References
1 Saini, J. K., Saini, R. & Tewari, L. Lignocellulosic agriculture
wastes as biomass feedstocks for second-generation bioethanol
production: concepts and recent developments. 3 Biotech5 , 337-353, doi:10.1007/s13205-014-0246-5 (2015).
2 Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S.
Microbial cellulose utilization: fundamentals and biotechnology.Microbiology and molecular biology reviews : MMBR 66 ,
506-577, table of contents (2002).
3 Blifernez-Klassen, O. et al. Cellulose degradation and
assimilation by the unicellular phototrophic eukaryote Chlamydomonas
reinhardtii. Nature communications 3 , 1214,
doi:10.1038/ncomms2210 (2012).
4 Menon, V. & Rao, M. Trends in bioconversion of lignocellulose:
Biofuels, platform chemicals & biorefinery concept. Progress in
Energy and Combustion Science 38 , 522-550,
doi:https://doi.org/10.1016/j.pecs.2012.02.002(2012).
5 Guerriero, G. et al. Novel Insights from Comparative In Silico
Analysis of Green Microalgal Cellulases. International journal of
molecular sciences 19 , doi:10.3390/ijms19061782 (2018).
6 Hayashi, T., Yoshida, K., Park, Y. W., Konishi, T. & Baba, K.
Cellulose metabolism in plants. Int Rev Cytol 247 , 1-34,
doi:10.1016/S0074-7696(05)47001-1 (2005).
7 Minic, Z. Physiological roles of plant glycoside hydrolases.Planta 227 , 723-740, doi:10.1007/s00425-007-0668-y
(2008).
8 Dasgupta, C. N. et al. Dual uses of microalgal biomass: An
integrative approach for biohydrogen and biodiesel production.Applied Energy 146 , 202-208,
doi:https://doi.org/10.1016/j.apenergy.2015.01.070(2015).
9 Nag Dasgupta, C. et al. Draft genome sequence and detailed
characterization of biofuel production by oleaginous microalga
Scenedesmus quadricauda LWG002611. Biotechnology for biofuels11 , 308, doi:10.1186/s13068-018-1308-4 (2018).
10 Dvořáková-Hladká, J. Utilization of organic substrates during
mixotrophic and heterotrophic cultivation of algae. Biologia
Plantarum 8 , 354, doi:10.1007/bf02930672 (1966).
11 Burczyk, J., Grzybek, H., Banas, J. & Banas, E. Presence of
cellulase in the algae Scenedesmus. Experimental cell research63 , 451-453 (1970).
12 Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg,
M. J. The Phyre2 web portal for protein modeling, prediction and
analysis. Nature protocols 10 , 845-858,
doi:10.1038/nprot.2015.053 (2015).
13 Boratyn, G. M. et al. BLAST: a more efficient report with
usability improvements. Nucleic acids research 41 ,
W29-33, doi:10.1093/nar/gkt282 (2013).
14 Grigoriev, I. V. et al. PhycoCosm, a comparative algal
genomics resource. Nucleic acids research 49 ,
D1004-D1011, doi:10.1093/nar/gkaa898 (2021).
15 Sigrist, C. J. et al. PROSITE: a documented database using
patterns and profiles as motif descriptors. Brief Bioinform3 , 265-274, doi:10.1093/bib/3.3.265 (2002).
16 Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen,
H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization
prediction using protein language models. Nucleic acids research ,
doi:10.1093/nar/gkac278 (2022).
17 Tardif, M. et al. PredAlgo: a new subcellular localization
prediction tool dedicated to green algae. Molecular biology and
evolution 29 , 3625-3639, doi:10.1093/molbev/mss178 (2012).
18 Sievers, F. & Higgins, D. G. The Clustal Omega Multiple Alignment
Package. Methods Mol Biol 2231 , 3-16,
doi:10.1007/978-1-0716-1036-7_1 (2021).
19 Robert, X. & Gouet, P. Deciphering key features in protein
structures with the new ENDscript server. Nucleic acids research42 , W320-324, doi:10.1093/nar/gku316 (2014).
20 Castresana, J. Selection of conserved blocks from multiple alignments
for their use in phylogenetic analysis. Molecular biology and
evolution 17 , 540-552,
doi:10.1093/oxfordjournals.molbev.a026334 (2000).
21 Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Molecular biology and evolution 30 , 2725-2729,
doi:10.1093/molbev/mst197 (2013).
22 Xu, J. Distance-based protein folding powered by deep learning.Proceedings of the National Academy of Sciences of the United
States of America 116 , 16856-16865,
doi:10.1073/pnas.1821309116 (2019).
23 Berman, H. M. et al. The Protein Data Bank. Nucleic
acids research 28 , 235-242, doi:10.1093/nar/28.1.235 (2000).
24 Drula, E. et al. The carbohydrate-active enzyme database:
functions and literature. Nucleic acids research 50 ,
D571-D577, doi:10.1093/nar/gkab1045 %J Nucleic Acids Research (2021).
25 Nguyen, K. H. V. et al. Some characters of bacterial
cellulases in goats’ rumen elucidated by metagenomic DNA analysis and
the role of fibronectin 3 module for endoglucanase function. Anim
Biosci 34 , 867-879, doi:10.5713/ajas.20.0115 (2021).
