References
Ahmadi, M., Hemami, M.-R., Kaboli, M., Malekian, M., Zimmermann, N.E.,
2019. Extinction risks of a Mediterranean neo-endemism complex of
mountain vipers triggered by climate change. Scientific Reports 9, 1-12.
Ahmadi, M., Hemami, M.-R., Kaboli, M., Nazarizadeh, M., Malekian, M.,
Behrooz, R., Geniez, P., Alroy, J., Zimmermann, N.E., 2021. The legacy
of Eastern Mediterranean mountain uplifts: rapid disparity of
phylogenetic niche conservatism and divergence in mountain vipers. BMC
Ecology and Evolution 21, 1-13.
Ahmadi, M., Naderi, M., Kaboli, M., Nazarizadeh, M., Karami, M.,
Beitollahi, S.M., 2018. Evolutionary applications of
phylogenetically-informed ecological niche modelling (ENM) to explore
cryptic diversification over cryptic refugia. Molecular Phylogenetics
and Evolution 127, 712-722.
Ahmadzadeh, F., Flecks, M., Carretero, M.A., Böhme, W., Ihlow, F.,
Kapli, P., Miraldo, A., Rödder, D., 2016. Separate histories in both
sides of the Mediterranean: phylogeny and niche evolution of ocellated
lizards. Journal of Biogeography 43, 1242–1253.
Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F.,
Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., 2019.
Standards for distribution models in biodiversity assessments. Science
Advances 5, eaat4858.
Araújo, M.B., Guisan, A., 2006. Five (or so) challenges for species
distribution modelling. Journal of Biogeography 33, 1677-1688.
Behrooz, R., Kaboli, M., Arnal, V., Nazarizadeh, M., Asadi, A.,
Salmanian, A., Ahmadi, M., Montgelard, C., 2018. Conservation Below the
Species Level: Suitable Evolutionarily Significant Units among Mountain
Vipers (the Montivipera raddei complex) in Iran. Journal of Heredity
109, 416-425.
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial
filtering to reduce sampling bias can improve the performance of
ecological niche models. Ecological modelling 275, 73-77.
Boucher, F.C., Zimmermann, N.E., Conti, E., 2015. Allopatric speciation
with little niche divergence is common among Alpine Primulaceae. Journal
of Biogeography 43, 591-602.
Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Brito, J.C., Acosta, A.L., Álvares, F., Cuzin, F., 2009. Biogeography
and conservation of taxa from remote regions: an application of
ecological-niche based models and GIS to North-African Canids.
Biological Conservation 142, 3020-3029.
Candel, A., Parmar, V., LeDell, E., Arora, A., 2016. Deep learning with
H2O. H2O. ai Inc, 1-21.
Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random forests, Ensemble
machine learning. Springer, pp. 157-175.
De’ath, G., Fabricius, K.E., 2000. Classification and regression trees:
a powerful yet simple technique for ecological data analysis. Ecology
81, 3178-3192.
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J.,
Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., 2007.
Methods to account for spatial autocorrelation in the analysis of
species distributional data: a review. Ecography 30, 609-628.
El‐Gabbas, A., Dormann, C.F., 2018a. Improved species‐occurrence
predictions in data‐poor regions: using large‐scale data and bias
correction with down‐weighted Poisson regression and Maxent. Ecography
41, 1161-1172.
El‐Gabbas, A., Dormann, C.F., 2018b. Wrong, but useful: regional species
distribution models may not be improved by range‐wide data under biased
sampling. Ecology and evolution 8, 2196-2206.
Elith, J., Graham, C.H., 2009. Do they? How do they? WHY do they differ?
On finding reasons for differing performances of species distribution
models. Ecography 32, 66-77.
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S.,
Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann,
A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C.,
Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A.,
J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R.,
Soberón, J., Williams, S., S. Wisz, M., E. Zimmermann, N., 2006. Novel
methods improve prediction of species’ distributions from occurrence
data. Ecography 29, 129-151.
Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling
range‐shifting species. Methods in ecology and evolution 1, 330-342.
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted
regression trees. Journal of Animal Ecology 77, 802-813.
Farhadinia, M.S., Ahmadi, M., Sharbafi, E., Khosravi, S., Alinezhad, H.,
Macdonald, D.W., 2015. Leveraging trans-boundary conservation
partnerships: Persistence of Persian leopard (Panthera pardus saxicolor)
in the Iranian Caucasus. Biological Conservation 191, 770-778.
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment
of prediction errors in conservation presence/absence models.
Environmental conservation 24, 38-49.
Fithian, W., Elith, J., Hastie, T., Keith, D.A., 2015. Bias correction
in species distribution models: pooling survey and collection data for
multiple species. Methods in Ecology and Evolution 6, 424-438.
Franklin, J., 2010. Mapping species distributions: spatial inference and
prediction. Cambridge University Press.
Friedman, J.H., 2017. The elements of statistical learning: Data mining,
inference, and prediction. springer open.
