REFERENCES
Achuo, E. A., Prinsen, E. & Hofte, M. Influence of drought, salt stress
and abscisic acid on the resistance of tomato to Botrytis cinerea and
Oidium neolycopersici. Plant Pathology 55 , 178–186
(2006).
Adavi, S. B. & Sathee, L. Elevated CO2 alters tissue
balance of nitrogen metabolism and downregulates nitrogen assimilation
and signalling gene expression in wheat seedlings receiving high nitrate
supply. Protoplasma 258 , 219–233 (2021).
Adie, B. A. T. et al. ABA Is an Essential Signal for Plant
Resistance to Pathogens Affecting JA Biosynthesis and the Activation of
Defenses in Arabidopsis . The Plant Cell 19 ,
1665–1681 (2007).
Ahlfors, R., Brosché, M., Kollist, H. & Kangasjärvi, J. Nitric oxide
modulates ozone-induced cell death, hormone biosynthesis and gene
expression in Arabidopsis thaliana : NO modulates
O3 responses. The Plant Journal 58 ,
1–12 (2009).
Ahlfors, R. et al. Arabidopsis RADICAL-INDUCED CELL DEATH1
Belongs to the WWE Protein–Protein Interaction Domain Protein Family
and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses.Plant Cell 16 , 1925–1937 (2004).
Ainsworth, E. A., Rogers, A., Nelson, R. & Long, S. P. Testing the
“source–sink” hypothesis of down-regulation of photosynthesis in
elevated [CO2] in the field with single gene
substitutions in Glycine max. Agricultural and Forest Meteorology122 , 85–94 (2004).
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson,
L. D. The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change. 27 (2012).
Ainsworth, E. A. Rice production in a changing climate: a meta-analysis
of responses to elevated carbon dioxide and elevated ozone
concentration: META-ANALYSIS OF RICE RESPONSES TO GLOBAL CHANGE.Global Change Biology 14 , 1642–1650 (2008).
Ainsworth, E. A. Understanding and improving global crop response to
ozone pollution. Plant J 90 , 886–897 (2017).
Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & Long, S. P. FACE‐ing
the facts: inconsistencies and interdependence among field, chamber and
modeling studies of elevated [CO2] impacts on crop
yield and food supply. New Phytologist 179 , 5–9 (2008).
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of
free‐air CO2 enrichment (FACE)? A meta‐analytic review
of the responses of photosynthesis, canopy properties and plant
production to rising CO 2. New Phytologist165 , 351–372 (2005).
Ainsworth, E. A. & Long, S. P. 30 years of free‐air carbon dioxide
enrichment (FACE): What have we learned about future crop productivity
and its potential for adaptation? Glob. Change Biol. 27 ,
27–49 (2020).
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and
stomatal conductance to rising [CO2]: mechanisms and
environmental interactions: Photosynthesis and stomatal conductance
responses to rising [CO2]. Plant, Cell &
Environment 30 , 258–270 (2007).
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson,
L. D. The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change. Annu. Rev. Plant Biol.63 , 637–661 (2012).
Akimoto-Tomiyama, C., Tanabe, S., Kajiwara, H., Minami, E. & Ochiai, H.
Loss of chloroplast-localized protein phosphatase 2Cs inArabidopsis thaliana leads to enhancement of plant immunity and
resistance to Xanthomonas campestris pv. campestrisinfection: Loss of chloroplast PP2Cs enhances immunity. Molecular
Plant Pathology 19 , 1184–1195 (2018).
Ambavaram, M. M. R. et al. Coordinated regulation of
photosynthesis in rice increases yield and tolerance to environmental
stress. Nat Commun 5 , 5302 (2014).
Anderson, J. P. et al. Antagonistic Interaction between Abscisic
Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene
Expression and Disease Resistance in Arabidopsis. Plant Cell16 , 3460–3479 (2004).
Anfoka, G. et al. Tomato yellow leaf curl virus infection
mitigates the heat stress response of plants grown at high temperatures.Sci Rep 6 , 19715 (2016).
Aranjuelo, I. et al. Harvest index, a parameter conditioning
responsiveness of wheat plants to elevated CO2. Journal of
Experimental Botany 64 , 1879–1892 (2013).
Ashmore, M. R. Assessing the future global impacts of ozone on
vegetation. Plant Cell Environ 28 , 949–964 (2005).
Ashraf, M. & Akram, N. A. Improving salinity tolerance of plants
through conventional breeding and genetic engineering: An analytical
comparison. Biotechnology Advances 27 , 744–752 (2009).
Asrar, A.-W. A. & Elhindi, K. M. Alleviation of drought stress of
marigold (Tagetes erecta ) plants by using arbuscular mycorrhizal
fungi. Saudi Journal of Biological Sciences 18 , 93–98
(2011).
Atkinson NJ & Urwin PE. The interaction of plant biotic and abiotic
stresses: from genes to the field. Journal of Experimental Botany63 , 3523–3544 (2012).
Avnery, S, Mauzerall, DL, Liu, J, & Horowtiz, LW. Global crop yield
reductions due to surface ozone exposure: 1. Year 2000 crop production
losses and economic damage. Atmospheric Environment 45 ,
2284–2296 (2011).
Baillo, Kimotho, Zhang, & Xu. Transcription Factors Associated with
Abiotic and Biotic Stress Tolerance and Their Potential for Crops
Improvement. Genes 10 , 771 (2019).
Bartels, D. & Sunkar, R. Drought and Salt Tolerance in Plants.Critical Reviews in Plant Sciences 24 , 23–58 (2005).
Batley, J. & Edwards, D. The application of genomics and bioinformatics
to accelerate crop improvement in a changing climate. Current
Opinion in Plant Biology 30 , 78–81 (2016).
Battisti, David. S. & Naylor, R. L. Historical Warnings of Future Food
Insecurity with Unprecedented Seasonal Heat. Science323 , 240–244 (2009).
