Acknowledgments
This research was funded by the UMA18-FEDERJA-100 (Junta de Andalucía), Proyecto Jovenes Investigadores (B1-2019-04), Proyecto puente (B4-2021-06), Universidad de Málaga, Spain, to M.N. Swedish Medical Research Council, Sweden (62X-00715-50-3), to K.F., by Stiftelsen Olle Engkvist Byggmästare to K.F., and by Hjärnfonden, Sweden (F02018-0286), Hjärnfonden, Swe-den (F02019-0296), and Karolinska Institutet Forskningsstiftelser, Sweden, to D.O.B.-E. D.O.B.-E. belongs to the “Academia de Biólogos Cubanos” group, Cuba.
Figure 1. Ventral dentate gyrus is activated under GALR2 and the Y1R agonists intranasal coinjection. Effects of the intranasal (in) administration of Galanin 2 receptor agonist (M1145) and Y1R receptor agonist, either alone or in combination with or without the GAL 2 receptor antagonist (M871) on c-Fos expression in the granular layer of ventral dentate gyrus. (a,d) The majority of the c-Fos-IR profiles were located in the granular cell layer (Gcl). It is also indicated the polymorphic layer (P) of the dentate gyrus in the ventral hippocampus (Bregma: -5.6 mm; according to the Paxinos and Watson stereotaxic atlas (2006)). (b) Quantification of the total number of c-Fos IR nuclei within the dentate gyrus of the ventral hippocampus. Data, expressed as mean ± SEM, show the differences between groups after administration of Control, M1145, Y1R agonist [Leu31-Pro34]NPY, or the coadministration of both agonists with or without M871. The intranasal coadministration of M1145 and the Y1R agonist increased the c-Fos expression in the ventral hippocampus compared to the effects of both agonists given alone and the control group. Moreover, this effect was counteracted by the GALR2 antagonist M871.* P<0.05 vs control, M1145 and M1145+Y1R; δ P<0.05 vs M1145+Y1R; *** P <0.001 vs control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test (n=4 in each group). Inter-group comparisons are indicated by the vertical lines from the horizontal line above bars. Intranasal coadministration of M1145 and Y1R agonist(d) increased the c-Fos-IR nuclei in Gcl in the dentate gyrus compared with the control group (c). Arrows indicate examples of c-Fos-IR nuclei. Dashed lines outline the Gcl of the dentate gyrus. Abbreviations: Control= Distilled water; M1145 = Galanin 2 receptor agonist 132 µg; Y1R = Y1R receptor agonist [Leu31-Pro34]NPY 132 µg; M1145+ Y1R = Coadministration of M1145 and Y1R; M1145+ Y1R +M871 = Co-administration of M1145, Y1R and GALR2 antagonist M871 132 µg. Brain processing was performed 24 hours after treatments; see material and methods for further details.
