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Abstract 9 

Current machine learning methods for discharge prediction often employ aggregated basin-wide 10 

hydrometeorological data (lumped modeling) for parametric and non-parametric training. This 11 

approach may overlook the spatial heterogeneity of river systems and their impact on discharge 12 

patterns. We hypothesize that integrating temporal-spatial hydrologic knowledge into the data 13 

modeling process (distributed/disaggregated modeling) can improve the performance of discharge 14 

prediction models. To test this hypothesis, we designed experiments comparing the performance of 15 

identical Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) models forced with 16 

either lumped or distributed features. We gather meteorological forcing and static attributes for the 17 

Mackenzie basin in Canada- a large and unique basin. Importantly, discharge performance is 18 

assessed out-of-sample with k-fold replication across gauges. Results reveal a 9.6% improvement in 19 

the mean Nash-Sutcliffe Efficiency (NSE) and a 4.6% improvement in mean Kling-Gupta 20 

Efficiency (KGE) when LSTMs are trained with distributed information. Notably, the models 21 

exhibit consistently unbiased predictions, with a negligible relative bias (RBias ≈ 0.0) across all 22 

predictions. These experiments and results demonstrate the importance of integrating topologically 23 

guided geomorphologic and hydrologic information (distributed modeling) in data-driven discharge 24 

predictions. 25 

 26 

Plain Language 27 

Accurate river discharge prediction is critical for sustainable water resource management and 28 

effective flood mitigation. Traditional methods often treat the entire river basin as a homogenous 29 

unit, neglecting crucial hydrologic and hydrometeorological variations that significantly impact water 30 

flow across different locations. This “lumped” approach can lead to inaccurate predictions. We 31 

propose a “distributed” modeling approach incorporating detailed information about the river 32 



basin’s spatial heterogeneity. Applying this method to the Mackenzie River, a vast and complex river 33 

system in Canada, resulted in significantly more accurate discharge predictions compared to 34 

traditional lumped models. This confirms the critical importance of considering the river basin’s 35 

spatial variability for better understanding and predicting water flow dynamics. Our work paves the 36 

way for enhanced water management strategies and improved flood preparedness by providing more 37 

precise and reliable discharge predictions. 38 

 39 

Main Points 40 

1. Current Machine Learning models rely on aggregated hydrometeorological data, ignoring the 41 

spatial heterogeneity inherent in river systems. 42 

2. Incorporating topological-guided spatiotemporal hydrologic data can improve understanding 43 

of discharge dynamics within the river basin. 44 

1. Introduction 45 

The hydrologic cycles that generate river discharge are stochastic, complex, and non-deterministic 46 

systems characterized by processes and events whose dynamics depend on various direct (e.g., 47 

meteorological and environmental factors) and indirect (e.g., human interactions) inter-connected 48 

phenomena (Dimitriadis et al., 2021; Zounemat-Kermani et al., 2021). This complexity ensures that 49 

in situ monitoring via gauges is the best way to understand rivers: a direct measurement is best. 50 

However, continuous in situ monitoring of global rivers is challenging due to logistical difficulties, 51 

expense, and politics (Hannah et al., 2011; Wu et al., 2016; Gleason & Hamdan, 2017). Despite these 52 

challenges, the importance of monitoring river discharge cannot be overstated, as it aids in detecting 53 

climatic and environmental changes across time and space. 54 

As a result of these challenges, process-based hydrology models are often deployed to estimate river 55 

discharge. Process-based models are rapidly scalable to different hydro-meteorological conditions 56 

and can explain and interpret underlying model performance. However, they are highly dependent 57 

on their calibrated parameters, which can degrade significantly when applied to rivers with different 58 

average discharges, seasonal variations, river widths, and geographical characteristics (e.g., Wagener 59 

et al., 2011; Arsenault et al., 2014; Pool & Seibert, 2021). This is important for modeling discharge in 60 

remote and developing regions where many assumptions must be made to achieve accurate 61 

predictions (Marshall et al., 2005; Thyer et al., 2009; Clark et al., 2016; Pilz et al., 2020). The needs 62 

and benefits of process-based models are an especially circular problem in ungauged basins between 63 



the need for robust models to replace gauges and the need for more gauged data to calibrate them. 64 

Watershed regionalization techniques such as spatial calibration, interpolation, and regression of 65 

basin and hydro-meteorological characteristics are often used to adopt these models and their 66 

parameters to ungauged basins (Hrachowitz et al., 2013; Pagliero et al., 2019; Belvederesi et al., 67 

2022). Finally, models can simulate future projections based on physically realistic processes, i.e., 68 

‘what if’ scenarios (Montanari & Koutsoyiannis, 2012; Basijokaite & Kelleher, 2021; Mai et al., 2022). 69 

This is especially important given the expected increase in the intensity and frequency of 70 

hydrological extremes due to climate change (Shrestha et al., 2021; Leng, Tang, and Rayburg, 2015; 71 

Tabari, 2020). 72 

Despite their widespread adaptation and credibility in hydrology, process-based models have several 73 

limitations that hinder their ability to fully capture the complexities of real-world hydrologic systems. 74 

First, the dominant physical processes that govern water movement and transformation within a 75 

watershed exhibit significant temporal-spatial heterogeneity, reflecting variations in fluvial, 76 

geomorphological, and soil characteristics (Kirchner, 2006; McDonell et al., 2007; Sidle et al., 2017; 77 

Royall, 2021). This heterogeneity challenges the development of a single model structure that 78 

adequately represents all interacting processes across the diverse landscapes encountered in natural 79 

watersheds. Second, equifinality - the ability of multiple parameter settings to produce similar model 80 

outputs - obscures a proper process-based understanding of models with many parameters, making 81 

it difficult to discern the proper combination of underlying mechanisms responsible for hydrologic 82 

responses. Third, the limited spatial and temporal scales at which process-based models are typically 83 

developed and calibrated constrain their ability to effectively represent fast-evolving temporal-spatial 84 

variability in physical processes across different scales (Yoshida et al., 2022; Clark et al., 2015a, 85 

Clark2015b; Clark, 2016). This limitation hinders their applicability in assessing and predicting 86 

hydrologic response under changing climate and land-use scenarios. To address these limitations, 87 

modelers must incorporate heterogeneity and temporal-spatial variability of physical processes into 88 

their models or use remote sensing to gather more primary data (e.g., Oubanas et al., 2018; Xie et al., 89 

2021; Tsai et al., 2021). 90 

Therefore, gauges are the best means of monitoring rivers, but they are impractical to deploy 91 

globally. Hydrologic models and remote sensing are excellent tools, whether used separately or in 92 

combination, but they have unique challenges, especially in ungauged basins. How, then, can we best 93 

combine the richness of primary data with process-based hydrologic knowledge and sparse in situ 94 

data? We argue the answer can be found in machine learning (ML). Early ML studies (e.g., Hsu et al., 95 



