References
Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473(4):347-364https://doi.org/10.1042/BJ20150942
Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63(9):762-771https://doi.org/10.1016/j.addr.2011.03.016
Avci P, Erdem SS, Hamblin MR (2014) Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles. Journal of Biomedical Nanotechnology 10(9):1937-1952https://doi.org/10.1166/jbn.2014.1953
Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS (2017) Photodynamic therapy: Inception to application in breast cancer. Breast 31:105-113https://doi.org/10.1016/j.breast.2016.09.016
Battersby AR (2000) Tetrapyrroles: the pigments of life. Nat Prod Rep 17(6):507-526https://doi.org/10.1039/b002635m
Bhawalkar JD, Kumar ND, Zhao CF, Prasad PN (1997) Two-photon photodynamic therapy. Journal of clinical laser medicine & surgery 15(5):201–204https://doi.org/10.1089/clm.1997.15.201
Bouramtane S, Bretin L, Pinon A, Leger D, Liagre B, Richard L, Bregier F, Sol V, Chaleix V (2019) Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydr Polym 213:168-175https://doi.org/10.1016/j.carbpol.2019.02.070
Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86-107https://doi.org/10.1016/j.bbcan.2007.07.001
Cao H, Yang Y, Qi Y, Li Y, Sun B, Li Y, Cui W, Li J, Li J (2018) Intraparticle FRET for Enhanced Efficiency of Two-Photon Activated Photodynamic Therapy. Adv Healthc Mater 7(12):e1701357https://doi.org/10.1002/adhm.201701357
Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy 1(4):279-293https://doi.org/10.1016/s1572-1000(05)00007-4
Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy 2(1):1-23https://doi.org/10.1016/s1572-1000(05)00030-x
Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C (2016) Incorporation of Porphyrin to pi-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromolecules 17(6):2128-2136https://doi.org/10.1021/acs.biomac.6b00356
Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317-340https://doi.org/10.1146/annurev-biochem-072711-162943
Chen M, Scheer H (2013) Extending the limits of natural photosynthesis and implications for technical light harvesting. Journal of Porphyrins and Phthalocyanines 17(01n02):1-15https://doi.org/10.1142/s1088424612300108
Cheng M, Cui YX, Wang J, Zhang J, Zhu LN, Kong DM (2019) G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy. ACS Appl Mater Interfaces 11(14):13158-13167https://doi.org/10.1021/acsami.9b02695
Chou KL, Won N, Kwag J, Kim S, Chen JY (2013) Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots. J Mater Chem B 1(36):4584-4592https://doi.org/10.1039/c3tb20928h
Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492-501https://doi.org/10.1038/nchembio.1555
Demir Duman F, Sebek M, Thanh NTK, Loizidou M, Shakib K, MacRobert AJ (2020) Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel in vitro squamous cell carcinoma 3D model. J Mater Chem B 8(23):5131-5142https://doi.org/10.1039/d0tb00810a
Dichtel WR, Serin JM, Edder C, Fréchet JM, Matuszewski M, Tan LS, Ohulchanskyy TY, Prasad PN (2004) Singlet oxygen generation via two-photon excited FRET. Journal of the American Chemical Society 126(17):5380–5381https://doi.org/10.1021/ja031647x
Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, Sumer BD, Gao J (2011) Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release 156(3):276-280https://doi.org/10.1016/j.jconrel.2011.08.019
Dobson J, de Queiroz GF, Golding JP (2018) Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J 233:8-18https://doi.org/10.1016/j.tvjl.2017.11.012
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. Journal of the National Cancer Institute 90(12):889–905https://doi.org/10.1093/jnci/90.12.889
Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A (1978) Photoradiation therapy for the treatment of malignant tumors. Cancer research 38(8):2628–2635