Figure 2. Intranasal coadministration of Galanin receptor 2 and Y1R agonists increases cell proliferation in the ventral dentate gyrus of adult rats. Proliferating cell nuclear antigen immunolabelling (PCNA) immunolabelling (PCNA+) in the dentate gyrus of the ventral hippocampus, after the intranasal (in) administration of Galanin 2 receptor agonist (M1145) and Y1R receptor agonist, either alone or in combination with or without the GAL 2 receptor antagonist (M871). (a,d) The majority of the PCNA positive cells were located in the subgranular zone (Sgz) of the dentate gyrus at the border between the granular cell layer (Gcl) and the polymorphic layer (P) of the dentate gyrus in the ventral hippocampus. They appeared as clusters of 3–4 cells. (Bregma: -5.6 mm; according to the Paxinos and Watson stereotaxic atlas (2006)).(b) Quantification of total PCNA-IR cells in the dentate gyrus of the ventral hippocampus. Data represent mean ± SEM to show the differences between groups after administration of Control, M1145, Y1R agonist [Leu31-Pro34]NPY, or the coadministration of both agonists with or without M871. M1145 and the Y1R agonist coadministration increased the number of cells with PCNA+ expression in the ventral hippocampus compared to the effects of the two peptides given alone and the control group. Furthermore, this effect was counteracted by the GALR2 antagonist M871. *P <0.05 vs control, M1145 and M1145+Y1R; **P <0.01 vs M1145+Y1R; ***P <0.001 vs control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test. Inter-group comparisons are indicated by the vertical lines from the horizontal line above bars. N=4 in each group. M1145 and Y1R agonist intranasal coadministration(d) increased the PCNA immunolabelling in Sgz in the dentate gyrus compared with the control group (c). Arrows indicate examples of clusters of PCNA positive nerve cells. Dashed lines outline the Gcl of the dentate gyrus. Abbreviations: Control= Distilled water; M1145 = Galanin 2 receptor agonist 132 µg; Y1R = Y1R receptor agonist [Leu31-Pro34]NPY 132 µg; M1145+ Y1R = Coadministration of M1145 and Y1R; M1145+ Y1R +M871 = Co-administration of M1145, Y1R and GALR2 antagonist M871 132 µg. Brain processing was performed 24 hours after treatments; see material and methods for further details.
Figure 3. Effects induced by M1145 and Y1R agonist on hippocampal brain-derived neurotrophic factor immunoreactive (BDNF-IR) cells of the dentate gyrus (DG) hippocampal region. (a) BDNF-IR cells were located mainly in the subgranular zone (Sgz) of the dentate gyrus at the border of the granular cell layer (Gcl), some scattered cells were found in the polymorphic layer (P) of the dentate gyrus in the ventral hippocampus (Bregma: –5.6 mm; according to the Paxinos and Watson (2006) stereotaxic atlas). (b) Quantitative analysis of BDNF-IR cells of the DG. The intranasal coadministration of M1145 and the Y1R agonist significantly increased BDNF-IR cells in the ventral DG. This effect was blocked in the presence of the GALR2 antagonist M871. * P<0.05 vs control, M1145 and M1145+Y1R; δ P<0.05 vs M1145+Y1R; *** P <0.001 vs control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test (n=4 in each group). The vertical lines from the horizontal line above the bars indicate the inter-group comparisons. (c,d) Representative microphotographs showing the increase in the BDNF-positive cells in the DG after M1145 and Y1R agonist coinjection (d) compared with the control group (c). Black arrows point to BDNF-IR cells. Dashed lines outline the Gcl of the dentate gyrus. Abbreviations: Control= Distilled water; M1145 = Galanin 2 receptor agonist 132 µg; Y1R= Y1R receptor agonist [Leu31-Pro34]NPY 132 µg; M1145+ Y1R = Coadministration of M1145 and Y1R; M1145+ Y1R +M871 = Co-administration of M1145, Y1R and GALR2 antagonist M871 132 µg. Brain processing was performed 24 hours after treatments; see material and methods for further details.