1995) demonstrated the ability of feed-forward networks to outperform calibrated process-based 96 

models in predicting discharge across flow regimes. Recent studies (e.g., Ouyang et al., 2021; Feng et 97 

al., 2020; Feng 2021; Ma et al., 2021; Kratzert et al., 2019a; Kratzert2019b) have shown that Long 98 

short-term memory (LSTM) artificial neural networks can outperform process-based models in 99 

ungauged basins. Transfer learning (e.g., Zhuang et al., 2020; Tan et al., 2018; Long et al., 2017; 100 

Zamir et al., 2018; Ma et.al, 2021), which is analogous to regionalization (Kittel et al., 2020; Wang et 101 

al.,2021; Yang et al., 2020; Oudin et al., 2008), also shows promise in tuning ML models to well-102 

measured basins and applying them to ungauged basins. At its core, ML for hydrology involves the 103 

automatic discovery of inherent temporal-spatial patterns in historical hydrological data. While 104 

current ML approaches have demonstrated improved streamflow predictions, they still have several 105 

limitations. First, ML models, especially deep learning models, are still relatively non-interpretable, 106 

meaning we can produce accurate streamflow hydrographs without knowing how or why they were 107 

produced or which combinations of hydrological processes improved the model’s learning process. 108 

However, ML is moving toward improved interpretability (e.g., Marcinkevič & Vogt, 2020; 109 

Lundberg et al., 2017; Lundberg, 2020; Wanner et al., 2020; Lees et al., 2021), but for now, it 110 

remains a powerful predictive tool that often divides opinions in the traditionally process-based 111 

discipline of hydrology. Second, ML models are complex and require access to specialized 112 

computing, such as GPU clusters. Third, ML models typically require much more training data with 113 

stricter consistency requirements than hydrologists are used to working with: the amount of data 114 

needed for quality ML training far outstrips the amount needed to calibrate a model or remote 115 

sensing technique (Mastorakis, 2018; D’Amour et al., 2020; Seifert & Rasp, 2020). 116 

Current ML for hydrology retrofits ML techniques to hydrological data. However, we argue that 117 

aspects of hydrologic modeling and remote sensing for hydrology can be easily implemented in an 118 

ML-driven hydrology framework to move toward a more hydrologically aware and purpose-built 119 

ML for the discipline. For instance, hydrologists have long known that distributed modeling—where 120 

inputs are spatiotemporally heterogeneous - outperforms lumped modeling - where inputs are 121 

spatiotemporally homogeneous (Baroni et al., 2019; Ntegeka et al., 2014; Fry & Maxwell, 2018; Tran 122 

et al., 2018; Muhammad et al., 2019; Dembele et al., 2020). Yet almost all previous ML in hydrology 123 

has been lumped modeling. Moving to distributed ML would allow known correlations between 124 

altitude and temporal-spatial variation in isotopic signatures of snowmelt, glacier melt, and rainwater 125 

to express themselves in the predictions (Immerzeel et al., 2010; Pokhrel et al., 2018; Scown et al. 126 

2020; Fujita et al., 2008; Nepal et al. 2014; Pant & Semwal, 2021). This shift would require changes 127 



to the input structure of ML models, but it should improve them considerably. Further, since ML 128 

requires huge quantities of training data, remotely sensed inputs are the best way of obtaining this 129 

needed primary data in ungauged basins (Gleason and Durand, 2020) in conjunction with globally 130 

available climate model output currently used in ML-driven hydrology modeling (e.g., Larnier & 131 

Monnier 2020; Ma et al., 2021; Feng et al., 2020; Asanjan et al., 2018; Kratzert et al., 2019; Kratzert 132 

2019b; Ouyang et al., 2021). 133 

Therefore, we compare the impact of aggregating LSTM training data over the entire upstream basin 134 

(lumped modeling) against separating upstream basin information based on the Strahler River order 135 

system (distributed modeling) while holding the LSTM architecture and input data constant. This 136 

tests the hypothesis that creating a distributed LSTM model based on topologically organized 137 

geomorphologic and hydrologic information can improve discharge estimation performance in 138 

ungauged basins. We demonstrate this comparison in ungauged basins by training generalizable 139 

machine learning models in hydrologically similar basins to validation zones in ungauged basins. We 140 

also compare results to previously published LSTMs and a recent remotely sensed data assimilation 141 

product (Feng et al., 2021).  Ultimately, we aim to show how tenets of hydrologic modeling improve 142 

ML in ungauged basins. 143 

2. Data and Methods 144 

2.1. Data 145 

We tested our proposed ML approach on the Mackenzie basin (Figure 1). This basin covers 146 

approximately 1.8 million square kilometers and encompasses various climatic conditions, including 147 

mountainous, cold temperate, subarctic, and arctic zones. The Mackenzie River drains approximately 148 

one-fifth of Canada’s total land area, including the Rocky and Mackenzie mountains and the 149 

Canadian Shield. It contains over 39,000 river reaches in the MERIT Basin River network (Lin et al., 150 

2019), developed on the MERIT HYDRO topography data (Aziz and Burn, 2006; Yamazaki et al., 151 

2019). We selected a subset (n = 69) of all gauge stations in the Mackenzie basin, limited to those 152 

with at least ten years of consistent daily gauge data available from Environment and Climate 153 

Change Canada (ECCC). These gauge data formed the basis of training and validation for our work. 154 



 155 

Figure 1: A Map showing the location of gauge stations (red circles) in the Mackenzie basin used in the study. Inset shows a map of 156 

the 20 biggest basins in Canada, including the Mackenzie Basin (shaded). 157 

Our training data include both static and dynamic variables. Static variables, such as bed slope, 158 

sinuosity, and stream length, do not change over a few decades. Dynamic features, on the other 159 

hand, reflect changing hydrologic processes. We gathered daily data from 1981 to 2010, including 160 

simulated discharge and runoff from the GRADES database (Lin et al., 2019), reach averaged widths 161 

obtained from the Global Long-term river Width (GLOW) database (Feng et al., 2022), and climate 162 

model data. Climate data were from the Global Land Data Assimilation System (GLDAS)-2.1 model 163 

(Rodell et al., 2014; Beaudoing and Rodell, 2019) and included three hourly climate data gridded at 164 

0.25 x 0.25 degrees resolution, which were downsampled to daily data. These data were downloaded 165 

from the Google Earth Engine platform (Gorelick et al., 2017). Previous studies have shown that 166 

stationary data are relatively easy to model with ML (e.g., Hosking, 1984; Dickey and Pantula, 1987). 167 

Appendix A lists all variables used in this study. 168 



We include river width as one of the input features for all models used in this study. Previous studies 169 

have shown that river width has a strong correlation with river discharge (Gleason and Smith, 2014; 170 

Gleason et al., 2014; Hagemann et al., 2017; Brinkerhoff et al., 2019; Feng et al., 2019; Feng et al., 171 

2021). However, Landsat-derived river widths are only available at best every 16 days, considering 172 

cloud cover and seasonality. This is not a problem for hydrological approaches, but long short-term 173 

memory (LSTM) models require training data without gaps (e.g., Bengio and Gingras, 1995; Che et 174 

al., 2018; Lim et al., 2021). Therefore, we impute a complete width record from the Landsat 175 

observations in the GLOW dataset (Feng et al., 2022). Imputation is a statistical process of 176 

determining and assigning replacement values for missing or invalid data points in a multivariate 177 

dataset by leveraging possible correlations between covariates (Buck, 1960; Jamshidian and Mata, 178 