Beattie, G. A. Water Relations in the Interaction of Foliar Bacterial
Pathogens with Plants. Annu. Rev. Phytopathol. 49 ,
533–555 (2011).
Berens, M. L. et al. Balancing trade-offs between biotic and
abiotic stress responses through leaf age-dependent variation in stress
hormone cross-talk. Proc. Natl. Acad. Sci. U.S.A. 116 ,
2364–2373 (2019).
Bernacchi, C. J., Kimball, B. A., Quarles, D. R., Long, S. P. & Ort, D.
R. Decreases in Stomatal Conductance of Soybean under Open-Air Elevation
of [CO2] Are Closely Coupled with Decreases in
Ecosystem Evapotranspiration. Plant Physiology 143 ,
134–144 (2007).
Bi, H. et al. The impact of drought on wheat leaf cuticle
properties. BMC Plant Biol 17 , 85 (2017).
Bilgin, D. D. et al. Biotic stress globally downregulates
photosynthesis genes: Biotic stress downregulates photosynthesis.Plant, Cell & Environment 33 , 1597–1613 (2010).
Bishop, K. A., Betzelberger, A. M., Long, S. P. & Ainsworth, E. A. Is
there potential to adapt soybean (Glycine max Merr.) to future
[CO2]? An analysis of the yield response of 18
genotypes in free-air CO2 enrichment: Variation in
soybean response to elevated [CO2]. Plant Cell
Environ 38 , 1765–1774 (2015).
Black, V. J., Black, C. R., Roberts, J. A. & Stewart, C. A. Tansley
Review No. 115: Impact of ozone on the reproductive development of
plants. New Phytologist 147 , 421–447 (2000).
Bloom, A. J., Kasemsap, P. & Rubio‐Asensio, J. S. Rising atmospheric
CO2 concentration inhibits nitrate assimilation in
shoots but enhances it in roots of C3 plants.Physiol Plantarum 168 , 963–972 (2020).
Booker, F. et al. The Ozone Component of Global Change: Potential
Effects on Agricultural and Horticultural Plant Yield, Product Quality
and Interactions with Invasive Species. Journal of Integrative
Plant Biology 51 , 337–351 (2009).
Buckley, T. N. How do stomata respond to water status? New Phytol224 , 21–36 (2019).
Campos, M. L. et al. Rewiring of jasmonate and phytochrome B
signalling uncouples plant growth-defense tradeoffs. Nat Commun7 , 12570 (2016).
Casson, S. & Gray, J. E. Influence of environmental factors on stomatal
development. New Phytologist 178 , 9–23 (2008).
Caviness, C. E. & Fagala, B. L. Influence of Temperature on a Partially
Male‐Sterile Soybean Strain. Crop Sci. 13 , 503–504
(1973).
CSP, 20 0 8: The effects of climate change on agriculture, land
resources, water resources, and biodiversity. A Report by the U.S.
Climate Change Science Program and the Subcommittee on Global Change
Research. P. Backlund, A. Janetos, D. Schimel, J. Hatfield, K. Boote, P.
Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort,
W. Polley, A. Thomson, D. Wolfe, M. Ryan, S. Archer, R. Birdsey, C.
Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J.
Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S.
Running, L. Hansen, D. Inouye, B.P. Kelly, L Meyerson, B. Peterson, R.
Shaw. U.S. Environmental Protection Agency, Washington, DC., USA, 362 pp
Challinor, A. J. et al. A meta-analysis of crop yield under
climate change and adaptation. Nature Clim Change 4 ,
287–291 (2014).
Chen, Y. et al. The Role of the Late Embryogenesis-Abundant (LEA)
Protein Family in Development and the Abiotic Stress Response: A
Comprehensive Expression Analysis of Potato (Solanum tuberosum ).Genes 10 , 148 (2019).
Chiou, T.-J. et al. Regulation of Phosphate Homeostasis by
MicroRNA in Arabidopsis . The Plant Cell 18 ,
412–421 (2006).
Choudhary, A. & Senthil‐Kumar, M. Drought attenuates plant defence
against bacterial pathogens by suppressing the expression ofCBP60g / SARD1 during combined stress. Plant Cell &
Environment 45 , 1127–1145 (2021).
Cisternas, I., Velásquez, I., Caro, A. & Rodríguez, A. Systematic
literature review of implementations of precision agriculture.Computers and Electronics in Agriculture 176 , 105626
(2020).
Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R.
Meta‐analysis of drought and heat stress combination impact on crop
yield and yield components. Physiol Plantarum 171 ,
66–76 (2021).
Cohen, S. P. & Leach, J. E. High temperature-induced plant disease
susceptibility: more than the sum of its parts. Current Opinion in
Plant Biology 56 , 235–241 (2020).
Colhoun, J. Effects of Environmental Factors on Plant Disease.Annu. Rev. Phytopathol. 11 , 343–364 (1973).
Coolen, S. et al. Transcriptome dynamics of Arabidopsis during
sequential biotic and abiotic stresses. Plant J 86 ,
249–267 (2016).
Cushman, J. C., Denby, K. & Mittler, R. Plant responses and adaptations
to a changing climate. The Plant Journal 109 , 319–322
(2022).
Cruz-Mireles, N., Eisermann, I., Garduño-Rosales, M., Molinari, C.,
Ryder, L.S., Tang, B., Yan, X., Talbot, N.J.The Biology of Invasive
Growth by the Rice Blast Fungus Magnaporthe oryzae . Methods
Mol Biol 2356 :19-40 (2021).
Czajkowski, R., Kaczyńska, N., Jafra, S., Narajczyk, M. & Lojkowska, E.
Temperature-responsive genetic loci in pectinolytic plant pathogenicDickeya solani . Plant Pathol 66 , 584–594 (2017).
Dalal, V. K. & Tripathy, B. C. Water-stress induced downsizing of
light-harvesting antenna complex protects developing rice seedlings from
photo-oxidative damage. Sci Rep 8 , 5955 (2018).