Figure 4 . Demonstration of GALR2/Y1R heteroreceptor complexes by in situ PLA and morphological changes on hippocampal neuronal cells. (a) The presence of positive PLA signals (red circles) was determined by using the in situ proximity ligation assay (in situ PLA) on hippocampal neuronal cells after treatment with Galanin receptor 2 agonist (M1145, 100nM) and Y1R receptor agonist (100nM), either alone or in combination with or without the GALR2 receptor antagonist (M871, 1μM). M1145 and Y1R agonist incubation significantly increased PLA positive signals. Quantification of PLA signals was performed by measuring red PLA positive blobs per nucleus per sampled field by an experimenter blind to treatment conditions. This effect was blocked by treatment with the GALR2 antagonist M871. *P <0.05 vs control and M1145; **P <0.01 vs Y1R and M1145+Y1R+M871; ***P <0.001 vs control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test. Inter-group comparisons are indicated by the vertical lines from the horizontal line above bars. Data are expressed as mean ± SEM. (b) GALR2 and Y1R agonists modulation of neurites length. The length of neurites per cell were determined after immunofluorescent labeling of neurons and neuronal nuclei (Pan Neuronal Marker (ABN2300) /neuronal nuclei (DAPI)). Quantification is shown in Figure 4b, where the data are presented as mean ± SEM. The combined M1145 and Y1R agonist group is significantly different from the rest of the groups. *P <0.05 vs Y1R and M1145+Y1R+M871; **P <0.01 vs control and M1145; ***P <0.001 vs control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test. (c,d) Representative microphotographs of the significant increase in the density of GALR2/Y1R heteroreceptor complexes (PLA clusters) and neurites length per hippocampal neuronal positive cell after M1145 and Y1R agonist treatment(d) compared with the control group (c) . Receptor complexes are shown as red PLA blobs (clusters, indicated by white arrows) found in high densities per hippocampal neuronal cell using confocal laser microscopy. The nuclei are shown in blue by DAPI staining and the cells in green are hippocampal neurons-positive (Pan Neuronal Marker, ABN2300) using confocal laser microscopy. White arrowheads point to neurite extensions. Abbreviations: Control= Culture medium; M1145 = Galanin 2 receptor agonist 100 nM; Y1R agonist = Y1R receptor agonist [Leu31- Pro34]NPY 100nM; M1145+ Y1R = Coadministration of M1145 and Y1R; M1145+ Y1R +M871 = Coadministration of M1145, Y1R and GALR2 antagonist 1μM.
Figure 5. Behavioral actions induced by Galanin 2 receptor agonist (M1145) and the Neuropeptide Y (NPY) Y1 receptor agonist (Y1R agonist) alone and in combination in the forced swimming test (FST). An antidepressant-like effect in the FST was observed after M1145 and Y1R agonist intranasal co-administration following a 24 hours delay. Furthermore, this effect is counteracted by the GAL 2 receptor (GALR2) antagonist M871. Cumulative behavioral duration of Immobility(a) and swimming (b) time in the FST. Data represent mean ± SEM. N=6 animals in each group. For a: *P <0.05 vs Control and M1145; **P <0.01 vs Y1R agonist, M1145+Y1R+M871 and M1145+Y1R+ANA-12; ***P <0.001 vs Control and M1145. For b: *P <0.05 vs Control and M1145; ★P <0.05 vs Y1R agonist, M1145+Y1R+M871 and M1145+Y1R+ANA-12; ***P <0.001 vs Control and M1145 according to one-way ANOVA followed by Newman-Keuls post-hoc test. Inter-group comparisons are indicated by the horizontal and vertical lines above bars. Abbreviations: Control= Distilled water; M1145 = Galanin 2 receptor agonist 132 µg; Y1R = Y1R receptor agonist [Leu31-Pro34]NPY 132 µg; M1145+Y1R= Coadministration of M1145 and Y1R; M1145+Y1R+M871 = Coadministration of M1145, Y1R and GALR2 antagonist M871 132 µg; M1145+Y1R+ANA-12 = Coadministration of M1145, Y1R and TrkB antagonist ANA-12 0,5 mg/Kg.