2007). Thus, we estimated missing width values using a regression model fitted with the remaining 179 

covariates in the dataset. We chose this imputation approach to retain river widths as a strong 180 

predictor of discharge. 181 

To compare lumped and distributed ML approaches, we trained and tested our models only at 182 

gauges with at least five upstream reaches. This ensured that we had sufficient data to quantify the 183 

impact of upstream climatology factors on daily discharge at a given gauge station. We also limited 184 

our selection to gauges with at least ten years of daily discharge data. Preliminary tests indicated that 185 

this was the scale of data needed to train an LSTM model accurately without overfitting (Ying, 186 

2009). Finally, we selected Strahler River orders with at least four gauge stations: order 4 (25 gauge 187 

stations), order 5 (23 gauge stations), order 6 (13 gauge stations), order 7 (4 gauge stations), and 188 

order 8 (4 gauge stations). This gave us a total of 69 gauge stations. 189 

 190 

2.2. Sequential Learning Via LSTMs 191 

Our ML models are based on the LSTM model architecture. This artificial neural network, 192 

introduced by Hochreiter and Schmidhuber in 1997, excels at processing sequential data, a hallmark 193 

of hydrometeorological and hydrologic time series. LSTMs have demonstrated remarkable success in 194 

diverse applications, including language modeling, video understanding, music transcription, and, 195 

crucially, discharge prediction for hydrology (e.g., Eck and Schmidhuber, 2002; Srivastava et al., 196 

2015; Ghosh et al., 2016; Ouyang et al., 2021; Feng et al., 2020; Kratzert et al., 2019). Unlike 197 

standard neural networks that solely capture the spatial context of data, LSTMs are uniquely 198 

equipped to extract temporal and spatial information embedded within the training data (e.g., Yin et 199 

al., 2017; Wu and Prasad, 2017). 200 



This ability to grasp the intricate interplay of spatial and temporal dynamics is paramount for 201 

accurately modeling hydrological processes. Structurally, an LSTM network comprises a series of 202 

identical recurrent neural networks, each building upon the information passed from its predecessor. 203 

This cascading architecture enables LSTMs to handle the sequential context inherent in historical 204 

data, particularly in hydrologic time series. Unlike traditional RNNs, LSTMs possess an inherent 205 

memory mechanism that allows them to retain information over extended periods, effectively 206 

overcoming the vanishing gradient problem (Chung et al., 2014; Hu et al., 2018). This memory 207 

capability empowers LSTMs to capture long-term temporal dependencies, where desired outputs 208 

depend on inputs presented far in the past (lookback window). This capability is critical for 209 

modeling physical processes unfolding at varying spatial resolutions, a characteristic of hydrological 210 

phenomena. Consequently, the lookback window size dictates how much information a model can 211 

learn about a particular physical process at any given time. 212 

The LSTM network architecture can be implemented in either a unidirectional or bidirectional 213 

fashion (Graves & Schmidhuber, 2005; Siami-Namini et al., 2019; Fraiwan & Alkhodari, 2020). 214 

Unidirectional LSTMs process and encode features in a forward manner, sequentially learning 215 

information from each feature at each timestep t = {t[0], t[1], t[2], …, t[n]}. However, they only 216 

utilize information from preceding timesteps (ti-1) to enhance prediction at the current timestep (ti). 217 

This unidirectional approach limits the model’s ability to capture dependencies between features and 218 

information encoded in subsequent timesteps (t+1). 219 

 220 



 221 
Figure 2: An architectural overview of a Bidirectional Long Short-Term Memory (Bi-LSTM) Network for time series prediction, 222 

showcasing the flow of temporal-spatial data through LSTM units in both forward and backward directions to enhance feature 223 

learning and improve prediction accuracy. 224 

In contrast, bidirectional LSTMs combine two unidirectional LSTMs operating in opposite 225 

directions, as shown in Figure 2. The core LSM equations, shared by both forward and backward 226 

passes, are summarized as follows: 227 

Forget gate: 𝑓𝑡 = 𝜎(𝑊𝑓  ∙ [ℎ𝑝𝑟𝑒𝑣, 𝑥𝑡] +  𝑏𝑓)   (1) 228 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖  ∙ [ℎ𝑝𝑟𝑒𝑣, 𝑥𝑡] + 𝑏𝑖)   (2) 229 

Candidate state: 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐  ∙ [ℎ𝑝𝑟𝑒𝑣, 𝑥𝑡] +  𝑏𝐶  )  (3) 230 

Cell state update: 𝐶𝑡 = 𝑓𝑡  ∗ 𝐶𝑝𝑟𝑒𝑣  + 𝑖𝑖 ∗ 𝐶̃𝑡   (4) 231 

Output gate: 𝑜𝑡 =  𝜎(𝑊° ∙ [ℎ𝑝𝑟𝑒𝑣, 𝑥𝑡]  + 𝑏0)   (5) 232 

Hidden state update: ℎ𝑡 =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)   (6) 233 

Where 𝑥𝑡 is the input at timestep 𝑡 , ℎ𝑝𝑟𝑒𝑣 and 𝐶𝑝𝑟𝑒𝑣 are the previous hidden and cell states, 234 

respectively. Furthermore, the final output at each timestep 𝑡, represented as 𝑦𝑡 , in a Bidirectional 235 

LSTM is the concatenation of the forward and hidden states represented as 𝑦𝑡 =  [ℎ𝑡
(𝑓)

; 𝑡𝑡
(𝑏)]. 236 

Finally, for the forward pass, ℎ𝑝𝑟𝑒𝑣 = ℎ𝑡−1
(𝑓)

 and 𝐶𝑝𝑟𝑒𝑣 = 𝐶𝑡−1
(𝑓)

 while for the backward pass, 237 

ℎ𝑝𝑟𝑒𝑣 = ℎ𝑡+1
(𝑏)

 and 𝐶𝑝𝑟𝑒𝑣 = 𝐶𝑡+1
(𝑏)

 . 238 

 239 



This architecture enables the model to learn encoded features forward and backward, simultaneously 240 

processing information from past and future timesteps. This bidirectional approach is particularly 241 

advantageous in hydrological modeling, where river discharge at the next timestep (ti+1) can provide 242 

valuable context for improving prediction at the current timestep (ti). For instance, knowledge of 243 

future rainfall patterns can inform the model about potential changes in river discharge. 244 

Additionally, Bi-directional LSTMs have demonstrated superior prediction accuracy, efficiency, and 245 

stability in various applications (e.g., Ma et al., 2021; Atef and Eltawil, 2020; Siami-Namini, et al., 246 

2019; Althelaya et. al., 2018), underscoring their versatility and effectiveness in handling diverse 247 

time-series data, robustness to noise, and long-term trends than uni-directional LSTMs. Finally, the 248 

structure of Bi-LSTMs offers more opportunities to improve performance through epochs and 249 

hyperparameter tuning. Recognizing the importance of this bidirectional relationship, we employed 250 

the bidirectional LSTM network architecture for our experiments. 251 

To mitigate overfitting and enhance model generalizability, we employed several strategies. 252 

