontiers in Genetics, 2021. 12 .
30. Bechsgaard, J., et al., Evidence for Faster X Chromosome Evolution in Spiders. Molecular Biology and Evolution, 2019.36 (6): p. 1281-1293.
31. Liu, Y., et al., DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation.Genome Biology, 2021. 22 (1): p. 295.
32. Akbari, V., et al., Genome-wide detection of imprinted differentially methylated regions using nanopore sequencing. Elife, 2022. 11 .
33. Spence, J.P. and Y.S. Song, Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations. Science Advances, 2019. 5 (10): p. eaaw9206.
34. He, Y., et al., Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants.Nature Communications, 2019. 10 (1): p. 4233.
35. Alhakami, H., H. Mirebrahim, and S. Lonardi, A comparative evaluation of genome assembly reconciliation tools. Genome Biol, 2017.18 (1): p. 93.
36. Deamer, D., M. Akeson, and D. Branton, Three decades of nanopore sequencing. Nature biotechnology, 2016. 34 (5): p. 518-524.
37. Loman, N.J., J. Quick, and J.T. Simpson, A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature methods, 2015. 12 (8): p. 733-735.
38. Jain, M., et al., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology, 2018.36 (4): p. 338-345.
39. Xie, H., et al., De novo assembly of human genome at single-cell levels. Nucleic Acids Research, 2022. 50 (13): p. 7479-7492.
40. Nurk, S., et al., The complete sequence of a human genome.Science, 2022. 376 (6588): p. 44-53.
41. Jain, M., et al., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature biotechnology, 2018.36 (4): p. 338-345.
42. Edwards, R.J., et al., Chromosome-length genome assembly and structural variations of the primal Basenji dog (Canis lupus familiaris) genome. BMC Genomics, 2021. 22 (1): p. 188.
43. Chueca, L.J., et al., De novo Genome Assembly of the Raccoon Dog (Nyctereutes procyonoides). Frontiers in Genetics, 2021.12 .
44. Wang, C., et al., A novel canine reference genome resolves genomic architecture and uncovers transcript complexity. Communications Biology, 2021. 4 (1): p. 185.
45. Dhar, R., et al., De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. GigaScience, 2019. 8 (5).
46. Warren, W.C., et al., A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 Genes|Genomes|Genetics, 2017. 7 (1): p. 109-117.
47. Choi, J.Y., et al., Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biology, 2020.21 (1): p. 21.
48. Tanaka, T., et al., De novo Genome Assembly of the indica Rice Variety IR64 Using Linked-Read Sequencing and Nanopore Sequencing. G3 (Bethesda), 2020. 10 (5): p. 1495-1501.
49. Wu, T., et al., The De Novo Genome Assembly of Olea europaea subsp. cuspidate, a Widely Distributed Olive Close Relative. Frontiers in Genetics, 2022. 13 .
50. Song, D., et al., Chromosome-Level Genome Assembly of the Burbot (Lota lota) Using Nanopore and Hi-C Technologies. Frontiers in Genetics, 2021. 12 .
51. Sun, L., et al., Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, Bionano and Hi-C technology. Molecular Ecology Resources, 2020. 20 (5): p. 1361-1371.
52. Kim, B.Y., et al., Highly contiguous assemblies of 101 drosophilid genomes. eLife, 2021. 10 : p. e66405.
53. Goel, M., et al., SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 2019. 20 (1): p. 277.
54. Liu, B., et al., Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv preprint arXiv:1308.2012, 2013.
55. Gavrielatos, M., et al., Benchmarking of next and third generation sequencing technologies and their associated algorithms for de novo genome assembly. Molecular Medicine Reports, 2021.23 (4): p. 1-1.
56. Johnson, L.K., et al., Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish. Gigascience, 2020. 9 (6): p. giaa067.
57. Manni, M., et al., BUSCO: Assessing Genomic Data Quality and Beyond. Current Protocols, 2021. 1 (12): p. e323.
58. Soneson, C., et al., A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes.Nature Communications, 2019. 10 (1): p. 3359.
59. van Belzen, I.A.E.M., et al., Structural variant detection in cancer genomes: computational challenges and perspectives for precision oncology. npj Precision Oncology, 2021. 5 (1): p. 15.
60. Cretu Stancu, M., et al., Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nature Communications, 2017. 8 (1): p. 1326.