Abbosh, C., Lawkowski, A., Zaben, M., & Gray, W. (2011). GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J Neurochem, 117 (3), 425-436. doi:10.1111/j.1471-4159.2011.07204.x
Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. Br J Pharmacol, 178 Suppl 1 , S27-S156. doi:10.1111/bph.15538
Baptista, P., & Andrade, J. P. (2018). Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat, 12 , 44. doi:10.3389/fnana.2018.00044
Bauman, M. D., Schumann, C. M., Carlson, E. L., Taylor, S. L., Vazquez-Rosa, E., Cintron-Perez, C. J., … Pieper, A. A. (2018). Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiatry, 8 (1), 202. doi:10.1038/s41398-018-0244-1
Bjornebekk, A., Mathe, A. A., & Brene, S. (2006). Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls.Neuropsychopharmacology, 31 (2), 256-264. doi:10.1038/sj.npp.1300820
Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., … Mann, J. J. (2018). Human Hippocampal Neurogenesis Persists throughout Aging.Cell Stem Cell, 22 (4), 589-599 e585. doi:10.1016/j.stem.2018.03.015
Borroto-Escuela, D. O., Fores, R., Pita, M., Barbancho, M. A., Zamorano-Gonzalez, P., Casares, N. G., … Narvaez, M. (2022). Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Front Pharmacol, 13 , 820210. doi:10.3389/fphar.2022.820210
Borroto-Escuela, D. O., Li, X., Tarakanov, A. O., Savelli, D., Narvaez, M., Shumilov, K., … Fuxe, K. (2017). Existence of Brain 5-HT1A-5-HT2A Isoreceptor Complexes with Antagonistic Allosteric Receptor-Receptor Interactions Regulating 5-HT1A Receptor Recognition. ACS Omega, 2 (8), 4779-4789. doi:10.1021/acsomega.7b00629
Borroto-Escuela, D. O., Pita-Rodriguez, M., Fores-Pons, R., Barbancho, M. A., Fuxe, K., & Narvaez, M. (2021). Galanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus. J Cell Physiol, 236 (5), 3565-3578. doi:10.1002/jcp.30092
Borroto-Escuela, D. O., Romero-Fernandez, W., Mudo, G., Perez-Alea, M., Ciruela, F., Tarakanov, A. O., … Fuxe, K. (2012). Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry, 71 (1), 84-91. doi:10.1016/j.biopsych.2011.09.012
Castren, E., & Kojima, M. (2017). Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis, 97 (Pt B), 119-126. doi:10.1016/j.nbd.2016.07.010
Chapman, C. D., Frey, W. H., 2nd, Craft, S., Danielyan, L., Hallschmid, M., Schioth, H. B., & Benedict, C. (2013). Intranasal treatment of central nervous system dysfunction in humans. Pharm Res, 30 (10), 2475-2484. doi:10.1007/s11095-012-0915-1
Chen, P. (2019). Optimized Treatment Strategy for Depressive Disorder. Adv Exp Med Biol, 1180 , 201-217. doi:10.1007/978-981-32-9271-0_11
Cohen, H., Vainer, E., Zeev, K., Zohar, J., & Mathe, A. A. (2018). Neuropeptide S in the basolateral amygdala mediates an adaptive behavioral stress response in a rat model of posttraumatic stress disorder by increasing the expression of BDNF and the neuropeptide YY1 receptor. Eur Neuropsychopharmacol, 28 (1), 159-170. doi:10.1016/j.euroneuro.2017.11.006
Colucci-D’Amato, L., Speranza, L., & Volpicelli, F. (2020). Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci, 21 (20)doi:10.3390/ijms21207777
Corvino, V., Marchese, E., Giannetti, S., Lattanzi, W., Bonvissuto, D., Biamonte, F., … Geloso, M. C. (2012). The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem, 122 (2), 415-426. doi:10.1111/j.1471-4159.2012.07770.x
Corvino, V., Marchese, E., Podda, M. V., Lattanzi, W., Giannetti, S., Di Maria, V., … Geloso, M. C. (2014). The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats. PLoS One, 9 (2), e88294. doi:10.1371/journal.pone.0088294
Croce, N., Dinallo, V., Ricci, V., Federici, G., Caltagirone, C., Bernardini, S., & Angelucci, F. (2011). Neuroprotective effect of neuropeptide Y against beta-amyloid 25-35 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. Neurodegener Dis, 8 (5), 300-309. doi:10.1159/000323468
Crowe, T. P., & Hsu, W. H. (2022). Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics, 14 (3)doi:10.3390/pharmaceutics14030629
Decressac, M., Wright, B., David, B., Tyers, P., Jaber, M., Barker, R. A., & Gaillard, A. (2011). Exogenous neuropeptide Y promotes in vivo hippocampal neurogenesis.Hippocampus, 21 (3), 233-238. doi:10.1002/hipo.20765
Dwivedi, Y. (2012). Brain-Derived Neurotrophic Factor in Suicide Pathophysiology. In Y. Dwivedi (Ed.),The Neurobiological Basis of Suicide . Boca Raton (FL).