Regularization techniques (Bickel et al., 2006; Ghojogh & Crowley, 2019) impose constraints on the 253 

model’s coefficient estimates (learned parameters), effectively preventing it from overfitting the 254 

training data and improving its generalizability to new data. This is achieved by adding a penalty term 255 

to the loss function - the measure of how well the model fits the training data. The penalty term 256 

typically increases with the complexity of the model, thus incentivizing simpler models that 257 

generalize better to unseen data. Additionally, we utilized dropout layers (Hinton et al., 2012; Wager 258 

et al., 2013) between each LSTM layer. These dropout layers randomly drop a certain percentage of 259 

connections during training, effectively preventing individual neurons from becoming overly reliant 260 

on specific features in the training data. This stochasticity enhances model generalizability by 261 

encouraging it to learn more robust and transferable data representations. 262 

We opted for a bidirectional LSTM network with four layers. This architecture was chosen based on 263 

its ability to capture both temporal and spatial dependencies in the data, which is crucial for accurate 264 

hydrological modeling. Increasing the number of layers beyond four yielded minimal performance 265 

improvements, suggesting that the four-layer architecture was sufficient for capturing the relevant 266 

patterns in the data. Finally, we selected the Swish activation function (Ramachandran et al., 2017) 267 

for the output layer. This activation function has a smoother and more non-linear nature compared 268 

to ReLU - the most common activation function in ML, which enhances the flow of gradients 269 

through the network, contributing to improved performance. In addition to its computational 270 

efficiency, Swish also mitigates the dying ReLU problem, a phenomenon where ReLU neurons 271 



become inactive during training. By maintaining active neurons throughout the training process, 272 

Swish ensures that the network continues to learn and adapt. Furthermore, Swish offers efficiency 273 

advantages over ReLU, particularly when training deep neural networks with numerous layers, 274 

further reducing computational burdens. Overall, our hyperparameter tuning strategy and network 275 

architecture choices resulted in a robust and generalizable bidirectional LSTM model capable of 276 

accurately predicting hydrological time series. 277 

 278 

2.3. Experiment Design 279 

We hypothesize that an LSTM model trained with topologically organized distributed 280 

geomorphologic and hydrologic information should outperform the same LSTM that lumps the 281 

same training data. To this end, we estimate discharge in five ways: three experiments with identical 282 

ML models per Section 2.2 but with different organizations of the training data, and comparisons 283 

with two state-of-the-art approaches: an assimilation product (RADR- Feng et al., 2021) and a 284 

recently published LSTM model (PUB-LSTM- Kratzert et al., 2019). By organizing the training data 285 

consistently with topology, we aim to capture these spatial relationships and allow the ML model to 286 

learn more intricate patterns in the data. This approach differs from traditional methods that 287 

aggregate data into a single-point representation, which may lead to the loss of critical spatial 288 

information. 289 

2.3.1. Experiments and literature comparisons 290 

I. At-station experiment: We used dynamic and geomorphological static variables and 291 

climate data in a 25 km buffer around a given gauge station as input features to an ML 292 

model. These are the fewest possible data we can use to train any ML model that leverages 293 

temporal and spatial information encoded in historical data around a gauge station. 294 

II. Lumped experiment: In addition to leveraging local information around the river outlet 295 

(the at-station experiment), we included integrated aggregated climate data from the largest 296 

possible upstream basin. Therefore, this experiment has static and dynamic variables from 297 

the prediction reach and averaged upstream climatology. This represents the approach taken 298 

by Ouyang (2021), Feng (2020; 2021), Ma (2021), and Kratzert (2019a; 2019b), among 299 

others. 300 

III. Distributed experiment: Here, we expanded on the methodology used in experiments (I) 301 

and (II) by segmenting the upstream climate data according to the Strahler River order 302 



system. Although traditional clustering methods such as DBSCAN are better at clustering 303 

data (e.g., Brinkerhoff et al., 2020; Muhebwa et al., 2021), we chose the Strahler River 304 

ordering because it is an objective, consistent, and physically meaningful method for 305 

hierarchical clustering of hydrometeorological information, making it useful for various 306 

hydrological and geomorphological studies. This stratification was applied to dynamic 307 

variables in the entirety of the upstream basin. Thus, for a river system encompassing ‘n’ 308 

orders of upstream sub-basins, we introduced a more nuanced set of input features. 309 

Specifically, for each river order, we generated a distinct set of input features corresponding 310 

to each of the modeled hydrometeorological processes. The total number of additional 311 

input features was thus calculated as (n*x), where ‘x’ represents the total number of these 312 

processes. By averaging the data across all sub-basins per order (Figure 3), we were able to 313 

effectively capture the spatial variability of hydrological processes, resulting in more accurate 314 

river discharge predictions. The distributed approach aligns with those of Baroni et al. 315 

(2019) and Moore et. al. (1991), who emphasize the effectiveness of integrating data from 316 

various sources and considering spatial variability in hydrological processes, respectively. 317 

This method adheres to the principles of distributed data modeling, as it enhances river 318 

discharge prediction by incorporating the spatial distribution of hydrological processes, such 319 

as snowmelt, soil moisture, and evapotranspiration, across the watershed. 320 

IV. Comparison datasets: We compare our approach against off-the-shelf results from the 321 

RADR model and a re-implementation of the PUB-LSTM model. The RADR (Feng et al., 322 

2021) model was calibrated on data from 1984 to 1998 and assimilated with remotely sensed 323 

discharge data from 1984 to 2018 for the entire Arctic region (including the Mackenzie 324 

basin). Data assimilation in process-based modeling provides time-dependent distributed 325 

estimates that are updated whenever new data become available, i.e., the model’s states are 326 

updated in response to how it performs at a given time (McLaughlin, 1995; Clark et 327 

al.,2008). We also implemented the PUB-LSTM model defined in Kratzert (2019) – a state-328 

of-the-art unidirectional LSTM model. We trained this model with data defined in the 329 

lumped experiment but consolidated the data from all gauge stations into a single set 330 

(irrespective of the river order) before performing k-fold cross-validation. This means that 331 

each subset of stations in training/validation can contain data across any of the orders 4 to 332 

8. 333 



Our approach requires us to develop order-specific ML models given the rigid requirements for 334 

LSTM training. That is, each of our three ML experiments has five different LSTMs - one for each 335 

order from 4 to 8, as these orders contain sufficient training data. In order to apply our model to an 336 

ungauged basin, we would need first to identify the order of the river reach of interest and then 337 

select the appropriate order model to deploy. This means that our methods cannot predict flows in 338 

orders other than 4-8, but in return for this compromise, we can estimate flows quickly, efficiently, 339 

and accurately in ungauged basins, as shown below. Further, global datasets like those used to build 340 

our models already identify the order of all global rivers, so there is no additional computational 341 

burden on future users of these methods. 342 

2.3.2. Validation design and applicability to ungauged basins 343 

Our objective is to develop ML models that can accurately forecast daily river discharge in ungauged 344 

basins: watersheds lacking discharge monitoring stations (gauge stations). A standard approach in 345 

machine learning is to split the model’s input data into training and validation sets by a particular 346 

ratio (Wu et al., 2013; Rácz et al., 2021; Shen et al., 2022). This implies that training and validation 347 

occur on data from the same distribution, known as independent and identically distributed (IID) 348 

data, where each random variable follows the same probability distribution, and all variables are 349 

independent. Consequently, it is simple to train models that perform well on training and validation 350 

data but struggle to generalize effectively to unseen data, a phenomenon known as overfitting. 351 

