References
1 Saini, J. K., Saini, R. & Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech5 , 337-353, doi:10.1007/s13205-014-0246-5 (2015).
2 Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: fundamentals and biotechnology.Microbiology and molecular biology reviews : MMBR 66 , 506-577, table of contents (2002).
3 Blifernez-Klassen, O. et al. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nature communications 3 , 1214, doi:10.1038/ncomms2210 (2012).
4 Menon, V. & Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science 38 , 522-550, doi:https://doi.org/10.1016/j.pecs.2012.02.002(2012).
5 Guerriero, G. et al. Novel Insights from Comparative In Silico Analysis of Green Microalgal Cellulases. International journal of molecular sciences 19 , doi:10.3390/ijms19061782 (2018).
6 Hayashi, T., Yoshida, K., Park, Y. W., Konishi, T. & Baba, K. Cellulose metabolism in plants. Int Rev Cytol 247 , 1-34, doi:10.1016/S0074-7696(05)47001-1 (2005).
7 Minic, Z. Physiological roles of plant glycoside hydrolases.Planta 227 , 723-740, doi:10.1007/s00425-007-0668-y (2008).
8 Dasgupta, C. N. et al. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production.Applied Energy 146 , 202-208, doi:https://doi.org/10.1016/j.apenergy.2015.01.070(2015).
9 Nag Dasgupta, C. et al. Draft genome sequence and detailed characterization of biofuel production by oleaginous microalga Scenedesmus quadricauda LWG002611. Biotechnology for biofuels11 , 308, doi:10.1186/s13068-018-1308-4 (2018).
10 Dvořáková-Hladká, J. Utilization of organic substrates during mixotrophic and heterotrophic cultivation of algae. Biologia Plantarum 8 , 354, doi:10.1007/bf02930672 (1966).
11 Burczyk, J., Grzybek, H., Banas, J. & Banas, E. Presence of cellulase in the algae Scenedesmus. Experimental cell research63 , 451-453 (1970).
12 Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols 10 , 845-858, doi:10.1038/nprot.2015.053 (2015).
13 Boratyn, G. M. et al. BLAST: a more efficient report with usability improvements. Nucleic acids research 41 , W29-33, doi:10.1093/nar/gkt282 (2013).
14 Grigoriev, I. V. et al. PhycoCosm, a comparative algal genomics resource. Nucleic acids research 49 , D1004-D1011, doi:10.1093/nar/gkaa898 (2021).
15 Sigrist, C. J. et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform3 , 265-274, doi:10.1093/bib/3.3.265 (2002).
16 Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic acids research , doi:10.1093/nar/gkac278 (2022).
17 Tardif, M. et al. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Molecular biology and evolution 29 , 3625-3639, doi:10.1093/molbev/mss178 (2012).
18 Sievers, F. & Higgins, D. G. The Clustal Omega Multiple Alignment Package. Methods Mol Biol 2231 , 3-16, doi:10.1007/978-1-0716-1036-7_1 (2021).
19 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic acids research42 , W320-324, doi:10.1093/nar/gku316 (2014).
20 Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution 17 , 540-552, doi:10.1093/oxfordjournals.molbev.a026334 (2000).
21 Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Molecular biology and evolution 30 , 2725-2729, doi:10.1093/molbev/mst197 (2013).
22 Xu, J. Distance-based protein folding powered by deep learning.Proceedings of the National Academy of Sciences of the United States of America 116 , 16856-16865, doi:10.1073/pnas.1821309116 (2019).
23 Berman, H. M. et al. The Protein Data Bank. Nucleic acids research 28 , 235-242, doi:10.1093/nar/28.1.235 (2000).
24 Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic acids research 50 , D571-D577, doi:10.1093/nar/gkab1045 %J Nucleic Acids Research (2021).
25 Nguyen, K. H. V. et al. Some characters of bacterial cellulases in goats’ rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function. Anim Biosci 34 , 867-879, doi:10.5713/ajas.20.0115 (2021).