61. Fu, Y., et al., Vulcan: Improved long-read mapping and structural variant calling via dual-mode alignment. GigaScience, 2021.10 (9).
62. Wu, Z., et al., Structural variants in the Chinese population and their impact on phenotypes, diseases and population adaptation.Nature Communications, 2021. 12 (1): p. 6501.
63. Meisel, R.P. and T. Connallon, The faster-X effect: integrating theory and data. Trends in Genetics, 2013. 29 (9): p. 537-544.
64. Schatz, M.C., Nanopore sequencing meets epigenetics. Nature Methods, 2017. 14 (4): p. 347-348.
65. Simpson, J.T., et al., Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods, 2017. 14 (4): p. 407-410.
66. Stankiewicz, P. and J.R. Lupski, Genome architecture, rearrangements and genomic disorders. Trends in Genetics, 2002.18 (2): p. 74-82.
67. Singhal, S., et al., Stable recombination hotspots in birds.Science, 2015. 350 (6263): p. 928-932.
68. Tortereau, F., et al., A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics, 2012. 13 (1): p. 586.
69. Dreissig, S., et al., Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. New Phytologist, 2020.228 (6): p. 1852-1863.
70. Huang, K., et al., Mutation Load in Sunflower Inversions Is Negatively Correlated with Inversion Heterozygosity. Molecular Biology and Evolution, 2022. 39 (5).
71. Pritchard, J.K., J.K. Pickrell, and G. Coop, The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation.Curr Biol, 2010. 20 (4): p. R208-15.
72. Harris, A.M., N.R. Garud, and M. DeGiorgio, Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity. Genetics, 2018. 210 (4): p. 1429-1452.
73. Porto-Neto, L.R., et al., Detection of Signatures of Selection Using FST , in Genome-Wide Association Studies and Genomic Prediction , C. Gondro, J. van der Werf, and B. Hayes, Editors. 2013, Humana Press: Totowa, NJ. p. 423-436.
74. James, J., D. Castellano, and A. Eyre-Walker, DNA sequence diversity and the efficiency of natural selection in animal mitochondrial DNA. Heredity, 2017. 118 (1): p. 88-95.
75. Meier, N., et al., Exome sequencing of fetal anomaly syndromes: novel phenotype–genotype discoveries. European Journal of Human Genetics, 2019. 27 (5): p. 730-737.
76. Zhang, K.-J., et al., An association study between IL1RAPL2 gene and non-specific mental retardation in Chinese children. Genes & Genomics, 2010. 32 (2): p. 159-164.
77. Kantojärvi, K., et al., Fine mapping of Xq11. 1‐q21. 33 and mutation screening of RPS6KA6, ZNF711, ACSL4, DLG3, and IL1RAPL2 for autism spectrum disorders (ASD). Autism Research, 2011. 4 (3): p. 228-233.
78. Evans, B.J., et al., Speciation over the edge: gene flow among non-human primate species across a formidable biogeographic barrier.Royal Society Open Science, 2017. 4 (10): p. 170351.
79. Chen, L., et al., Association of structural variation with cardiometabolic traits in Finns. The American Journal of Human Genetics, 2021. 108 (4): p. 583-596.
80. Collins, R.L., et al., A structural variation reference for medical and population genetics. Nature, 2020. 581 (7809): p. 444-451.
81. Stankiewicz, P. and J.R. Lupski, Structural variation in the human genome and its role in disease. Annu Rev Med, 2010. 61 : p. 437-55.
82. Charlesworth, B., J.A. Coyne, and N.H. Barton, The Relative Rates of Evolution of Sex Chromosomes and Autosomes. The American Naturalist, 1987. 130 (1): p. 113-146.
83. Mank, J.E., et al., Effective Population Size And The Faster-x Effect: Empirical Results And Their Interpretation. Evolution, 2010.64 (3): p. 663-674.
84. Ellegren, H. and J. Parsch, The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet, 2007. 8 (9): p. 689-98.
85. Guitton, R., G.S. Nido, and C. Tzoulis, No evidence of extensive non-CpG methylation in mtDNA. Nucleic Acids Research, 2022.50 (16): p. 9190-9194.
86. Hong, E.E., et al., Regionally Specific and Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG Methylation in Human Mitochondrial DNA. Molecular and Cellular Biology, 2013.33 (14): p. 2683-2690.