Davila Olivas, N. H. et al. Genome‐wide association analysis
reveals distinct genetic architectures for single and combined stress
responses in Arabidopsis thaliana . New Phytol213 , 838–851 (2017).
1.
de Carvalho, K., de Campos, M. K. F., Domingues, D. S., Pereira, L. F.
P. & Vieira, L. G. E. The accumulation of endogenous proline induces
changes in gene expression of several antioxidant enzymes in leaves of
transgenic Swingle citrumelo. Mol Biol Rep 40 ,
3269–3279 (2013).
Desaint, H. et al. Fight hard or die trying: when plants face
pathogens under heat stress. New Phytol 229 , 712–734
(2020).
Dossa, K. et al. Depicting the Core Transcriptome Modulating
Multiple Abiotic Stresses Responses in Sesame (Sesamum indicumL.). IJMS 20 , 3930 (2019).
Dresselhaus, T. & Hückelhoven, R. Biotic and Abiotic Stress Responses
in Crop Plants. Agronomy 8 , 267 (2018).
Duniway JM. Changes in resistance to water transport in safflower during
the development of phytophthora root rot. Physiology and
Biochemistry 67 , 331–337 (1977).
Dutilleul, C. et al. Leaf Mitochondria Modulate Whole Cell Redox
Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance
through Altered Signaling and Diurnal Regulation. Plant Cell15 , 1212–1226 (2003).
Eastburn, D. M., McElrone, A. J. & Bilgin, D. D. Influence of
atmospheric and climatic change on plant-pathogen interactions: Climatic
change and host-pathogen interactions. Plant Pathology60 , 54–69 (2011).
Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O. &
Mcelrone, A. J. Elevated atmospheric carbon dioxide and ozone alter
soybean diseases at SoyFACE. Global Change Biology 16 ,
320–330 (2010).
Ebi, K. L. et al. Nutritional quality of crops in a high
CO2 world: an agenda for research and technology
development. Environ. Res. Lett. 16 , 064045 (2021).
Ebi, K. L. & Loladze, I. Elevated atmospheric CO2concentrations and climate change will affect our food’s quality and
quantity. The Lancet Planetary Health 3 , e283–e284
(2019).
English-Loeb, G., Stout, M. J. & Duffey, S. S. Drought Stress in
Tomatoes: Changes in Plant Chemistry and Potential Nonlinear
Consequences for Insect Herbivores. Oikos 79 , 456
(1997).
Erpen, L., Devi, H. S., Grosser, J. W. & Dutt, M. Potential use of the
DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and
biotic stress in transgenic plants. Plant Cell Tiss Organ Cult132 , 1–25 (2018).
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A.
Plant drought stress: effects, mechanisms and management. Agron.
Sustain. Dev. 29 , 185–212 (2009).
Feng, Z., Kobayashi, K. & Ainsworth, E. A. Impact of elevated ozone
concentration on growth, physiology, and yield of wheat (Triticum
aestivum L.): a meta-analysis. Global Change Biology14 , 2696–2708 (2008).
Figueroa-Macías, J. P. et al. Plant Growth-Defense Trade-Offs:
Molecular Processes Leading to Physiological Changes. IJMS22 , 693 (2021).
Fischer, G., Shah, M., N. Tubiello, F. & van Velhuizen, H.
Socio-economic and climate change impacts on agriculture: an integrated
assessment, 1990–2080. Phil. Trans. R. Soc. B 360 ,
2067–2083 (2005).
Franks, S. J. & Hoffmann, A. A. Genetics of Climate Change Adaptation.Annu. Rev. Genet. 46 , 185–208 (2012).
Freeman, B. C. & Beattie, G. A. Bacterial Growth Restriction During
Host Resistance to Pseudomonas syringae Is Associated with Leaf
Water Loss and Localized Cessation of Vascular Activity inArabidopsis thaliana . MPMI 22 , 857–867 (2009).
Friedel, S., Usadel, B., von Wirén, N. & Sreenivasulu, N. Reverse
Engineering: A Key Component of Systems Biology to Unravel Global
Abiotic Stress Cross-Talk. Front. Plant Sci. 3 , (2012).
Fuhrer, J. Ozone risk for crops and pastures in present and future
climates. Naturwissenschaften 96 , 173–194 (2009).
Fujii, H., Chiou, T.-J., Lin, S.-I., Aung, K. & Zhu, J.-K. A miRNA
Involved in Phosphate-Starvation Response in Arabidopsis. Current
Biology 15 , 2038–2043 (2005).
Fujita, M. et al. Crosstalk between abiotic and biotic stress
responses: a current view from the points of convergence in the stress
signaling networks. Current Opinion in Plant Biology 9 ,
436–442 (2006).
Fukuoka, S. et al. Gene pyramiding enhances durable blast disease
resistance in rice. Sci Rep 5 , 7773 (2015).
Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S.
E. Climate Change Effects on Plant Disease: Genomes to Ecosystems. 23
(2006).
Garrett, K. A. et al. Climate Change Effects on Pathogen
Emergence: Artificial Intelligence to Translate Big Data for Mitigation.Annu. Rev. Phytopathol. 60 , 357–378 (2022).
Goel, A. K. et al. The Pseudomonas syringae Type III
Effector HopAM1 Enhances Virulence on Water-Stressed Plants. MPMI21 , 361–370 (2008).
Gojon, A. et al. Approaches and determinants to sustainably
improve crop production. Food and Energy Security (2022)
doi:10.1002/fes3.369.
GLM-NOAA (2022). Global Monitoring Laboratory. Accessed September 29th,
2022.https://gml.noaa.gov/ccgg/trends/global.html.
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of
plant responses to drought. Science 368 , 266–269
(2020).
Gray, S. B. et al. Intensifying drought eliminates the expected
benefits of elevated carbon dioxide for soybean. Nature Plants2 , 16132 (2016).