26 Phitsuwan, P., Lee, S., San, T. & Ratanakhanokchai, K. CalkGH9T: A Glycoside Hydrolase Family 9 Enzyme from Clostridium alkalicellulosi.11 , 1011 (2021).
27 Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature communications 9 , 756, doi:10.1038/s41467-018-03142-x (2018).
28 Tomme, P. et al. Identification of a histidyl residue in the active center of endoglucanase D from Clostridium thermocellum.The Journal of biological chemistry 266 , 10313-10318 (1991).
29 Sammond, D. W. et al. An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme.Biotechnology for biofuels 11 , 189, doi:10.1186/s13068-018-1178-9 (2018).
30 George, R. A. & Heringa, J. An analysis of protein domain linkers: their classification and role in protein folding. Protein engineering 15 , 871-879, doi:10.1093/protein/15.11.871 (2002).
31 Receveur, V., Czjzek, M., Schulein, M., Panine, P. & Henrissat, B. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. The Journal of biological chemistry 277 , 40887-40892, doi:10.1074/jbc.M205404200 (2002).
32 Foley, M. H. et al. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus. Journal of molecular biology 431 , 981-995, doi:10.1016/j.jmb.2019.01.008 (2019).
33 Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3 , 853-859, doi:10.1016/S0969-2126(01)00220-9 (1995).
34 de Giuseppe, P. O. et al. Structural basis for glucose tolerance in GH1 beta-glucosidases. Acta crystallographica. Section D, Biological crystallography 70 , 1631-1639, doi:10.1107/S1399004714006920 (2014).
35 Withers, S. G. et al. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a retaining glycosidase. Journal of the American Chemical Society112 , 5887-5889, doi:10.1021/ja00171a043 (1990).
36 Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic acids research 48 , D265-D268, doi:10.1093/nar/gkz991 (2020).
37 Powers, S. L. & Robinson, A. S. PDI improves secretion of redox-inactive beta-glucosidase. Biotechnology progress23 , 364-369, doi:10.1021/bp060287p (2007).
38 Quiroz-Castañeda, R. E. & Folch-Mallol, J. L. Plant cell wall degrading and remodeling proteins: current perspectives %J Biotecnología Aplicada. 28 , 205-215 (2011).
39 Duedu, K. O. & French, C. E. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass. Enzyme and microbial technology 93-94 , 113-121, doi:10.1016/j.enzmictec.2016.08.005 (2016).
40 Martin, M., Wayllace, N. Z., Valdez, H. A., Gomez-Casati, D. F. & Busi, M. V. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Biochimie 95 , 1865-1870, doi:10.1016/j.biochi.2013.06.009 (2013).
41 Gao, F., Jiang, Y., Zhou, G. H. & Han, Z. K. The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. Br Poult Sci 48 , 480-488, doi:10.1080/00071660701477320 (2007).
42 Schubot, F. D. et al. Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum.Biochemistry 43 , 1163-1170, doi:10.1021/bi030202i (2004).
43 Gilkes, N. R. et al. Structural and functional relationships in two families of beta-1,4-glycanases. European journal of biochemistry / FEBS 202 , 367-377, doi:10.1111/j.1432-1033.1991.tb16384.x (1991).
44 MacLeod, A. M., Lindhorst, T., Withers, S. G. & Warren, R. A. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants.Biochemistry 33 , 6371-6376, doi:10.1021/bi00186a042 (1994).
45 Watanabe, H. & Tokuda, G. Animal cellulases. Cellular and molecular life sciences : CMLS 58 , 1167-1178, doi:10.1007/PL00000931 (2001).
46 Vogler, B. W. et al. Characterization of plant carbon substrate utilization by Auxenochlorella protothecoides. Algal Research 34 , 37-48, doi:https://doi.org/10.1016/j.algal.2018.07.001(2018).