Elias, E., Zhang, A. Y., & Manners, M. T. (2022). Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel), 12 (2)doi:10.3390/life12020196
Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65 (1), 7-19. doi:10.1016/j.neuron.2009.11.031
Geloso, M. C., Corvino, V., Di Maria, V., Marchese, E., & Michetti, F. (2015). Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci, 9 , 85. doi:10.3389/fncel.2015.00085
Gigliucci, V., O’Dowd, G., Casey, S., Egan, D., Gibney, S., & Harkin, A. (2013). Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism.Psychopharmacology (Berl), 228 (1), 157-166. doi:10.1007/s00213-013-3024-x
Giner, L., Vera-Varela, C., de la Vega, D., Zelada, G. M., & Guija, J. A. (2022). Suicidal Behavior in the First Wave of the COVID-19 Pandemic. Curr Psychiatry Rep, 24 (1), 1-10. doi:10.1007/s11920-022-01312-9
Harmer, C. J., Duman, R. S., & Cowen, P. J. (2017). How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry, 4 (5), 409-418. doi:10.1016/S2215-0366(17)30015-9
Hashimoto, K. (2020). Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol, 177 , 113935. doi:10.1016/j.bcp.2020.113935
Hoshaw, B. A., Malberg, J. E., & Lucki, I. (2005). Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res, 1037 (1-2), 204-208. doi:10.1016/j.brainres.2005.01.007
Howell, O. W., Scharfman, H. E., Herzog, H., Sundstrom, L. E., Beck-Sickinger, A., & Gray, W. P. (2003). Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86 (3), 646-659. doi:10.1046/j.1471-4159.2003.01895.x
Howell, O. W., Silva, S., Scharfman, H. E., Sosunov, A. A., Zaben, M., Shtaya, A., … Gray, W. P. (2007). Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiol Dis, 26 (1), 174-188. doi:10.1016/j.nbd.2006.12.014
Husum, H., Mikkelsen, J. D., Hogg, S., Mathe, A. A., & Mork, A. (2000). Involvement of hippocampal neuropeptide Y in mediating the chronic actions of lithium, electroconvulsive stimulation and citalopram. Neuropharmacology, 39 (8), 1463-1473. doi:10.1016/s0028-3908(00)00009-5
Jimenez Vasquez, P. A., Salmi, P., Ahlenius, S., & Mathe, A. A. (2000). Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and d-amphetamine on peptide concentrations and locomotion. Behav Brain Res, 111 (1-2), 115-123. doi:10.1016/s0166-4328(00)00142-x
Jimenez-Vasquez, P. A., Overstreet, D. H., & Mathe, A. A. (2000). Neuropeptide Y in male and female brains of Flinders Sensitive Line, a rat model of depression. Effects of electroconvulsive stimuli. J Psychiatr Res, 34 (6), 405-412. doi:10.1016/s0022-3956(00)00036-4
Katsetos, C. D., Del Valle, L., Geddes, J. F., Assimakopoulou, M., Legido, A., Boyd, J. C., … Khalili, K. (2001). Aberrant localization of the neuronal class III beta-tubulin in astrocytomas. Arch Pathol Lab Med, 125 (5), 613-624. doi:10.5858/2001-125-0613-ALOTNC
Kautz, M., Charney, D. S., & Murrough, J. W. (2017). Neuropeptide Y, resilience, and PTSD therapeutics. Neurosci Lett, 649 , 164-169. doi:10.1016/j.neulet.2016.11.061
Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., … Frisen, J. (2018). Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 23 (1), 25-30. doi:10.1016/j.stem.2018.04.004