Grimes, H. D., Perkins, K. K. & Boss, W. F. Ozone Degrades into
Hydroxyl Radical under Physiological Conditions: A Spin Trapping Study.Plant Physiol. 72 , 1016–1020 (1983).
Grimmer, M. K., Foulkes, M. J. & Paveley, N. D. Foliar pathogenesis and
plant water relations: a review. 63 , 4321–4331 (2012).
Grulke, N. E. & Heath, R. L. Ozone effects on plants in natural
ecosystems. Plant Biol J 22 , 12–37 (2020).
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of
plant responses to drought. Science 368 , 266–269
(2020).
Hacquard, S., Wang, E., Slater, H. & Martin, F. Impact of global change
on the plant microbiome. New Phytologist 234 , 1907–1909
(2022).
Hatfield, J. L. et al. Climate Impacts on Agriculture:
Implications for Crop Production. Agron.j. 103 , 351–370
(2011).
Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant
growth and development. Weather and Climate Extremes 10 ,
4–10 (2015).
Heath, Robert L (1987) The biochemistry of ozone attack on the plasma
membrane of plant cells. Phytochemical effects of environmental
compounds . Springer, Boston, MA, 1987. 29-54.
Herms, D. A. & Mattson, W. J. The Dilemma of Plants: To Grow or Defend.The Quarterly Review of Biology 67 , 283–335 (1992).
Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Drought-induced xylem
pit membrane damage in aspen and balsam poplar: Drought-induced xylem
pit membrane damage. Plant, Cell & Environment 39 ,
2210–2220 (2016).
Hu, S. et al. Response of rice growth and leaf physiology to
elevated CO2 concentrations: A meta-analysis of 20-year
FACE studies. Science of The Total Environment 807 ,
151017 (2022).
Huang, X., Li, J., Bao, F., Zhang, X. & Yang, S. A Gain-of-Function
Mutation in the Arabidopsis Disease Resistance Gene RPP4 Confers
Sensitivity to Low Temperature. Plant Physiology 154 ,
796–809 (2010).
Huang, Z. et al. Genome-Wide Identification, Characterization,
and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late
Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys
edulis ). PLoS ONE 11 , e0165953 (2016).
Huot, B. et al. Dual impact of elevated temperature on plant
defense and bacterial virulence in Arabidopsis. Nat Commun8 , 1808 (2017).
Ijaz, S., Sadaqat, H. A. & Khan, M. N. A review of the impact of
charcoal rot (Macrophomina phaseolina ) on sunflower. J.
Agric. Sci. 151 , 222–227 (2013).
IPCC, 2021: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.
Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews,
T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA.
Janda, M. et al. Temporary heat stress suppresses PAMP‐triggered
immunity and resistance to bacteria in Arabidopsis thaliana .Molecular Plant Pathology 20 , 1005–1012 (2019).
Kangasjarvi, J., Talvinen, J., Utriainen, M. & Karjalainen, R. Plant
defence systems induced by ozone. Plant Cell Environ 17 ,
783–794 (1994).
Karnosky, D. F. et al. Interacting elevated CO 2and tropospheric O 3 predisposes aspen (Populus
tremuloides Michx.) to infection by rust (Melampsora medusae f.
sp. tremuloidae ). Global Change Biology 8 ,
329–338 (2002).
Kerr, A. The Influence of Soil Moisture on Infection of Peas by Pythium
Ultimum. Aust. Jnl. Of Bio. Sci. 17 , 676 (1964).
Khan, N., Bano, A., Ali, S. & Babar, Md. A. Crosstalk amongst
phytohormones from planta and PGPR under biotic and abiotic stresses.Plant Growth Regul 90 , 189–203 (2020).
Kim, S. G., Kim, K. W., Park, E. W. & Choi, D. Silicon-Induced Cell
Wall Fortification of Rice Leaves: A Possible Cellular Mechanism of
Enhanced Host Resistance to Blast. Phytopathology 92 ,
1095–1103 (2002).
104.
Kissoudis, C., van de Wiel, C., Visser, R. G. F. & van der Linden, G.
Enhancing crop resilience to combined abiotic and biotic stress through
the dissection of physiological and molecular crosstalk. Front.
Plant Sci. 5 , (2014).
Kobayashi, K. Role of membrane glycerolipids in photosynthesis,
thylakoid biogenesis and chloroplast development. J Plant Res129 , 565–580 (2016).
Kobayashi, T. et al. Effects of Elevated Atmospheric
CO2 Concentration on the Infection of Rice Blast and
Sheath Blight. Phytopathology® 96 , 425–431 (2006).
Köhler, I. H., Huber, S. C., Bernacchi, C. J. & Baxter, I. R. Increased
temperatures may safeguard the nutritional quality of crops under future
elevated CO 2 concentrations. Plant J97 , 872–886 (2019).
Kole, C. et al. Application of genomics-assisted breeding for
generation of climate resilient crops: progress and prospects.Front. Plant Sci. 6 , (2015).
Kole, C. & Prasad, M. Application of genomics-assisted breeding for
generation of climate resilient crops: progress and prospects.Frontiers in Plant Science 6 , 16 (2015).
Ku, Y.-S., Sintaha, M., Cheung, M.-Y. & Lam, H.-M. Plant Hormone
Signaling Crosstalks between Biotic and Abiotic Stress Responses.IJMS 19 , 3206 (2018).
Kulcheski, F. R. et al. Identification of novel soybean microRNAs
involved in abiotic and biotic stresses. BMC Genomics12 , 307 (2011).
Kumar, A., Li, C. & Portis, A. R. Arabidopsis thaliana expressing a
thermostable chimeric Rubisco activase exhibits enhanced growth and
higher rates of photosynthesis at moderately high temperatures.Photosynth Res 100 , 143–153 (2009).
Kurek, I. et al. Enhanced Thermostability of ArabidopsisRubisco Activase Improves Photosynthesis and Growth Rates under Moderate
Heat Stress. Plant Cell 19 , 3230–3241 (2007).