Galante, P.J., Alade, B., Muscarella, R., Jansa, S.A., Goodman, S.M.,
Anderson, R.P., 2018. The challenge of modeling niches and distributions
for data‐poor species: a comprehensive approach to model complexity.
Ecography 41, 726-736.
Guevara, L., Gerstner, B.E., Kass, J.M., Anderson, R.P., 2018. Toward
ecologically realistic predictions of species distributions: A
cross‐time example from tropical montane cloud forests. Global change
biology 24, 1511-1522.
Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J., Gordon, A.,
Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R., Wintle, B.A.,
2015. Is my species distribution model fit for purpose? Matching data
and models to applications. Global Ecology and Biogeography 24, 276-292.
Guisan, A., Graham, C.H., Elith, J., Huettmann, F., Group, N.S.D.M.,
2007. Sensitivity of predictive species distribution models to change in
grain size. Diversity and distributions 13, 332-340.
Hardin, J.W., Hardin, J.W., Hilbe, J.M., Hilbe, J., 2007. Generalized
linear models and extensions. Stata press.
Hemami, M.-R., Esmaeili, S., Brito, J.C., Ahmadi, M., Omidi, M.,
Martínez-Freiría, F., 2018. Using ecological models to explore niche
partitioning within a guild of desert felids. Hystrix, the Italian
Journal of Mammalogy 29, 216-222.
Hijmans, R.J., 2012. Cross‐validation of species distribution models:
removing spatial sorting bias and calibration with a null model. Ecology
93, 679-688.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.,
2005. Very high resolution interpolated climate surfaces for global land
areas. International journal of climatology 25, 1965-1978.
Hortal, J., Jiménez-Valverde, A., Gómez, J.F., Lobo , J.M., Baselga, A.,
2008. Historical bias in biodiversity inventories affects the observed
environmental niche of the species. Oikos 117, 847-858.
Jiang, Z., Huete, A.R., Didan, K., Miura, T., 2008. Development of a
two-band enhanced vegetation index without a blue band. Remote sensing
of Environment 112, 3833-3845.
Jiménez‐Valverde, A., 2012. Insights into the area under the receiver
operating characteristic curve (AUC) as a discrimination measure in
species distribution modelling. Global Ecology and Biogeography 21,
498-507.
Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla‐Buitrago,
G.E., Boria, R.A., Soley‐Guardia, M., Anderson, R.P., 2021. ENMeval 2.0:
Redesigned for customizable and reproducible modeling of species’ niches
and distributions. Methods in Ecology and Evolution 12, 1602-1608.
Kindt, R., 2018. Ensemble species distribution modelling with
transformed suitability values. Environmental Modelling & Software 100,
136-145.
Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B.,
Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf,
A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald,
D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R.,
Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W.,
Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., Wilting, A., 2013.
The importance of correcting for sampling bias in MaxEnt species
distribution models. Diversity and Distributions 19, 1366–1379.
Kuhn, M., 2021. caret: Classification and Regression Training. R package
version 6.0-90. https://CRAN.R-project.org/package=caret.
Lentini, P.E., Wintle, B.A., 2015. Spatial conservation priorities are
highly sensitive to choice of biodiversity surrogates and species
distribution model type. Ecography 38, 1101-1111.
Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting
thresholds of occurrence in the prediction of species distributions.
Ecography 28, 385-393.
Lobo, J.M., Jiménez‐Valverde, A., Real, R., 2008. AUC: a misleading
measure of the performance of predictive distribution models. Global
ecology and Biogeography 17, 145-151.
Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M.,
Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J.,
2014. What do we gain from simplicity versus complexity in species
distribution models? Ecography 37, 1267-1281.
Muscarella, R., Galante, P.J., Soley‐Guardia, M., Boria, R.A., Kass,
J.M., Uriarte, M., Anderson, R.P., 2014. ENM eval: An R package for
conducting spatially independent evaluations and estimating optimal
model complexity for Maxent ecological niche models. Methods in ecology
and evolution 5, 1198-1205.
Naimi, B., 2015. usdm: uncertainty analysis for species distribution
models. R package version 1.1-15, R Documentation
http://www.rdocu‑mentation.org/packages/usdm.
Osborne, J.W., Waters, E., 2002. Four assumptions of multiple regression
that researchers should always test. Practical assessment, research, and
evaluation 8, 2.
Pearman, P.B., D’Amen, M., Graham, C.H., Thuiller, W., Zimmermann, N.E.,
2010. Within‐taxon niche structure: niche conservatism, divergence and
predicted effects of climate change. Ecography 33, 990-1003.
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy
modeling of species geographic distributions. Ecological modelling 190,
231-259.
Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with
Maxent: new extensions and a comprehensive evaluation. Ecography 31,
161-175.
Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A.,
Leathwick, J., Ferrier, S., 2009. Sample selection bias and
presence‐only distribution models: implications for background and
pseudo‐absence data. Ecological applications 19, 181-197.
Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L.,
Randin, C.F., Vittoz, P., Guisan, A., 2013. The accuracy of plant
assemblage prediction from species distribution models varies along
environmental gradients. Global Ecology and Biogeography 22, 52-63.
Radosavljevic, A., Anderson, R.P., 2014. Making better Maxent models of
species distributions: complexity, overfitting and evaluation. Journal
of biogeography 41, 629-643.
Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M.,
Guisan, A., 2006. Are niche‐based species distribution models
transferable in space? Journal of biogeography 33, 1689-1703.
Rebelo, H., Jones, G., 2010. Ground validation of presence‐only
modelling with rare species: a case study on barbastelles Barbastella
barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology
47, 410-420.
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A.,
Ricotta, C., Bacaro, G., Chiarucci, A., 2011. Accounting for uncertainty
when mapping species distributions: the need for maps of ignorance.
Progress in Physical Geography 35, 211-226.
Saladin, B., Thuiller, W., Graham, C.H., Lavergne, S., Maiorano, L.,
Salamin, N., Zimmermann, N.E., 2019. Environment and evolutionary
history shape phylogenetic turnover in European tetrapods. Nature
communications 10, 249.
Shabani, F., Ahmadi, M., Peters, K.J., Haberle, S., Champreux, A.,
Saltré, F., Bradshaw, C.J., 2019. Climate‐driven shifts in the
distribution of koala‐browse species from the Last Interglacial to the
near future. Ecography 42, 1587-1599.
Shabani, F., Kumar, L., Ahmadi, M., 2016. A comparison of absolute
performance of different correlative and mechanistic species
distribution models in an independent area. Ecology and evolution 6,
5973-5986.
Stolar, J., Nielsen, S.E., 2015. Accounting for spatially biased
sampling effort in presence‐only species distribution modelling.
Diversity and Distributions 21, 595-608.
Stümpel, N., Rajabizadeh, M., Avcı, A., Wüster, W., Joger, U., 2016.
Phylogeny and diversification of mountain vipers (Montivipera, Nilson et
al., 2001) triggered by multiple Plio–Pleistocene refugia and
high-mountain topography in the Near and Middle East. Molecular
phylogenetics and evolution 101, 336-351.
Tessarolo, G., Rangel, T.F., Araújo, M.B., Hortal, J., 2014. Uncertainty
associated with survey design in Species Distribution Models. Diversity
and Distributions 20, 1258-1269.
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD–a
platform for ensemble forecasting of species distributions. Ecography
32, 369-373.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B.,
Araujo, M.B., 2011. Consequences of climate change on the tree of life
in Europe. Nature 470, 531-534.
Thuiller, W., Richardson, D.M., PYŠEK, P., Midgley, G.F., Hughes, G.O.,
Rouget, M., 2005. Niche‐based modelling as a tool for predicting the
risk of alien plant invasions at a global scale. Global Change Biology
11, 2234-2250.
Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized
niche shift during a global biological invasion. Proceedings of the
National Academy of Sciences 111, 10233-10238.
Vale, C.G., Tarroso, P., Brito, J.C., 2014. Predicting species
distribution at range margins: testing the effects of study area extent,
resolution and threshold selection in the Sahara–Sahel transition zone.
Diversity and Distributions 20, 20-33.
Veloz, S.D., 2009. Spatially autocorrelated sampling falsely inflates
measures of accuracy for presence‐only niche models. Journal of
biogeography 36, 2290-2299.
Waltari, E., Guralnick, R.P., 2009. Ecological niche modelling of
montane mammals in the Great Basin, North America: examining past and
present connectivity of species across basins and ranges. Journal of
Biogeography 36, 148-161.
Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent:
the importance of model complexity and the performance of model
selection criteria. Ecological applications 21, 335-342.
Wiens, J.J., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A.,
2009. Niches, models, and climate change: assessing the assumptions and
uncertainties. Proceedings of the National Academy of Sciences 106,
19729-19736.
Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., Guisan, A.,
Group, N.P.S.D.W., 2008. Effects of sample size on the performance of
species distribution models. Diversity and distributions 14, 763-773.
Yousefi, M., Ahmadi, M., Nourani, E., Rezaei, A., Kafash, A., Khani, A.,
Sehhatisabet, M.E., Adibi, M.A., Goudarzi, F., Kaboli, M., 2017. Habitat
suitability and impacts of climate change on the distribution of
wintering population of Asian Houbara Bustard Chlamydotis macqueenii in
Iran. Bird Conservation International 27, 294-304.
Zupan, L., Cabeza, M., Maiorano, L., Roquet, C., Devictor, V., Lavergne,
S., Mouillot, D., Mouquet, N., Renaud, J., Thuiller, W., 2014. Spatial
mismatch of phylogenetic diversity across three vertebrate groups and
protected areas in Europe. Diversity and Distributions 20, 674-685.