However, our goal is to transfer hydrological knowledge to ungauged basins. Therefore, we employ 352 

cross-validation to assess the performance of our ML models. Cross-validation (Stone, 1987; Rao et 353 

al., 2008; Refaeilzadeh et al., 2009; Berrar, 2019) is a technique where multiple ML models are 354 

trained on subsets of the available input data and evaluated on complementary subsets of the same 355 

data. This introduces heterogeneity in the training data by repeated resampling, thereby improving 356 

the ability of models to generalize to previously unseen data. 357 

Since we use stream order as a unifying concept for our distributed modeling, we must build, train, 358 

and validate models that function per order. Previous studies (e.g., Feng et al., 2021; Kratzert el at., 359 

2019; Sun et al., 2021) have either treated training data as a single entity, thereby making it easier to 360 

implement out-of-sample testing using k-fold validation (dividing data into groups of approximately 361 

equal sizes) or splitting training data by a given percentage (e.g., 70/30 split) for models trained and 362 

tested on IID data. Conversely, different Strahler River orders in our training data have unequal 363 

gauge stations (Table 1), making it difficult to implement an identical k-fold validation strategy. The 364 



imbalance in data across different orders can result in model uncertainties. We mitigate this by 365 

combinatorial training data selection for individual models in each order and by maintaining an equal 366 

number of stations (x) in each training and validation subset. This strategy of organizing training 367 

data maintains a relatively consistent volume of training data across the entire data strata. Consider a 368 

stream order with n stations; we can create sets of all possible combinations of stations in that order 369 

where each set contains x stations where x is any arbitrary number less than n. We chose x=3 for 370 

our experiment as a tradeoff between the minimum number of stations in each order (orders 7 and 8 371 

each have 4 stations) and the computation time to train models for all subsets in each order. We 372 

then train a model on each subset and evaluate it on the complementary subsets of the same order. 373 

Therefore, in a basin with n=25 gauge stations, we try all combinations of x=3 training and (n-x)=22 374 

validation stations. For stations with many subsets, i.e., orders 4 to 6 (Table 1), we randomly select 375 

24 sets from all possible nCx combinations to balance model compute time with statistical 376 

representativeness. Preliminary experiments to increase the size of the sets from 24 to 50 and 100 377 

had no substantial improvement/degradation in model performance. Our results are presented as 378 

distributions of predictions across the complementary (validation) sets instead of reporting the 379 

results of individual or selected ML models that may perform particularly well or poorly at a gauge 380 

station. Therefore, the width of these distributions corresponds to the sensitivity of our three 381 

experiments to a particular combination of training/validation data. 382 

Note that orders 7 and 8 have sufficient data to train and test but insufficient data to cross-validate. 383 

Also, remember that we build per-order ML models; thus, the performances here reflect only rivers 384 

of that order. Finally, given the available gauge data in the Mackenzie, we cannot predict in orders 385 

below 4 and above 8. 386 

Table 1: Table showing the number of generated and contributed sets used for training in each 387 

Strahler River order. 388 

Strahler 

order 

Number of 

gauge stations 

(n) 

Number of 

training 

stations per 

set (x) 

Number of 

ungauged 

validation 

stations per 

set (n-x) 

Possible 

training/validatio

n combination 

sets 

( nCx) 

Number of 

selected sets 

used to report 

results 

4 25 3 22 2300 24 

5 23 3 21 1771 24 



6 13 3 10 286 24 

7 4 3 1 4 4 

8 4 3 1 4 4 

 389 

Ultimately and importantly, all results represent an ungauged case where validation is only done on 390 

the n-x stations not used in training and then tested in combinations per Table 1. This represents a 391 

common hydrologic situation where some gauge data are in a basin but not in areas where desired. 392 

Our methods would use the gauge data in hand, per order, to make estimates at all ungauged reaches 393 

of the basin of the same order. Here, we withhold gauge data to make that test, and each validation 394 

set, is completely independent of the others for a true ungauged case. 395 



 396 

Figure 3: Schematic representation of an order eight basin network. The red circle represents the location of a gauge station on the 397 

delineated basin’s outlet. At each hierarchical level, a single-order basin and its lower-order basins are selected (filled), while the 398 

remaining basins on the same level or not upstream of the selected basin within that level are ignored (hatched). This topological 399 

representation integrates the temporal-spatial variation of physical processes at different stages of a river network. 400 

2.4. Evaluation Metrics 401 

We report our results based on four major metrics used to evaluate the performance of discharge 402 

prediction models: Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), Nash-Sutcliffe Efficiency 403 

(NSE) (Nash & Sutcliffe, 1970), Relative Bias, and Normalized Root Mean Squared Error 404 

(NRMSE). 405 



 406 

KGE =  1 − √(γ − 1)2 +  (α − 1)2 +  (β − 1)2      (7) 407 

where 𝛾 is the Pearson correlation between observed and actual discharge, 𝛼 is the ratio of the 408 

standard deviation of actual vs. observed discharge, and 𝛽 is the ratio of the mean of observed vs. 409 

actual discharge. 410 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑖−𝑄𝑖

𝐼)
2𝑁

𝑖=1

∑ (𝑄𝑖−𝑄̅)2𝑁
𝑖=1

         (8) 411 

Where 𝑄𝑖 is the observed discharge at timestep 𝚤 and 𝑄𝑖
𝐼 is the simulated discharge at timestep 𝚤. 412 

These standard hydrology metrics assess different aspects of the hydrograph and errors in both 413 

timing and volume of water (e.g., Lin et al., 2019; Hagemann et al., 2017). 414 

3. Results 415 

Our experiments show that a distributed data modeling approach outperforms at-station and 416 

lumped approaches in training ML models for predicting discharge in ungauged basins. Figure 4 417 

illustrates this outcome by presenting cumulative distribution functions (CDFs) for KGE and NSE 418 

across the experiments defined in Section 2.3.1. Note that all results pertain to ungauged cases where 419 

validation is performed exclusively on the n-x stations not used for training and then tested in 420 

combinations as per Table 1. 421 



3.1. Predictions in Ungauged basins 422 

 423 

Figure 4: Cumulative distribution functions (CDFs) of NSE and KGE for defined experiments and selected benchmarks calculated 424 

from distributions across all Strahler River orders. Figures (I) and (II) compare the performance of models in the at-station and 425 

lumped experiments against the models trained with data from the distributed experiment. Figures (III) and (IV) compare the 426 

performance of models in the distributed experiment against two literature models: Feng et al. (2021) and Kratzert et al. (2019). A 427 

shift to the right indicates an improvement in model performance. Baseline models from the literature show lower skill than the ML 428 

here when all models perform poorly (−∞ < NSE&KGE ≤ 0.0) but better performance when all models have good predictions (0.5 429 