Escudero C, Crusats J, Díez-Pérez I, El-Hachemi Z, Ribó JM (2006) Folding and Hydrodynamic Forces in J-Aggregates of 5-Phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angewandte Chemie International Edition 45(47):8032-8035https://doi.org/10.1002/anie.200603182
Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40(1):340-362https://doi.org/10.1039/b915149b
Fan BG, Andrén-Sandberg A (2007) Photodynamic therapy for pancreatic cancer. Pancreas 34(4):385–389https://doi.org/10.1097/mpa.0b013e3180439c50
Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, Lopez GP, Brinker CJ (2004) Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304(5670):567-571https://doi.org/10.1126/science.1095140
Felsher DW (2003) Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 3(5):375-380https://doi.org/10.1038/nrc1070
Ferreira DC, Monteiro CS, Chaves CR, Safar GAM, Moreira RL, Pinheiro MVB, Martins DCS, Ladeira LO, Krambrock K (2017) Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloids Surf B Biointerfaces 150:297-307https://doi.org/10.1016/j.colsurfb.2016.10.042
Fowley C, Nomikou N, McHale AP, McCaughan B, Callan JF (2013) Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot-protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem Commun (Camb) 49(79):8934-8936https://doi.org/10.1039/c3cc45181j
Gomes A, Neves M, Cavaleiro JAS (2018) Cancer, Photodynamic Therapy and Porphyrin-Type Derivatives. An Acad Bras Cienc 90(1 Suppl 2):993-1026https://doi.org/10.1590/0001-3765201820170811
Grzelczak M, Liz-Marzan LM, Klajn R (2019) Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 48(5):1342-1361https://doi.org/10.1039/c8cs00787j
Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, Zhou X, Li Y, Sun Z (2015) Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling. Int J Nanomedicine 10:1463-1477https://doi.org/10.2147/IJN.S76114
Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B: Chemical 117(1):99-106https://doi.org/10.1016/j.snb.2005.11.003
Habermeyer B, Guilard R (2018) Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochem Photobiol Sci 17(11):1675-1690https://doi.org/10.1039/c8pp00222c
Hammerer F, Poyer F, Fourmois L, Chen S, Garcia G, Teulade-Fichou MP, Maillard P, Mahuteau-Betzer F (2018) Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy. Bioorg Med Chem 26(1):107-118https://doi.org/10.1016/j.bmc.2017.11.024
Harmatys KM, Overchuk M, Zheng G (2019) Rational Design of Photosynthesis-Inspired Nanomedicines. Acc Chem Res 52(5):1265-1274https://doi.org/10.1021/acs.accounts.9b00104
Helmich F, Lee CC, Nieuwenhuizen MM, Gielen JC, Christianen PC, Larsen A, Fytas G, Leclere PE, Schenning AP, Meijer EW (2010) Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew Chem Int Ed Engl 49(23):3939-3942https://doi.org/10.1002/anie.201000162
Hilmey DG, Abe M, Nelen MI, Stilts CE, Baker GA, Baker SN, Bright FV, Davies SR, Gollnick SO, Oseroff AR, Gibson SL, Hilf R, Detty MR (2002) Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. Journal of medicinal chemistry 45(2):449–461https://doi.org/10.1021/jm0103662
Huang Y, Qiu F, Chen R, Yan D, Zhu X (2020) Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 8(17):3772-3788https://doi.org/10.1039/d0tb00262c
Ideta R, Tasaka F, Jang WD, Nishiyama N, Zhang GD, Harada A, Yanagi Y, Tamaki Y, Aida T, Kataoka K (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano letters 5(12):2426–2431https://doi.org/10.1021/nl051679d
Imberti C, Zhang P, Huang H, Sadler PJ (2020) New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 59(1):61-73https://doi.org/10.1002/anie.201905171
Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS nano 5(2):1086–1094https://doi.org/10.1021/nn102722z
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M (2018) A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed Engl 57(35):11384-11388https://doi.org/10.1002/anie.201807602
Jin J, Zhu Y, Zhang Z, Zhang W (2018) Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Angew Chem Int Ed Engl 57(50):16354-16358https://doi.org/10.1002/anie.201808811
Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs 2008:276109https://doi.org/10.1155/2008/276109
Kabe Y, Ohmori M, Shinouchi K, Tsuboi Y, Hirao S, Azuma M, Watanabe H, Okura I, Handa H (2006) Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J Biol Chem 281(42):31729-31735https://doi.org/10.1074/jbc.M604729200
Karolin J, Geddes CD (2013) Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys Chem Chem Phys 15(38):15740-15745https://doi.org/10.1039/c3cp50950h
Kessel D (2019) Photodynamic Therapy: A Brief History. J Clin Med 8(10)https://doi.org/10.3390/jcm8101581
Kessel D, Oleinick NL (2010) Photodynamic therapy and cell death pathways. Methods in molecular biology (Clifton, NJ) 635:35–46https://doi.org/10.1007/978-1-60761-697-9_3
Khalil WK, Girgis E, Emam AN, Mohamed MB, Rao KV (2011) Genotoxicity evaluation of nanomaterials: dna damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem Res Toxicol 24(5):640-650https://doi.org/10.1021/tx2000015
Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669-2675https://doi.org/10.1021/ja0680257
Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114(3):345-358https://doi.org/10.1016/j.pharmthera.2007.02.001
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, Kotlinska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098-1107https://doi.org/10.1016/j.biopha.2018.07.049
Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434-1436https://doi.org/10.1126/science.1083780
Lee YE, Kopelman R (2011) Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol 726:151-178https://doi.org/10.1007/978-1-61779-052-2_11
Li S, Chang K, Sun K, Tang Y, Cui N, Wang Y, Qin W, Xu H, Wu C (2016) Amplified Singlet Oxygen Generation in Semiconductor Polymer Dots for Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 8(6):3624-3634https://doi.org/10.1021/acsami.5b07995
Li X, Lee S, Yoon J (2018) Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 47(4):1174-1188https://doi.org/10.1039/c7cs00594f
Lin Y, Zhou T, Bai R, Xie Y (2020) Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 35(1):1080-1099https://doi.org/10.1080/14756366.2020.1755669
Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J Am Chem Soc 137(32):10420-10429https://doi.org/10.1021/jacs.5b06710
Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X (2013) Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed Engl 52(32):8285-8289https://doi.org/10.1002/anie.201303387
Liu K, Xing R, Zou Q, Ma G, Mohwald H, Yan X (2016) Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angew Chem Int Ed Engl 55(9):3036-3039https://doi.org/10.1002/anie.201509810
Lovejoy KS, Lippard SJ (2009) Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting. Dalton Trans(48):10651-10659https://doi.org/10.1039/b913896j
Lovell JF, Chan MW, Qi Q, Chen J, Zheng G (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133(46):18580-18582https://doi.org/10.1021/ja2083569
Luo D, Carter KA, Miranda D, Lovell JF (2017) Chemophototherapy: An Emerging Treatment Option for Solid Tumors. Adv Sci (Weinh) 4(1):1600106https://doi.org/10.1002/advs.201600106
M. O (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of photochemistry and photobiology B, Biology 39(1):1–18https://doi.org/10.1016/s1011-1344(96)07428-3
Martinez De Pinillos Bayona A, Mroz P, Thunshelle C, Hamblin MR (2017) Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des 89(2):192-206https://doi.org/10.1111/cbdd.12792
Mehraban N, Freeman HS (2015) Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. Materials (Basel) 8(7):4421-4456https://doi.org/10.3390/ma8074421
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD (2017) Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 117(2):249-293https://doi.org/10.1021/acs.chemrev.6b00002
Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Advanced drug delivery reviews 49(1-2):71–86https://doi.org/10.1016/s0169-409x(01)00126-0
Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B 73(1-2):1-28https://doi.org/10.1016/j.jphotobiol.2003.10.002