Ladjal, M., Huc, R. & Ducrey, M. Drought effects on hydraulic
conductivity and xylem vulnerability to embolism in diverse species and
provenances of Mediterranean cedars. Tree Physiology 25 ,
1109–1117 (2005).
Lal, R. et al. Adapting agriculture to drought and extreme
events. Journal of Soil and Water Conservation 67 ,
162A-166A (2012).
Laurence JA & Wood FA. Effects of ozone on infection of soybean byPseudomonas glycinea . Ecology and Epidemiology68 , 441–445 (1978).
Leakey, A. D. B. et al. Elevated CO2 effects on
plant carbon, nitrogen, and water relations: six important lessons from
FACE. Journal of Experimental Botany 60 , 2859–2876
(2009).
Leisner, C. P. Review: Climate change impacts on food security- focus on
perennial cropping systems and nutritional value. Plant Science293 , 110412 (2020).
Leisner, C. P. & Ainsworth, E. A. Quantifying the effects of ozone on
plant reproductive growth and development. Glob Change Biol18 , 606–616 (2012).
León, P., Sheen J. Sugar and hormone connections. Trends in Plant
Science 8 , 110–116 (2003).
Li, S. et al. Coordination of leaf hydraulic, anatomical, and
economical traits in tomato seedlings acclimation to long-term drought.BMC Plant Biol 21 , 536 (2021).
Li, X. et al. Tomato-Pseudomonas syringae interactions
under elevated CO2 concentration: the role of stomata.Journal of Experimental Botany 66 , 307–316 (2015).
Li, Z. et al. Low Temperature Enhances Plant Immunity via
Salicylic Acid Pathway Genes That Are Repressed by Ethylene. Plant
Physiol. 182 , 626–639 (2020).
Lindow, S. E. & Brandl, M. T. Microbiology of the Phyllosphere.APPL. ENVIRON. MICROBIOL. 69 , 9 (2003).
Liu, F., Jensen, C. R. & Andersen, M. N. Drought stress effect on
carbohydrate concentration in soybean leaves and pods during early
reproductive development: its implication in altering pod set.Field Crops Research 86 , 1–13 (2004).
Liu, L.-L. et al. ALDH2C4 regulates cuticle thickness and reduces
water loss to promote drought tolerance. Plant Science323 , 111405 (2022).
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate Trends and
Global Crop Production Since 1980. 333 , 6 (2011).
Loladze, I., Nolan, J. M., Ziska, L. H. & Knobbe, A. R. Rising
Atmospheric CO 2 Lowers Concentrations of Plant
Carotenoids Essential to Human Health: A Meta‐Analysis. Mol. Nutr.
Food Res. 63 , 1801047 (2019).
Ludwig, A. A. et al. Ethylene-mediated cross-talk between
calcium-dependent protein kinase and MAPK signaling controls stress
responses in plants. Proc. Natl. Acad. Sci. U.S.A. 102 ,
10736–10741 (2005).
Mayek-PÉrez, N., GarcÍa-Espinosa, R., LÓpez-CastaÑeda, Cá.,
Acosta-Gallegos, J. A. & Simpson, J. Water relations, histopathology
and growth of common bean (Phaseolus vulgaris L.) during pathogenesis ofMacrophomina phaseolina under drought stress. Physiological
and Molecular Plant Pathology 60 , 185–195 (2002).
Mcgrath, J. M. & Lobell, D. B. Reduction of transpiration and altered
nutrient allocation contribute to nutrient decline of crops grown in
elevated CO2 concentrations: Nutrient decline mechanisms
in CO2. Plant, Cell & Environment 36 ,
697–705 (2013).
Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S. Y. Plant
Stomata Function in Innate Immunity against Bacterial Invasion.Cell 126 , 969–980 (2006).
Mikkelsen, B. L., Jørgensen, R. B. & Lyngkjaer, M. F. Complex interplay
of future climate levels of CO2, ozone and temperature
on susceptibility to fungal diseases in barley. Plant Pathol64 , 319–327 (2015).
Mittler, R. Abiotic stress, the field environment and stress
combination. Trends in Plant Science 11 , 15–19 (2006).
Mittler, R. & Blumwald, E. Genetic Engineering for Modern Agriculture:
Challenges and Perspectives. Annu. Rev. Plant Biol. 61 ,
443–462 (2010).
Mohr, P. G. & Cahill, D. M. Abscisic acid influences the susceptibility
of Arabidopsis thaliana to Pseudomonas syringae pv. tomato
and Peronospora parasitica . Functional Plant Biol.30 , 461 (2003).
Mohr, P. G. & Cahill, D. M. Suppression by ABA of salicylic acid and
lignin accumulation and the expression of multiple genes, in Arabidopsis
infected with Pseudomonas syringae pv. tomato. Funct Integr
Genomics 7 , 181–191 (2007).
Monks, P. S. et al. Tropospheric ozone and its precursors from
the urban to the global scale from air quality to short-lived climate
forcer. Atmos. Chem. Phys. 15 , 8889–8973 (2015).
Montes, C. M., Demler, H. J., Li, S., Martin, D. G. & Ainsworth, E. A.
Approaches to investigate crop responses to ozone pollution: from
O3‐FACE to satellite‐enabled modeling. The Plant
Journal 109 , 432–446 (2022).
Moore, C. E. et al. The effect of increasing temperature on crop
photosynthesis: from enzymes to ecosystems. Journal of
Experimental Botany 72 , 2822–2844 (2021).
Morales, M. & Munné-Bosch, S. Oxidative Stress: A Master Regulator of
Plant Trade-Offs? Trends in Plant Science 21 , 996–999
(2016).
Morgan, P. B., Ainsworth, E. A. & Long, S. P. How does elevated ozone
impact soybean? A meta-analysis of photosynthesis, growth and yield:
Impact of elevated ozone on soybean. Plant, Cell & Environment26 , 1317–1328 (2003).