< NSE &KGE ≤ 1.0). The distributed model outperforms the at-station and lumped models across the entirety of the results. CDFs 430 

are preferred because they represent the overall model performance across the entire test dataset. 431 

Comparing results from at-station, lumped, and distributed experiments reveals that incorporating 432 

increasing amounts of upstream basin data universally enhances discharge estimation. In Figures 4(I) 433 

and (II), the rightward shift of the distributed experiment’s cumulative distribution function (CDF) 434 

curve relative to those of the at-station and lumped experiments indicates performance 435 

improvement. Order level-specific models trained with minimal data (at-station experiment) achieve 436 

77% positive NSE predictions and 92% positive KGE predictions. KGE and NSE values range 437 

between (−∞, 1]; positive values are generally desirable, while negative NSE values indicate that the 438 



mean of observed values is a better predictor than the predicted value. KGE is a more ‘forgiving’ 439 

metric that takes a value of -0.41 when the mean hydrograph is predicted (NSE scores 0 in this 440 

case), as shown by Knoben, Freer, & Woods (2019). Incorporating aggregated upstream basin 441 

information (lumped experiment) into model training yielded no significant performance 442 

improvement (P-value > 0.05). However, training the same models with topologically organized data 443 

(distributed modeling) led to a 6.4-point increase in mean NSE and a 9.8-point increase in mean 444 

KGE. 445 

 446 
Figure 5: Top to Bottom: Distribution comparisons of selected metrics on held-out predictions for at-station (I-IV), lumped (V-VII), 447 

and distributed (IX-XII) experiments. Note that distributions for seventh and eighth orders are not included due to the limited 448 

number of gauge stations in the training set. Figure S1 shows a distribution comparison across all experiments and literature models. 449 

When ML models were trained with the least possible data (at-station experiment), i.e., Figure 5(I)-450 

(IV), we observed a significant (p ≤ 0.05) improvement in median KGE from 0.38 to 0.61 as basin 451 

size increased from order 4 to order 6, which is observed across all experiments. NSE, however, was 452 

relatively constant across orders, with a noticeable increase in the interquartile range (IQR) for the 453 

largest order with ten stations. When we compared similar spatial orders across the three 454 

experiments (columns in Figure 5) - at-station, lumped, and distributed experiments - we observe an 455 

improvement in both NSE and KGE scores as orders increase and more information is added to 456 



the data modeling process. Consider Figures 5(I), (V), and (IX), KGE improved from 0.38 to 0.56 in 457 

the fourth order, 0.34 to 0.46 in the fifth order, and 0.61 to 0.69 in the sixth order, from at station to 458 

distributed experiments respectively. Likewise, we observe an equivalent improvement in NSE, i.e., 459 

Figures 5(II), (VI), and (X) from 0.42 to 0.48 in the fourth order, 0.34 to 0.47 in the fifth order, and 460 

0.29 to 0.60 in the sixth order. Additionally, these skill gains are accompanied by consistently 461 

unbiased predictions with negligible relative bias (RBias ≈ 0.0) across all models and orders. 462 

When we compare the performance of literature models on an order level basis (Figure S1), we 463 

observe a much more substantial improvement in performance as the number of sub-basins 464 

increases. The RADR model (Feng et al., 2021) had the most noticeable improvement in skill scores, 465 

with median KGE improving from 0.63 in the fourth order to 0.77 in the sixth order, while median 466 

NSE improved from 0.47 to 0.58 in the corresponding orders. On the other hand, Kratzert et al. 467 

(2019) demonstrated an improvement in KGE from 0.68 in the fourth order to 0.72 in the sixth 468 

order but a decline in NSE scores from 0.72 in the fourth order to 0.56 in the sixth order. 469 

We compare the results of the distributed experiment against model predictions of both a 470 

reimplementation of an ML model proposed by Kratzert et al. (2019) with minor modification and 471 

off-the-shelf results of a remote sensing data assimilation over the same basin and time from Feng et 472 

al. (2021), i.e., Figure 4(III)-(IV). Performance across all three methods was largely similar but with 473 

noticeable differences in ‘good’ and ‘bad’ regions of skill, which is more pronounced with the KGE 474 

metric (that rewards correlation per Eq. 1). The distributed modeling approach has 13% of all NSE 475 

values and 3% of all KGE values as negative predictions across the entire experiment, the Kratzert 476 

et al. model has 22% of all NSE values and 7% of KGE values as negative predictions across all 477 

orders, and the Feng et al. model has 28% of all NSE values and 13% of all KGE values as negative 478 

predictions across all Strahler river orders. Thus, the distributed LSTM we propose here produces 479 

fewer ‘bad’ hydrographs that are worse than the mean compared to the other two methods. 480 

However, when all models perform well, the two literature models outperform our LSTM, although 481 

performance is quite similar (p > 0.05). 482 



 483 

Figure 6: Representative hydrographs showing randomly selected models with 0.0 < NSE ≤ 0.6 in each of the experiments: At-station 484 

(left), lumped (middle), and distributed (right) experiments across the defined orders, i.e., from order 4 (top) to order 8 (bottom). 485 

Here, we plot hydrographs for the first 2.5 years. 486 

Figure 6 shows hydrographs of randomly selected ML models in orders 4 to 8 whose NSE scores lie 487 

between 0.0 and 0.6. Here, we use 0.0 < NSE ≤ 0.6 as a representative average performance range 488 

across the prediction distribution. Across individual experiments, the models’ confidence to re-489 

create discharge increases as sub-basins increase. For example, absolute relative bias (|RBIAS|) 490 

improves from 0.24 to 0.007 in the station experiment, 0.80 to 0.002 in the lumped experiment, and 491 



0.82 to 0.06 in the distributed experiments, as the number of sub-basins increases (i.e., from fourth 492 

to eight order). Note that as relative bias approaches zero, model predictions become increasingly 493 

unbiased and reliable, thereby enhancing the confidence and reliability with which they can inform 494 

impactful water management decisions. Nevertheless, notable differences in hydrographs remain 495 

across the defined experiments. Consider the fourth order across the three experiments, normalized 496 

root mean squared error (NRMSE) reduces from 0.17 in the at-station experiment to 0.09 in the 497 

distributed experiment, indicating an improvement in model performance in response to additional 498 

hydrological information in the training data. 499 

 500 
Figure 7: Left to right: Representative hydrographs showing the worst performing ML models in each of the experiments and the 501 

non-ML literature model; At station experiment, lumped experiment, distributed experiment, and RADR model (Feng et al., 2021) 502 

across the defined orders, i.e., from order 4 (top) to order 8 (bottom). The RADR model overestimates peak flows and underestimates 503 

base flows in lower orders. Here, we plot hydrographs for the first 2.5 years. 504 

Figure 7 represents hydrographs of worst-performing models with NSE scores below 0.0 (- <NSE 505 