Ogawa K, Kobuke Y (2008) Recent advances in two-photon photodynamic therapy. Anti-cancer agents in medicinal chemistry 8(3):269–279https://doi.org/10.2174/187152008783961860
Pan L, Ma Y, Wu X, Cai H, Qin F, Wu H, Li YC, Jia Z (2021) A Brief Introduction to Porphyrin Compounds used in Tumor Imaging and Therapies. Mini reviews in medicinal chemistry 21(11):1303–1313https://doi.org/10.2174/1389557520999201209212745
Park JM, Hong KI, Lee H, Jang WD (2021) Bioinspired Applications of Porphyrin Derivatives. Acc Chem Res 54(9):2249-2260https://doi.org/10.1021/acs.accounts.1c00114
Ponka P (1999) Cell Biology of Heme. The American Journal of the Medical Sciences 318(4):241-256https://doi.org/10.1016/s0002-9629(15)40628-7
Pu S-C, Yang M-J, Hsu C-C, Lai C-W, Hsieh C-C, Lin SH, Cheng Y-M, Chou P-T (2006) The Empirical Correlation Between Size and Two-Photon Absorption Cross Section of CdSe and CdTe Quantum Dots. Small 2(11):1308-1313https://doi.org/10.1002/smll.200600157
Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1-8https://doi.org/10.1016/j.jphotobiol.2009.04.001
Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society 125(51):15736–15737https://doi.org/10.1021/ja0386905
Schmitt F, Govindaswamy P, Süss-Fink G, Ang WH, Dyson PJ, Juillerat-Jeanneret L, Therrien B (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. Journal of medicinal chemistry 51(6):1811–1816https://doi.org/10.1021/jm701382p
Schmitt F, Govindaswamy P, Zava O, Suss-Fink G, Juillerat-Jeanneret L, Therrien B (2009) Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J Biol Inorg Chem 14(1):101-109https://doi.org/10.1007/s00775-008-0427-y
Schmitt F, Juillerat-Jeanneret L (2012) Drug targeting strategies for photodynamic therapy. Anti-cancer agents in medicinal chemistry 12(5):500–525https://doi.org/10.2174/187152012800617830
Senge MO, Sergeeva NN, Hale KJ (2021) Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev 50(7):4730-4789https://doi.org/10.1039/c7cs00719a
Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJ, Mul G, Koper MT (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6:8177https://doi.org/10.1038/ncomms9177
Shen X, Li L, Wu H, Yao SQ, Xu QH (2011) Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells. Nanoscale 3(12):5140-5146https://doi.org/10.1039/c1nr11104c
Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20-37https://doi.org/10.1038/nrc.2016.108
Takechi K, Shiga T, Motohiro T, Akiyama T, Yamada S, Nakayama H, Kohama K (2006) Solar cells using iodine-doped polythiophene–porphyrin polymer films. Solar Energy Materials and Solar Cells 90(9):1322-1330https://doi.org/10.1016/j.solmat.2005.08.010
Toftegaard R, Arnbjerg J, Daasbjerg K, Ogilby PR, Dmitriev A, Sutherland DS, Poulsen L (2008) Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew Chem Int Ed Engl 47(32):6025-6027https://doi.org/10.1002/anie.200800755
Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC (2006) Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacology & Therapeutics 111(2):327-345https://doi.org/10.1016/j.pharmthera.2005.10.017
Tsoi KM, Dai Q, Alman BA, Chan WC (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Accounts of chemical research 46(3):662–671https://doi.org/10.1021/ar300040z
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC (2019) Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. Adv Mater 31(22):e1806701https://doi.org/10.1002/adma.201806701
Wang D, Zhao T, Zhu X, Yan D, Wang W (2015) Bioapplications of hyperbranched polymers. Chem Soc Rev 44(12):4023-4071https://doi.org/10.1039/c4cs00229f
Wang Z, Medforth CJ, Shelnutt JA (2004) Porphyrin nanotubes by ionic self-assembly. Journal of the American Chemical Society 126(49):15954–15955https://doi.org/10.1021/ja045068j
Weizman E, Rothmann C, Greenbaum L, Shainberg A, Adamek M, Ehrenberg B, Malik Z (2000) Mitochondrial localization and photodamage during photodynamic therapy with tetraphenylporphines. Journal of photochemistry and photobiology B, Biology 59(1-3):92–102https://doi.org/10.1016/s1011-1344(00)00143-3