Mudd, JB. Biochemical reactions of ozone in plants. In: Proceedings of
the International Sympoisum on Air Pollution and Climate Change Effects
on Forest Ecosystems. (1998).
Mullineaux, P. M., et al . Arabidopsis HEAT SHOCK TRANSCRIPTION
FACTOR 1b is a major determinant of seed yield and constitutively
regulates basal resistance to abiotic and biotic stresses. Society
for Experimental Biology Annual Main Meeting . Glasgow, UK. (2011).
Myers, S. S. et al. Increasing CO2 threatens
human nutrition. Nature 510 , 139–142 (2014).
Nejat, N. & Mantri, N. Plant Immune System: Crosstalk Between Responses
to Biotic and Abiotic Stresses the Missing Link in Understanding Plant
Defense. Current Issues in Molecular Biology 1–16 (2017).
Newman, K. L., Almeida, R. P. P., Purcell, A. H. & Lindow, S. E. Use of
a Green Fluorescent Strain for Analysis of Xylella fastidiosaColonization of Vitis vinifera . Appl Environ Microbiol69 , 7319–7327 (2003).
O’Neill, B. F. et al. Leaf temperature of soybean grown under
elevated CO2 increases Aphis glycines (Hemiptera:
Aphididae) population growth: CO2 increases population
size of A. glycines. Insect Science 18 , 419–425 (2011).
Onaga, G. et al. High temperature effects on Pi54 conferred
resistance to Magnaporthe oryzae in two genetic backgrounds ofOryza sativa . Journal of Plant Physiology 212 ,
80–93 (2017).
Pandey, P., Ramegowda, V. & Senthil-Kumar, M. Shared and unique
responses of plants to multiple individual stresses and stress
combinations: physiological and molecular mechanisms. Front. Plant
Sci. 6 , (2015a).
Pandey, P., Sinha, R., Mysore, K. S. & Senthil-Kumar, M. Impact of
Concurrent Drought Stress and Pathogen Infection on Plants. inCombined Stresses in Plants (ed. Mahalingam, R.) 203–222
(Springer International Publishing, 2015b).
doi:10.1007/978-3-319-07899-1_10.
Parvin, S. et al. Free air CO2 enrichment (FACE)
improves water use efficiency and moderates drought effect on
N2 fixation of Pisum sativum L. Plant Soil436 , 587–606 (2019).
Pastori, G. M. & Foyer, C. H. Common Components, Networks, and Pathways
of Cross-Tolerance to Stress. The Central Role of “Redox” and Abscisic
Acid-Mediated Controls. Plant Physiology 129 , 460–468
(2002).
Perkins, S. E., Alexander, L. V. & Nairn, J. R. Increasing frequency,
intensity and duration of observed global heatwaves and warm spells.Geophys. Res. Lett. 39 , 2012GL053361 (2012).
Pitaloka, M. K. et al. Induced Genetic Variations in Stomatal
Density and Size of Rice Strongly Affects Water Use Efficiency and
Responses to Drought Stresses. Front. Plant Sci. 13 ,
801706 (2022).
Plazek A, Rapacz M, & Skoczowski A. Effects of ozone fumigation on
photosynthesis and membrane permeability in leaves of spring barley,
meadow fescue, and winter rape. Photosynthetica 3 ,
409–413 (2000).
Potnis, N. et al . Xanthomonas perforans Colonization
Influences Salmonella enterica in the Tomato Phyllosphere.Appl Environ Microbiol 80 , 3173–3180 (2014).
Qi, J. et al. Reactive oxygen species signaling and stomatal
movement in plant responses to drought stress and pathogen attack: ROS
signaling and stomatal movement. J. Integr. Plant Biol.60 , 805–826 (2018).
Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R.
Water stress and insect herbivory interactively reduce crop yield while
the insect pollination benefit is conserved. Glob. Change Biol.27 , 71–83 (2021).
Ramegowda, V. et al. Drought Stress Acclimation Imparts Toleranceto Sclerotinia sclerotiorum and Pseudomonas syringae inNicotiana benthamiana . IJMS 14 , 9497–9513
(2013).
Rao, M. V., Lee, H., Creelman, R. A., Mullet, J. E. & Davis, K. R.
Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell
Death. The Plant Cell 14 , 1633-1646 (2000).
Rao, M. V., Koch, J. R. & Davis, K. R. Ozone: a tool for probing
programmed cell death in plants. in Programmed Cell Death in
Higher Plants (eds. Lam, E., Fukuda, H. & Greenberg, J.) 101–114
(Springer Netherlands, 2000).
Rao, M. V., Lee, H. & Davis, K. R. Ozone-induced ethylene production is
dependent on salicylic acid, and both salicylic acid and ethylene act in
concert to regulate ozone-induced cell death. The Plant Journal32 , 447–456 (2002).
Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. Drought-induced
responses of photosynthesis and antioxidant metabolism in higher plants.Journal of Plant Physiology 161 , 1189–1202 (2004).
Reusche, M. et al. Verticillium Infection Triggers
VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and
Enhances Drought Tolerance in Arabidopsis . The Plant Cell24 , 3823–3837 (2012).
Rivero, R. M., Mittler, R., Blumwald, E. & Zandalinas, S. I. Developing
climate‐resilient crops: improving plant tolerance to stress
combination. The Plant Journal 17 (2022).
Rizhsky, L. et al. When Defense Pathways Collide. The Response of
Arabidopsis to a Combination of Drought and Heat Stress. Plant
Physiology 134 , 1683–1696 (2004).
Rodrigues, F. Á. et al. Silicon Enhances the Accumulation of
Diterpenoid Phytoalexins in Rice: A Potential Mechanism for Blast
Resistance. Phytopathology 94 , 177–183 (2004).
Rodriguez, M.C.S., Petersen, M. & Mundy, J. Mitogen-Activated Protein
Kinase Signaling in Plants. Annu. Rev. Plant Biol. 61 ,
621–649 (2010).