0.0) across orders 4 to 8. This NSE range encompasses the entirety of potentially bad model 506 

predictions within the predicted discharge distribution, providing a comprehensive view of model 507 



shortcomings across the defined experiments. We observed that across all experiments, models 508 

within orders 4 and 5 demonstrated a significant difficulty in precisely reproducing discharge 509 

hydrographs, indicated by a high uncertainty in model predictions. Interestingly, higher-order 510 

models, specifically those of orders 7 and 8, exhibited a consistent ability to capture the underlying 511 

trend of the actual discharge despite persisting uncertainty in the finer details. The underwhelming 512 

performance of RADR models reinforces the observation in Figure 4: process-based models, while 513 

valuable for capturing established physical and hydrologic laws, often struggle to adapt to real-world 514 

scenarios marked by significant, unpredictable fluctuations; that is, their inflexible structure hinders 515 

their ability to adapt to these deviations, leading to less accurate discharge predictions. 516 

Different geographical and climatic regions have dominant physical processes at different temporal-517 

spatial scales. Results in section 3.1 showed that integrating this knowledge of temporal-spatial 518 

variations (distributed modeling) improved the discharge prediction of ML models. 519 

Earlier studies (e.g., Kahraman et al., 2021; Dey & Fuentes, 2020) showed that longer lookback 520 

windows with a longer ‘memory’ of past hydrologic conditions improve model performance. 521 

However, this performance improvement comes with increased computational power and time. To 522 

further evaluate the impact of the lookback window on model performance, we repeat experiments 523 

defined in section 2.3.1 with varying lookback window sizes of 30, 90, 180, and 270 days. Pairwise 524 

comparisons of distributions for both at-station and lumped experiments indicate that the size of the 525 

lookback window has no impact on model performance (P-value > .05). However, there is a 526 

significant difference between distributions of results for lookback pairs (30, 90), (30, 270) days of 527 

the distributed experiment (P-value ≤ .05). 528 

 529 

Figure 8: Left to right: Pairwise comparison of KGE distributions with varying lookback window sizes and corresponding statistical 530 

significance tests across the three experiments. Inter-experiment comparisons show that distributions of lookback for at-station and 531 

lumped experiments are similar. At the same time, there is an observable difference in the distributions of lookback windows of the 532 

distributed experiment. 533 



4. Discussion 534 

We confirm our hypothesis that distributed modeling outperforms lumped modeling for our 535 

architecture, but that by Kratzert et al’s (2019) lumped LSTM has superior performance to our 536 

distributed model when all models predict well. Our model outperformed the literature models 537 

when all models produced poor hydrographs (Figure 4, 7), and our skill scores have a much higher 538 

‘floor’ than the literature models. However, we have a lower ‘ceiling’ as well - the literature models' 539 

performance exceeds ours when all models perform well, although the difference between this study 540 

and the literature is much more pronounced at lower skill (where our results improve skill).  We 541 

attribute the superior performance of the Feng et al. RADR product at the high skill areas to three 542 

factors. First, RADR was calibrated on remotely sensed data drawn from the same distribution 543 

(independent and identically distributed data). Second, the model was assimilated on heterogeneous 544 

data from the entire Arctic region (as compared to our models trained on data from only the 545 

Mackenzie basin). Finally, the superior performance of process-based models can be attributed to 546 

their deep-rooted understanding of hydrologic, geomorphologic, and hydrometeorological 547 

processes. This comprehensive knowledge enables process-based models to effectively simulate the 548 

complex and interconnected interactions between various processes within a river basin. This 549 

theoretical foundation grounded in the principles of hydrology and river system dynamics not only 550 

enhances their predictive accuracy but also ensures the physical consistency and interpretability of 551 

the results. We attribute the Kratzert et al. model’s better performance to a different training strategy 552 

as compared to the distributed experiment. Whereas models in the distributed experiment were 553 

trained and validated on order-specific training data, the Kratzert et al. model used a k-fold 554 

validation strategy and trained on the entire spectrum of data (all 69 gauge stations), following the 555 

original model implementation proposed by the authors. This strategy ensured the model was 556 

trained on more diverse data, enhancing its generalization to previously unseen data. This also offers 557 

the advantage of enabling flow prediction for all rivers within the basin. However, in our study, we 558 

didn’t follow Kratzert et al. because our distributed experiment exhibits two notable advantages: 559 

first, when all models performed poorly (Figure 6), models in the distributed experiment still 560 

performed better than literature models. In general, we attribute poor performance (poor 561 

generalization) to limited training data, a reality for much of the world where training data are rare, 562 

nonexistent, or proprietary (Gleason & Smith, 2014). Second, acknowledging the influence of 563 

physical processes on the hydrologic cycle, the existence of these processes at different spatial 564 

resolutions, and their varying dominance across different geographical regions, order-specific models 565 



in the distributed experiment firmly integrate this hydrological knowledge in the data modeling 566 

process as compared to the literature models. One possible explanation of why models in the 567 

distributed experiment perform better when all models have low skill scores is that despite limited 568 

training data, these models are better than literature models at leveraging the high correlation 569 

between temporal-spatial variability and physical processes to extract meaningful patterns in the 570 

training data. This capability is particularly relevant when considering discharge estimation on a 571 

global scale, where well-hydrologically mapped regions are scarce. 572 

We also observe that while RADR has the highest skill score when all models perform well, it also 573 

has the lowest skill scores when all models generally perform poorly (Figures 4(III) and (IV)). One 574 

possible explanation is that process-based models, which rely heavily on established physical and 575 

hydrological principles, often struggle to adapt to poorly understood scenarios or environments with 576 

significant uncertainties. This limitation is further compounded by their potential inability to capture 577 

emergent phenomena and human impacts - complex interactions or patterns that arise 578 

spontaneously and are not yet fully understood or integrated into existing hydrologic theories. Thus, 579 

the scientific robustness of process-based models, while grounded in established principles, can 580 

inadvertently narrow their score, hindering their ability to dynamically adapt to and accurately model 581 

these evolving and multifaceted riverine environments. Thus, while each model possesses unique 582 

advantages, a distributed data modeling approach offers a more applicable and scalable solution for 583 

global-scale discharge estimation. 584 

Further, we observed that even the best-performing models in the at-station experiment (Figure S2) 585 

fail to recreate medium to high peak discharges by a considerable margin in the lower orders. This is 586 

not surprising, given that peak discharges are a function of events in the upstream basin, e.g., after 587 

maximum rain intensity or melting of accumulated snow (Volpi et al., 2018; Jones, 2000; Furey & 588 

Gupta, 2005; Kabeja et al., 2020), information that is not included in the training data. Indeed, the 589 

impact of the knowledge of events in the upstream basin becomes more prevalent as more 590 

information is added to the training data. This is visible in the hydrographs of both the lumped and 591 

distributed experiments in Figure 6 (average-performing) and Figure S2 (best-performing), in which 592 

models recreate most of the peak discharges (or miss them by a small margin). To verify this, we 593 

aggregated the top 10 peak flows of each station. We observed that the mean error of the best-594 

performing models across each experiment (defined as the average of the top 10 peaks in each 595 

order) reduced from 2901.58 m3s-1 in the lumped experiment to 2518.74 m3s-1 in the distributed 596 

experiment and observed a similar pattern between the same orders across the two experiments. 597 