Xie J, Liang C, Luo S, Pan Z, Lai Y, He J, Chen H, Ren Q, Huang H, Zhang Q, Zhang P (2021) Water-Soluble Iridic-Porphyrin Complex for Non-invasive Sonodynamic and Sono-oxidation Therapy of Deep Tumors. ACS Appl Mater Interfaces 13(24):27934-27944https://doi.org/10.1021/acsami.1c06381
Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel UP, Zhang W, Cao R (2020) Water-Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 59(37):15844-15848https://doi.org/10.1002/anie.202003836
Xiong Y, Tian X, Ai HW (2019) Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjug Chem 30(5):1297-1303https://doi.org/10.1021/acs.bioconjchem.9b00191
Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT (2017) Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal Chem 89(1):42-56https://doi.org/10.1021/acs.analchem.6b04672
Yuan H, Wang B, Lv F, Liu L, Wang S (2014) Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications. Adv Mater 26(40):6978-6982https://doi.org/10.1002/adma.201400379
Z. L (2003) Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas, Lithuania) 39(12):1137–1150
Zhang J, Wong KL, Wong WK, Mak NK, Kwong DW, Tam HL (2011) Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents. Org Biomol Chem 9(17):6004-6010https://doi.org/10.1039/c1ob05415e
Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, Sadler PJ (2019a) Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy. Angew Chem Int Ed Engl 58(8):2350-2354https://doi.org/10.1002/anie.201813002
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G (2019b) The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 48(23):5564-5595https://doi.org/10.1039/c8cs01003j
Zhang Y, Aslan K, Previte MJ, Geddes CD (2007) Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J Fluoresc 17(4):345-349https://doi.org/10.1007/s10895-007-0196-y
Zhang Y, Aslan K, Previte MJ, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. The journal of physical chemistry B, 110(49):25108–25114https://doi.org/10.1021/jp065261v
Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, Shi L, Zhang HT (2019c) Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem 27(12):2598-2608https://doi.org/10.1016/j.bmc.2019.03.051
Zhao T, Shen X, Li L, Guan Z, Gao N, Yuan P, Yao SQ, Xu QH, Xu GQ (2012) Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 4(24):7712-7719https://doi.org/10.1039/c2nr32196c
Zhao Y, Zhang Z, Lu Z, Wang H, Tang Y (2019) Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy. ACS Appl Mater Interfaces 11(42):38467-38474https://doi.org/10.1021/acsami.9b12375
Zheng N, Zhang Z, Kuang J, Wang C, Zheng Y, Lu Q, Bai Y, Li Y, Wang A, Song W (2019) Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the pi-pi Stacking and Extending Circulation Time. ACS Appl Mater Interfaces 11(20):18224-18232https://doi.org/10.1021/acsami.9b04351
Zhou X, Liang H, Jiang P, Zhang KY, Liu S, Yang T, Zhao Q, Yang L, Lv W, Yu Q, Huang W (2016) Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. Adv Sci (Weinh) 3(2):1500155https://doi.org/10.1002/advs.201500155
Zhou X, Tse MK, Wan TS, Chan KS (1996) Synthesis of beta-Mono-, Tetra-, and Octasubstituted Sterically Bulky Porphyrins via Suzuki Cross Coupling. The Journal of organic chemistry 61(11):3590–3593https://doi.org/10.1021/jo952205+
Zhu M, Chen J, Huang L, Ye R, Xu J, Han YF (2019a) Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO2 Electroreduction. Angew Chem Int Ed Engl 58(20):6595-6599https://doi.org/10.1002/anie.201900499
Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, Qian Q, Zhou G, Zhu X (2019b) Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment. Theranostics 9(11):3293-3307https://doi.org/10.7150/thno.32867
Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, Guo Z, Wang X (2019c) Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci 10(10):3089-3095https://doi.org/10.1039/c8sc04871a