Romero-Puertas, M. C., Terrón-Camero, L. C., Peláez-Vico, M. Á.,
Molina-Moya, E. & Sandalio, L. M. An update on redox signals in plant
responses to biotic and abiotic stress crosstalk: insights from cadmium
and fungal pathogen interactions. Journal of Experimental Botany72 , 5857–5875 (2021).
Roosens, N. H., Bitar, F. A., Loenders, K. & Angenon, G. Overexpression
of ornithine-δ-aminotransferase increases proline biosynthesis and
confers osmotolerance in transgenic plants. Molecular Breeding9 : 73-80 (2002).
Rubio-Asensio, J. S. & Bloom, A. J. Inorganic nitrogen form: a major
player in wheat and Arabidopsis responses to elevated
CO2. EXBOTJ erw465 (2017).
Rudolph, K. Multiplication of Pseudomonas syringae pv.phaseolicola ‘in planta’.: I. Relation between bacterial
concentration and water-congestion in different bean cultivars and plant
species. J Phytopathol 111 , 349–362 (1984).
Ruiz‐Vera, U. M., Siebers, M. H., Drag, D. W., Ort, D. R. & Bernacchi,
C. J. Canopy warming caused photosynthetic acclimation and reduced seed
yield in maize grown at ambient and elevated
[CO2]. Glob Change Biol 21 ,
4237–4249 (2015).
Saha, N. D. et al. Plant Pathogenic Microbial Communication
Affected by Elevated Temperature in Pectobacterium carotovorumsubsp. carotovorum . Curr Microbiol 71 , 585–593
(2015).
Saidi, M. N., Mahjoubi, H. & Yacoubi, I. Transcriptome meta-analysis of
abiotic stresses-responsive genes and identification of candidate
transcription factors for broad stress tolerance in wheat.Protoplasma (2022)/
Saijo, Y. & Loo, E. P. Plant immunity in signal integration between
biotic and abiotic stress responses. New Phytol 225 ,
87–104 (2020).
Sandermann, H. Ozone/biotic disease interactions: molecular biomarkers
as a new experimental tool. Environmental Pollution 108 ,
327–332 (2000).
Sanz-Sáez, Á., Heath, K. D., Burke, P. V. & Ainsworth, E. A.
Inoculation with an enhanced N 2 -fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean
(Glycine max Merr.) response to elevated
[CO2]. Plant Cell Environ 38 ,
2589–2602 (2015).
Sanz‐Sáez, Á. et al. Leaf and canopy scale drivers of genotypic
variation in soybean response to elevated carbon dioxide concentration.Glob Change Biol 23 , 3908–3920 (2017).
Scafaro, A. P., Bautsoens, N., den Boer, B., Van Rie, J. & Gallé, A. A
Conserved Sequence from Heat-Adapted Species Improves Rubisco Activase
Thermostability in Wheat. Plant Physiol. 181 , 43–54
(2019).
Scafaro, A. P. et al. Heat tolerance in a wild Oryzaspecies is attributed to maintenance of Rubisco activation by a
thermally stable Rubisco activase ortholog. New Phytol211 , 899–911 (2016).
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate
severe damages to U.S. crop yields under climate change. Proc.
Natl. Acad. Sci. U.S.A. 106 , 15594–15598 (2009).
Schnoor JL. The U.S. Drought of 202. Environmental Science &
Technology 46 , 10480 (2012).
Shah, F. et al. Impact of high-temperature stress on rice plant
and its traits related to tolerance. J. Agric. Sci. 149 ,
545–556 (2011)
Sharma, R., De Vleesschauwer, D., Sharma, M. K. & Ronald, P. C. Recent
Advances in Dissecting Stress-Regulatory Crosstalk in Rice.Molecular Plant 6 , 250–260 (2013).
Sheehy J, Elmido A, Centeno G, & Pablico P. Searching for new plants
for climate change. Journal of Agricultural Meteorology60 , 463–368 (2005).
Shi, H., Liu, W., Yao, Y., Wei, Y. & Chan, Z. Alcohol dehydrogenase 1
(ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.Plant Science 262 , 24–31 (2017).
Shigenaga, A. M., Berens, M. L., Tsuda, K. & Argueso, C. T. Towards
engineering of hormonal crosstalk in plant immunity. Current
Opinion in Plant Biology 38 , 164–172 (2017).
Shivhare, D. & Mueller-Cajar, O. In Vitro Characterization of
Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface
Loop. Plant Physiol. 174 , 1505–1516 (2017).
Singh, P., Dutta, P. & Chakrabarty, D. miRNAs play critical roles in
response to abiotic stress by modulating cross-talk of phytohormone
signaling. Plant Cell Rep 40 , 1617–1630 (2021).
Slattery, R. A. & Ort, D. R. Carbon assimilation in crops at high
temperatures. Plant Cell Environ 42 , 2750–2758 (2019).
Smith, P. & Sward, R. Crop loss assessment studies on the effects of
barley yellow dwarf virus in wheat in Victoria. Aust. J. Agric.
Res. 33 , 179 (1982).
Soares, J. C., Santos, C. S., Carvalho, S. M. P., Pintado, M. M. &
Vasconcelos, M. W. Preserving the nutritional quality of crop plants
under a changing climate: importance and strategies. Plant Soil443 , 1–26 (2019).
Srinivasan, V., Kumar, P. & Long, S. P. Decreasing, not increasing,
leaf area will raise crop yields under global atmospheric change.Glob Change Biol 23 , 1626–1635 (2017).
Staehelin, L.A., and G.W.M. van der Staay. 1996. Structure, Composition,
Functional Organization and Dynamic Properties of Thylakoid Membranes.
In: Ort, D.R., Yocum, C.F., and Heichel, I.F., editors, Oxygenic
Photosynthesis: The Light Reactions. Springer Netherlands, Dordrecht. p.
11–30
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R.
Abiotic and biotic stress combinations. New Phytol 203 ,
32–43 (2014).