26 Phitsuwan, P., Lee, S., San, T. & Ratanakhanokchai, K. CalkGH9T: A
Glycoside Hydrolase Family 9 Enzyme from Clostridium alkalicellulosi.11 , 1011 (2021).
27 Sabbadin, F. et al. An ancient family of lytic polysaccharide
monooxygenases with roles in arthropod development and biomass
digestion. Nature communications 9 , 756,
doi:10.1038/s41467-018-03142-x (2018).
28 Tomme, P. et al. Identification of a histidyl residue in the
active center of endoglucanase D from Clostridium thermocellum.The Journal of biological chemistry 266 , 10313-10318
(1991).
29 Sammond, D. W. et al. An iterative computational design
approach to increase the thermal endurance of a mesophilic enzyme.Biotechnology for biofuels 11 , 189,
doi:10.1186/s13068-018-1178-9 (2018).
30 George, R. A. & Heringa, J. An analysis of protein domain linkers:
their classification and role in protein folding. Protein
engineering 15 , 871-879, doi:10.1093/protein/15.11.871 (2002).
31 Receveur, V., Czjzek, M., Schulein, M., Panine, P. & Henrissat, B.
Dimension, shape, and conformational flexibility of a two domain fungal
cellulase in solution probed by small angle X-ray scattering. The
Journal of biological chemistry 277 , 40887-40892,
doi:10.1074/jbc.M205404200 (2002).
32 Foley, M. H. et al. A Cell-Surface GH9 Endo-Glucanase
Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan
Uptake in the Gut Symbiont Bacteroides ovatus. Journal of
molecular biology 431 , 981-995, doi:10.1016/j.jmb.2019.01.008
(2019).
33 Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl
hydrolases. Structure 3 , 853-859,
doi:10.1016/S0969-2126(01)00220-9 (1995).
34 de Giuseppe, P. O. et al. Structural basis for glucose
tolerance in GH1 beta-glucosidases. Acta crystallographica.
Section D, Biological crystallography 70 , 1631-1639,
doi:10.1107/S1399004714006920 (2014).
35 Withers, S. G. et al. Unequivocal demonstration of the
involvement of a glutamate residue as a nucleophile in the mechanism of
a retaining glycosidase. Journal of the American Chemical Society112 , 5887-5889, doi:10.1021/ja00171a043 (1990).
36 Lu, S. et al. CDD/SPARCLE: the conserved domain database in
2020. Nucleic acids research 48 , D265-D268,
doi:10.1093/nar/gkz991 (2020).
37 Powers, S. L. & Robinson, A. S. PDI improves secretion of
redox-inactive beta-glucosidase. Biotechnology progress23 , 364-369, doi:10.1021/bp060287p (2007).
38 Quiroz-Castañeda, R. E. & Folch-Mallol, J. L. Plant cell wall
degrading and remodeling proteins: current perspectives %J
Biotecnología Aplicada. 28 , 205-215 (2011).
39 Duedu, K. O. & French, C. E. Characterization of a Cellulomonas fimi
exoglucanase/xylanase-endoglucanase gene fusion which improves microbial
degradation of cellulosic biomass. Enzyme and microbial
technology 93-94 , 113-121, doi:10.1016/j.enzmictec.2016.08.005
(2016).
40 Martin, M., Wayllace, N. Z., Valdez, H. A., Gomez-Casati, D. F. &
Busi, M. V. Improving the glycosyltransferase activity of Agrobacterium
tumefaciens glycogen synthase by fusion of N-terminal starch binding
domains (SBDs). Biochimie 95 , 1865-1870,
doi:10.1016/j.biochi.2013.06.009 (2013).
41 Gao, F., Jiang, Y., Zhou, G. H. & Han, Z. K. The effects of xylanase
supplementation on growth, digestion, circulating hormone and metabolite
levels, immunity and gut microflora in cockerels fed on wheat-based
diets. Br Poult Sci 48 , 480-488,
doi:10.1080/00071660701477320 (2007).
42 Schubot, F. D. et al. Structural basis for the exocellulase
activity of the cellobiohydrolase CbhA from Clostridium thermocellum.Biochemistry 43 , 1163-1170, doi:10.1021/bi030202i
(2004).
43 Gilkes, N. R. et al. Structural and functional relationships
in two families of beta-1,4-glycanases. European journal of
biochemistry / FEBS 202 , 367-377,
doi:10.1111/j.1432-1033.1991.tb16384.x (1991).
44 MacLeod, A. M., Lindhorst, T., Withers, S. G. & Warren, R. A. The
acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi
is glutamic acid 127: evidence from detailed kinetic studies of mutants.Biochemistry 33 , 6371-6376, doi:10.1021/bi00186a042
(1994).
45 Watanabe, H. & Tokuda, G. Animal cellulases. Cellular and
molecular life sciences : CMLS 58 , 1167-1178,
doi:10.1007/PL00000931 (2001).
46 Vogler, B. W. et al. Characterization of plant carbon
substrate utilization by Auxenochlorella protothecoides. Algal
Research 34 , 37-48,
doi:https://doi.org/10.1016/j.algal.2018.07.001(2018).