We attribute the high correlation between pairs of lookback windows for both the at-station and 598 

lumped experiments to the fact that both experiments ignore spatial variations of events in the 599 

upstream basin (physical processes). On the other hand, we attributed the differences across the 600 

lookback window pairs of the distributed experiment to the integration of knowledge of both 601 

temporal and spatial variations of physical processes in the data modeling process, indicating that the 602 

impact of dominant physical processes on model performance is prevalent at different temporal-603 

spatial scales. We found that at various temporal scales (with similar spatial scales), a lookback of as 604 

little as 90 days was enough to capture temporal information encoded in the training data. As such, 605 

we saw no additional value in longer lookback windows, although this could be different for 606 

different geographical regions and data. 607 

We do not report individual skill scores of the seventh and eighth orders (Figure 5) due to the 608 

limited number of gauge stations (Table 1). Further, data availability limits the minimum number of 609 

gauge stations (x) to include in each subset, which reduces data heterogeneity for each order-specific 610 

model. For instance, on order 8, x=3 represents 75% of the data as training, while on order 4, x=3 611 

represents only 12% (Table 1). We chose to keep x constant instead of a constant train/test ratio 612 

because this allows sharing model hyper-parameters (and structure) and makes it easier to compare 613 

the results of models trained on the same number of gauge stations (x) across different orders of the 614 

same experiment. Finally, randomly selecting 24 subsets from all possible combinations for spatial 615 

resolutions with many gauge stations (Table 1) is not the best representation of complete data 616 

heterogeneity. However, we experimented with up to 100 validation sets and observed no substantial 617 

change in model performance. Future work could explore all possible combinations of training and 618 

testing and/or vary x to learn the effect of increasing the training sample. 619 

ML has demonstrated encouraging results in global river discharge predictions and holds the 620 

potential to address many existing challenges in hydrology (Shen, 2018; Nearing et al., 2021). 621 

However, these advancements have primarily relied on lumped data modeling techniques, which 622 

overlook the temporal-spatial variations of physical processes that govern the hydrologic cycle. We 623 

have demonstrated that incorporating this knowledge into training data modeling (via our 624 

distributed experiments) can further improve the performance of ML models, particularly for 625 

predictions in ungauged basins. Further, we have shown that even with limited data, a distributed 626 

modeling strategy could provide improved predictions (especially in ungauged basins) than any of 627 

the existing benchmarked models. We acknowledge that literature models from ML and hydrologic 628 

modeling represented by Kratzert et al. (2019) and Feng et al. (2021) offer unique advantages that 629 



can deepen our understanding of global discharge as a proxy for assessing the cascading impacts of 630 

climate change on water resources. Therefore, leveraging distributed modeling could further 631 

improve the performance of other ML approaches. 632 

5. Conclusion 633 

In this work, we have demonstrated the importance of distributed data modeling in improving the 634 

performance of ML models for discharge prediction in ungauged basins. Further, we leverage 635 

topologically guided river hierarchies as a proxy for understanding the impact of temporal resolution 636 

(lag window) on model performance, specifically examining how much historical context is 637 

necessary to improve model performance. We showed that as spatial resolution increases, model 638 

performance improves in response to granular hydrological information. This makes our proposed 639 

method more applicable for predicting discharge for most global river basins with limited to no data. 640 

Our experiments and results demonstrate the importance of integrating hydrological and 641 

geographical differences in the data modeling process, a notion that has, until now, been largely 642 

ignored when building data-driven hydrology models. With the recent launch of the SWOT mission 643 

that will provide more consistent and granular hydrological information on global rivers, our 644 

proposed approach has the potential to improve methods for predicting river discharge on a global 645 

scale and, as a result, explore the complex, cascading, and often hidden ways that climate change 646 

alters global water systems. However, while we did not specifically identify which physical processes 647 

are dominant at varying spatial scales, this opens up questions in future work on quantifying the 648 

temporal-spatial contribution of distinct features towards model performance and overall 649 

interpretability and explainability of ML models in hydrology and physical sciences in general. 650 
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 1050 

Figure S1: Left to right: Distribution comparisons of selected metrics on held-out predictions for all experiments (i.e., at-station, 1051 

lumped, and distributed experiments) and literature models: Kratzert et al. (2019) and Feng et al. (2021). Note that distributions for 1052 

seventh and eighth orders are not included due to the limited gauge stations in the training set. 1053 



 1054 

Figure S2: Left to right: Representative hydrographs showing the best performing models in each of the experiments; At-station (left), 1055 

lumped (middle), and distributed (right) experiments across the defined orders, i.e., from order 4 (top) to order 8 (bottom). Here, we 1056 

plot hydrographs for the first 2.5 years. 1057 

Table 2: Summary of variables used as input features to the LSTM model. 1058 

Variable name Description Unit 

Discharge In-situ daily river discharge at a gauge station m3s-1 

Albedo Albedo % 

Avg_Skin_Temp Average surface skin temperature K 



PlantCanopyWater Plant canopy surface water Kg/m2 

CanopyWaterEvpn Canopy water evaporation W/m2 

DirectEvonBareSoil Direct evaporation free bare soil W/m2 

Evapotranspn Evapotranspiration Kg/m2//s 

LngWaveRadFlux Downward long-wave radiation flux W/m2 

NetRadFlux Net long-wave radiation flux W/m2 

PotEvpnRate Potential Evaporation rate W/m2 

Pressure Pressure Pa 

SpecHmd Specific humidity kg/kg 

HeatFlux Heat flux W/m2 

Sen.HtFlux Sensible heat net flux W/m2 

LtHeat Latent heat net flux W/m2 

StmSurfRunoff Storm surface runoff kg/m2 

BsGndWtrRunoff Baseflow-groundwater runoff kg/m2 

SnowMelt Snow melt kg/m2 

TotalPcpRate Total precipitation rate kg/m2/s 

RainPcpRate Rain precipitation rate kg/m2/s 

RootZoneSoilMstr Root zone soil moisture kg/m2 

SnowDepthWtrEq Snow depth water Equivalent W/m2 

DwdShtWvRadFlux Downward short-wave radiation flux m 

SnowDepth Snow depth kg/m2/s 

SnowPcpRate Snow precipitation rate kg/m2 

SoilMst10 Soil moisture (0-10) cm kg/m2 

SoilMst40 Soil moisture (10-40) cm kg/m2 

SoilMst100 Soil moisture (40-100) cm kg/m2 

SoilMst200 Soil moisture (100-200) cm kg/m2 

SoilTmp10 Soil temperature (0-10) cm K 

SoilTmp40 Soil temperature (10-40) cm K 

SoilTmp100 Soil temperature (40-100) cm K 

SoilTmp200 Soil temperature (100-200) cm K 

NetShtWvRadFlux Net short wave radiation flux W/m2 

AirTemp Air temperature K 

Tspn Transpiration W/m2 

WindSpd Windspeed m/s 

 Reach width  

 Stream length  

 Bed slope  

 Sinuosity  

 Upstream Area  

 Length Dir  

 Stream Drop  



 Mean width  

 Max Width  
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