Tang, D., Simonich, M. T. & Innes, R. W. Mutations in LACS2 , a
Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to
Avirulent Pseudomonas syringae But Confer Resistance toBotrytis cinerea in Arabidopsis. Plant Physiol.144 , 1093–1103 (2007).
Temple PJ & Bisessar S. Response of white bean to bacterial blight,
ozone, and antioxidant protection in the field. Disease Detection
and Losses 69 , 101–103 (1979).
Thorne, E. T., Stevenson, J. F., Rost, T. L., Labavitch, J. M. &
Matthews, M. A. Pierce’s Disease Symptoms: Comparison with Symptoms of
Water Deficit and the Impact of Water Deficits. 12 (2006).
Tiedemann Av & Firsching KH. Interactive effects of elevated ozone and
carbon dioxide on growth and yield of leaf rust-infected versus
non-infected wheat. Environmental Pollution 108 ,
357–363 (2000).
Todesco, M. et al. Natural allelic variation underlying a major
fitness trade-off in Arabidopsis thaliana. Nature 465 ,
632–636 (2010).
Ton, J., Flors, V. & Mauch-Mani, B. The multifaceted role of ABA in
disease resistance. Trends in Plant Science 14 , 310–317
(2009).
Trębicki, P. et al. Virus infection mediates the effects of
elevated CO2 on plants and vectors. Sci Rep6 , 22785 (2016).
UN-DESA. United Nations, Department of Economic and Social Affairs,
Population Division, “World population prospects: the 2010 revision,
volume I: comprehensive tables”(ST/ESA/SER.A/313, United Nations
(2011).
Vainonen, J. P. & Kangasjärvi, J. Plant signalling in acute ozone
exposure: Ozone action on plants. Plant Cell Environ 38 ,
240–252 (2015).
Vallejos, C. E. et al. Characterization of two recessive genes
controlling resistance to all races of bacterial spot in peppers.Theor Appl Genet 121 , 37–46 (2010).
Van Dingenen, R. et al. The global impact of ozone on
agricultural crop yields under current and future air quality
legislation. Atmospheric Environment 43 , 604–618
(2009).
van Eerden, F. J., de Jong, D. H., de Vries, A. H., Wassenaar, T. A. &
Marrink, S. J. Characterization of thylakoid lipid membranes from
cyanobacteria and higher plants by molecular dynamics simulations.Biochimica et Biophysica Acta (BBA) - Biomembranes 1848 ,
1319–1330 (2015).
Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate Change and
Food Systems. Annu. Rev. Environ. Resour. 37 , 195–222
(2012).
Vos, I. A., Moritz, L., Pieterse, C. M. J. & Van Wees, S. C. M. Impact
of hormonal crosstalk on plant resistance and fitness under
multi-attacker conditions. Front. Plant Sci. 6 , (2015).
Walker, B. J., South, P. F. & Ort, D. R. Physiological evidence for
plasticity in glycolate/glycerate transport during photorespiration.Photosynth Res 129 , 93–103 (2016).
217.
Walley, JW. Mechanical stress induces biotic and abiotic stress
responses via a novel cis-element. PLoS Genetics 3 : e172
(2007).
Wang, D. et al. Two Rubisco activase isoforms may play different
roles in photosynthetic heat acclimation in the rice plant.Physiologia Plantarum 139 , 55–67 (2010).
Wang, L. et al. CBP60g and SARD1 play partially redundant
critical roles in salicylic acid signaling: Role of CBP60 proteins in
salicylic acid signaling. The Plant Journal 67 ,
1029–1041 (2011).
Wang, Y., Bao, Z., Zhu, Y. & Hua, J. Analysis of Temperature Modulation
of Plant Defense Against Biotrophic Microbes. MPMI 22 ,
498–506 (2009).
Wellstein, C. et al. Effects of extreme drought on specific leaf
area of grassland species: A meta-analysis of experimental studies in
temperate and sub-Mediterranean systems. Glob Change Biol23 , 2473–2481 (2017).
Wiebbecke, C. E., Graham, M. A., Cianzio, S. R. & Palmer, R. G. Day
Temperature Influences the Male-Sterile Locus ms9 in Soybean.Crop Science 52 , 1503–1510 (2012).
Wiese, J., Kranz, T. & Schubert, S. Induction of Pathogen Resistance in
Barley by Abiotic Stress. Plant Biology 6 , 529–536
(2004).
224.
Wu, W. et al. Monogalactosyldiacylglycerol deficiency in tobacco
inhibits the cytochrome b6f-mediated intersystem electron transport
process and affects the photostability of the photosystem II apparatus.Biochimica et Biophysica Acta (BBA) - Bioenergetics1827 , 709–722 (2013).
Xu, P. et al. Virus infection improves drought tolerance.New Phytologist 180 , 911–921 (2008).
Zarattini, M. et al. Every cloud has a silver lining: how abiotic
stresses affect gene expression in plant-pathogen interactions.Journal of Experimental Botany 72 , 1020–1033 (2021).
Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in
plants. Nat Rev Genet 23 , 104–119 (2022).
Zhang, J., Xu, Y., Huan, Q. & Chong, K. Deep sequencing ofBrachypodium small RNAs at the global genome level identifies
microRNAs involved in cold stress response. BMC Genomics10 , 449 (2009).
Zhang, S. et al. Antagonism between phytohormone signalling
underlies the variation in disease susceptibility of tomato plants under
elevated CO2. Journal of Experimental Botany 66 ,
1951–1963 (2015).
Zhao, C. et al. Temperature increase reduces global yields of
major crops in four independent estimates. Proc. Natl. Acad. Sci.
U.S.A. 114 , 9326–9331 (2017).
Zhu, P. et al. The important but weakening maize yield benefit of
grain filling prolongation in the US Midwest. Global Change
Biology 24 , 4718–4730 (2018).
Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop
growth, development, and yield respond to high temperature.Journal of Experimental Botany erab308 (2021).