87. Maekawa, M., et al., Methylation of Mitochondrial DNA Is Not a Useful Marker for Cancer Detection. Clinical Chemistry, 2004.50 (8): p. 1480-1481.
88. Bianchessi, V., et al., Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion, 2016. 27 : p. 40-47.
89. Feng, S., et al., Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer.Molecular medicine reports, 2012. 6 (1): p. 125-130.
90. Tang, C.S.M. and R.J. Epstein, A Structural Split in the Human Genome. PLOS ONE, 2007. 2 (7): p. e603.
91. Nakken, S., et al., Large-scale inference of the point mutational spectrum in human segmental duplications. BMC Genomics, 2009. 10 (1): p. 43.
92. Kong, A., et al., Recombination rate and reproductive success in humans. Nature genetics, 2004. 36 (11): p. 1203-1206.
93. Fang, O., et al., Genome Duplication Increases Meiotic Recombination Frequency: A Saccharomyces cerevisiae Model. Molecular biology and evolution, 2021. 38 (3): p. 777-787.
94. Ohno, S., Evolution by gene duplication . 1970: Springer Science & Business Media.
95. Dapper, A.L. and B.A. Payseur, Connecting theory and data to understand recombination rate evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372 (1736): p. 20160469.
96. Parihar, R. and S. Ganesh, The SCN1A gene variants and epileptic encephalopathies. Journal of Human Genetics, 2013.58 (9): p. 573-580.
97. Piccini, M., et al., FACL4, a New Gene Encoding Long-Chain Acyl-CoA Synthetase 4, Is Deleted in a Family with Alport Syndrome, Elliptocytosis, and Mental Retardation. Genomics, 1998. 47 (3): p. 350-358.
98. Allen, K.M., et al., PAK3 mutation in nonsyndromic X-linked mental retardation. Nature Genetics, 1998. 20 (1): p. 25-30.
99. Lindhurst, M.J., et al., Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proceedings of the National Academy of Sciences, 2006. 103 (43): p. 15927-15932.
100. Spiegel, R., et al., SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Annals of Neurology, 2009.66 (3): p. 419-424.
101. Bottega, R., et al., Functional analysis of the third identified SLC25A19 mutation causative for the thiamine metabolism dysfunction syndrome 4. Journal of Human Genetics, 2019.64 (11): p. 1075-1081.
102. Wick, R.R., L.M. Judd, and K.E. Holt, Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 2019. 20 (1): p. 129.
103. Chen, Y., et al., Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications, 2021. 12 (1): p. 60.
104. Alonge, M., et al., RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome biology, 2019. 20 (1): p. 1-17.
105. Vaser, R., et al., Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res, 2017. 27 (5): p. 737-746.
106. Walker, B.J., et al., Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLOS ONE, 2014. 9 (11): p. e112963.
107. Jackman, S.D., et al., Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinformatics, 2018.19 (1): p. 393.
108. Chen, Y., et al., Accurate long-read de novo assembly evaluation with Inspector. Genome Biology, 2021. 22 (1): p. 312.
109. Li, H., Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. 34 (18): p. 3094-3100.
110. Gurevich, A., et al., QUAST: quality assessment tool for genome assemblies. Bioinformatics, 2013. 29 (8): p. 1072-1075.
111. Cantarel, B.L., et al., MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research, 2008. 18 (1): p. 188-196.
112. Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29 (1): p. 15-21.
113. Kovaka, S., et al., Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology, 2019.20 (1): p. 278.
114. Kiełbasa, S.M., et al., Adaptive seeds tame genomic sequence comparison. Genome Research, 2011. 21 (3): p. 487-493.
115. Tarasov, A., et al., Sambamba: fast processing of NGS alignment formats. Bioinformatics, 2015. 31 (12): p. 2032-2034.
116. Sedlazeck, F.J., et al., Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 2018. 15 (6): p. 461-468.
117. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010.26 (6): p. 841-842.
118. Greenberg, M.V. and D. Bourc’his, The diverse roles of DNA methylation in mammalian development and disease. Nature reviews Molecular cell biology, 2019. 20 (10): p. 590-607.
119. Steinrücken, M., et al., Inference of complex population histories using whole-genome sequences from multiple populations.Proceedings of the National Academy of Sciences, 2019. 116 (34): p. 17115-17120.