Khan, D., Khan, M., Runesson, J., Zaben, M., & Gray, W. P. (2017). GalR3 mediates galanin proliferative effects on postnatal hippocampal precursors. Neuropeptides, 63 , 14-17. doi:10.1016/j.npep.2017.04.002
Kheirbek, M. A., Drew, L. J., Burghardt, N. S., Costantini, D. O., Tannenholz, L., Ahmari, S. E., … Hen, R. (2013). Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron, 77 (5), 955-968. doi:10.1016/j.neuron.2012.12.038
Kim, H. I., Lim, J., Choi, H. J., Kim, S. H., & Choi, H. J. (2022). ERRgamma Ligand Regulates Adult Neurogenesis and Depression-like Behavior in a LRRK2-G2019S-associated Young Female Mouse Model of Parkinson’s Disease.Neurotherapeutics doi:10.1007/s13311-022-01244-5
Kim, I. B., & Park, S. C. (2021). Neural Circuitry-Neurogenesis Coupling Model of Depression. Int J Mol Sci, 22 (5)doi:10.3390/ijms22052468
Koike, H., & Chaki, S. (2014). Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res, 271 , 111-115. doi:10.1016/j.bbr.2014.05.065
Kormos, V., & Gaszner, B. (2013). Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides, 47 (6), 401-419. doi:10.1016/j.npep.2013.10.014
Kuhn, H. G. (2015). Control of Cell Survival in Adult Mammalian Neurogenesis. Cold Spring Harb Perspect Biol, 7 (12)doi:10.1101/cshperspect.a018895
Kuteeva, E., Wardi, T., Lundstrom, L., Sollenberg, U., Langel, U., Hokfelt, T., & Ogren, S. O. (2008). Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology, 33 (11), 2573-2585. doi:10.1038/sj.npp.1301660
Langmia, I. M., Just, K. S., Yamoune, S., Muller, J. P., & Stingl, J. C. (2022). Pharmacogenetic and drug interaction aspects on ketamine safety in its use as antidepressant - implications for precision dosing in a global perspective. Br J Clin Pharmacol doi:10.1111/bcp.15467
Lee, A. R., Kim, J. H., Cho, E., Kim, M., & Park, M. (2017). Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. Front Mol Neurosci, 10 , 331. doi:10.3389/fnmol.2017.00331
Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system.Adv Drug Deliv Rev, 64 (7), 614-628. doi:10.1016/j.addr.2011.11.002
Lu, X., Ross, B., Sanchez-Alavez, M., Zorrilla, E. P., & Bartfai, T. (2008). Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests.Neuropeptides, 42 (4), 387-397. doi:10.1016/j.npep.2008.04.009
Luo, H., Liu, Z., Liu, B., Li, H., Yang, Y., & Xu, Z. D. (2019). Virus-Mediated Overexpression of ETS-1 in the Ventral Hippocampus Counteracts Depression-Like Behaviors in Rats.Neurosci Bull, 35 (6), 1035-1044. doi:10.1007/s12264-019-00412-6
Martos, D., Tuka, B., Tanaka, M., Vecsei, L., & Telegdy, G. (2022). Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines, 10 (4)doi:10.3390/biomedicines10040849
Mathe, A. A., Michaneck, M., Berg, E., Charney, D. S., & Murrough, J. W. (2020). A Randomized Controlled Trial of Intranasal Neuropeptide Y in Patients With Major Depressive Disorder. Int J Neuropsychopharmacol, 23 (12), 783-790. doi:10.1093/ijnp/pyaa054
Miller, B. R., & Hen, R. (2015). The current state of the neurogenic theory of depression and anxiety.Curr Opin Neurobiol, 30 , 51-58. doi:10.1016/j.conb.2014.08.012
Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain.Front Cell Neurosci, 13 , 363. doi:10.3389/fncel.2019.00363
Mirchandani-Duque, M., Barbancho, M. A., Lopez-Salas, A., Alvarez-Contino, J. E., Garcia-Casares, N., Fuxe, K., … Narvaez, M. (2022). Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. Biomedicines, 10 (6)doi:10.3390/biomedicines10061297
Moreno-Jimenez, E. P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-Bazarra, N., … Llorens-Martin, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med, 25 (4), 554-560. doi:10.1038/s41591-019-0375-9
Murawska-Cialowicz, E., Wiatr, M., Cialowicz, M., Gomes de Assis, G., Borowicz, W., Rocha-Rodrigues, S., … Marques, A. (2021). BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. Int J Environ Res Public Health, 18 (14)doi:10.3390/ijerph18147553
Nahvi, R. J., Tanelian, A., Nwokafor, C., Hollander, C. M., Peacock, L., & Sabban, E. L. (2021). Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Front Behav Neurosci, 15 , 705579. doi:10.3389/fnbeh.2021.705579
Narvaez, M., Andrade-Talavera, Y., Valladolid-Acebes, I., Fredriksson, M., Siegele, P., Hernandez-Sosa, A., … Borroto-Escuela, D. O. (2020). Existence of FGFR1-5-HT1AR heteroreceptor complexes in hippocampal astrocytes. Putative link to 5-HT and FGF2 modulation of hippocampal gamma oscillations.Neuropharmacology, 170 , 108070. doi:10.1016/j.neuropharm.2020.108070
Narvaez, M., Borroto-Escuela, D. O., Millon, C., Gago, B., Flores-Burgess, A., Santin, L., … Diaz-Cabiale, Z. (2016). Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Struct Funct, 221 (8), 4129-4139. doi:10.1007/s00429-015-1153-1
Narvaez, M., Borroto-Escuela, D. O., Santin, L., Millon, C., Gago, B., Flores-Burgess, A., … Fuxe, K. (2018). A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats. Front Cell Neurosci, 12 , 119. doi:10.3389/fncel.2018.00119
Narváez, M., Crespo-Ramírez, M., Fores-Pons, R., Pita-Rodríguez, M., Ciruela, F., Filip, M., … Borroto-Escuela, D. O. (2021). Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. In R. Lujan & F. Ciruela (Eds.),Receptor and Ion Channel Detection in the Brain , (pp. 117-134). New York, NY: Springer US.
Narvaez, M., Millon, C., Borroto-Escuela, D., Flores-Burgess, A., Santin, L., Parrado, C., … Diaz-Cabiale, Z. (2015). Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct Funct, 220 (4), 2289-2301. doi:10.1007/s00429-014-0788-7
Pandey, G. N., Ren, X., Rizavi, H. S., Conley, R. R., Roberts, R. C., & Dwivedi, Y. (2008). Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol, 11 (8), 1047-1061. doi:10.1017/S1461145708009000
Park, S. W., Nhu le, H., Cho, H. Y., Seo, M. K., Lee, C. H., Ly, N. N., … Kim, Y. H. (2016). p11 mediates the BDNF-protective effects in dendritic outgrowth and spine formation in B27-deprived primary hippocampal cells. J Affect Disord, 196 , 1-10. doi:10.1016/j.jad.2016.02.010
Paxinos, G., & Watson, C. (2006).The rat brain in stereotaxic coordinates: hard cover edition : Elsevier.
Planchez, B., Lagunas, N., Le Guisquet, A. M., Legrand, M., Surget, A., Hen, R., & Belzung, C. (2021). Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells, 10 (5)doi:10.3390/cells10050972
Planchez, B., Surget, A., & Belzung, C. (2019). Animal models of major depression: drawbacks and challenges.J Neural Transm (Vienna), 126 (11), 1383-1408. doi:10.1007/s00702-019-02084-y
Polis, A. J., Fitzgerald, P. J., Hale, P. J., & Watson, B. O. (2019). Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res, 376 , 112153. doi:10.1016/j.bbr.2019.112153
Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266 (5604), 730-732. doi:10.1038/266730a0
Rana, T., Behl, T., Sehgal, A., Singh, S., Sharma, N., Abdeen, A., … Bungau, S. (2022). Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry, 114 , 110478. doi:10.1016/j.pnpbp.2021.110478
Rawal, S. U., Patel, B. M., & Patel, M. M. (2022). New Drug Delivery Systems Developed for Brain Targeting.Drugs, 82 (7), 749-792. doi:10.1007/s40265-022-01717-z
Ribeiro, A. C. R., Zhu, J., Kronfol, M. M., Jahr, F. M., Younis, R. M., Hawkins, E., … Deshpande, L. S. (2020). Molecular mechanisms for the antidepressant-like effects of a low-dose ketamine treatment in a DFP-based rat model for Gulf War Illness. Neurotoxicology, 80 , 52-59. doi:10.1016/j.neuro.2020.06.011
Sabban, E. L., & Serova, L. I. (2018). Potential of Intranasal Neuropeptide Y (NPY) and/or Melanocortin 4 Receptor (MC4R) Antagonists for Preventing or Treating PTSD. Mil Med, 183 (suppl_1), 408-412. doi:10.1093/milmed/usx228
Sah, R., & Geracioti, T. D. (2013). Neuropeptide Y and posttraumatic stress disorder. Mol Psychiatry, 18 (6), 646-655. doi:10.1038/mp.2012.101
Serova, L., Mulhall, H., & Sabban, E. (2017). NPY1 Receptor Agonist Modulates Development of Depressive-Like Behavior and Gene Expression in Hypothalamus in SPS Rodent PTSD Model. Front Neurosci, 11 , 203. doi:10.3389/fnins.2017.00203
Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., … Frisen, J. (2013). Dynamics of hippocampal neurogenesis in adult humans.Cell, 153 (6), 1219-1227. doi:10.1016/j.cell.2013.05.002
Tanti, A., & Belzung, C. (2013). Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific?Neuroscience, 252 , 234-252. doi:10.1016/j.neuroscience.2013.08.017
Terreros-Roncal, J., Moreno-Jimenez, E. P., Flor-Garcia, M., Rodriguez-Moreno, C. B., Trinchero, M. F., Marquez-Valadez, B., … Llorens-Martin, M. (2022). Response to Comment on ”Impact of neurodegenerative diseases on human adult hippocampal neurogenesis”. Science, 376 (6590), eabo0920. doi:10.1126/science.abo0920
Thorsell, A., Michalkiewicz, M., Dumont, Y., Quirion, R., Caberlotto, L., Rimondini, R., … Heilig, M. (2000). Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. Proc Natl Acad Sci U S A, 97 (23), 12852-12857. doi:10.1073/pnas.220232997
Toda, T., Parylak, S. L., Linker, S. B., & Gage, F. H. (2019). The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry, 24 (1), 67-87. doi:10.1038/s41380-018-0036-2
Walker, A. K., Rivera, P. D., Wang, Q., Chuang, J. C., Tran, S., Osborne-Lawrence, S., … Zigman, J. M. (2015). The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis.Mol Psychiatry, 20 (4), 500-508. doi:10.1038/mp.2014.34
Yun, S., Reyes-Alcaraz, A., Lee, Y. N., Yong, H. J., Choi, J., Ham, B. J., … Seong, J. Y. (2019). Spexin-Based Galanin Receptor Type 2 Agonist for Comorbid Mood Disorders and Abnormal Body Weight. Front Neurosci, 13 , 391. doi:10.3389/fnins.2019.00391
Zaben, M. J., & Gray, W. P. (2013). Neuropeptides and hippocampal neurogenesis. Neuropeptides, 47 (6), 431-438. doi:10.1016/j.npep.2013.10.002