https://doi.org/10.1016/j.tree.2019.04.008
Requier, F., Rome, Q., Villemant, C., & Henry, M. (2020). A biodiversity-friendly method to mitigate the invasive Asian hornet’s impact on European honey bees. Journal of Pest Science, 93 , 1-9. https://doi.org/10.1007/s10340-019-01159-9
Rome Q, Villemant C (2022) Le Frelon asiatique Vespa velutina . In: INPN - MNHN. Data available athttp://frelonasiatique.mnhn.fr/home. Last accessed on September 2022.
Sinclair, A.R.E. (1992). Do large mammals disperse like small mammals? In: Stenseth N.C., Lidicker W.Z. (eds) Animal Dispersal . Springer, Dordrecht.
Shackleton, K., Balfour, N.J., Toufailia, H.A. et al. (2019). Unique nest entrance structure of Partamona helleri stingless bees leads to remarkable ‘crash-landing’ behaviour. Insectes Sociaux, 66 , 471–477. https://doi.org/10.1007/s00040-019-00709-9
Shah, F.A., & Shah, T.A. (1991) Vespa Velutina , a serious pest of honey bees in Kashmir. Bee World, 72(4), 161-164. https://doi.org/10.1080/0005772X.1991.11099099
Skvara, H., Burnett, P., Jones, J., Duschek, N., Plassmann, P., & Thirion, J‐P. (2013) Quantification of skin lesions with a 3D stereovision camera system: validation and clinical applications.Skin Research and Technology, 19, 182-190. https://doi.org/10.1111/j.1600-0846.2012.00625.x
Spitzen, J., Spoor, C. W., Grieco, F., ter Braak, C., Beeuwkes, J., van Brugge, S.P., … & Takken, W. (2013). A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat. PloS one, 8(5), e62995. https://doi.org/10.1371/journal.pone.0062995
Straw, A.D., Branson, K., Neumann, T.R., & Dickinson, M.H. (2011). Multi-camera real-time three-dimensional tracking of multiple flying animals. Journal of The Royal Society Interface, 8395 , 409. https://doi.org/10.1098/rsif.2010.0230
Struye, M.H., Mortier, H.J., Arnold, G., Miniggio, C., & Borneck, R. (1994). Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie, 25 , 384-395. https://doi.org/10.1051/apido:19940405
Sumpter, D., & Pratt, S.A. (2003). A Modelling framework for understanding social insect foraging. Behavioral Ecology and Sociobiology, 53, 131–144. https://doi.org/10.1007/s00265-002-0549-0
Tan, K., Radloff, S.E., Li, J.J., Hepburn, H. R., Yang, M.X., Zhang, L.J., & Neumann, P. (2007). Bee-hawking by the wasp, Vespa velutina , on the honeybees Apis cerana and A. mellifera .Naturwissenschaften, 94, 469–472. https://doi.org/10.1007/s00114-006-0210-2
Theriault, D.H., Wu, Z., Hristov, N.I., Swartz, S.M.,Breuer, K.S., Kunz, T.H., & Betke, M. (2010). Reconstruction and analysis of 3D Trajectories of Brazilian Free-tailed Bats in flight. Boston University Computer Science Technical Report No. BUCS-TR-2010-027. [Available from: http://hdl.handle.net/2144/3803]
Villemant, C., Barbet-Massin, M., Perrard, A., Muller, F., Gargominy, O., Jiguet, F., & Rome, Q. (2011). Predicting the invasion risk by the alien bee-hawking yellow-legged hornet Vespa velutina nigrithoraxacross Europe and other continents with niche models. Biological Conservation ,144 , 2142–2150. https://doi.org/10.1016/j.biocon.2011.04.009
Wajnberg, E., & Colazza, S. (1998). Genetic variability in the area searched by a parasitic wasp: analysis from automatic video tracking of the walking path. Journal of Insect Physiology, 44(5–6),437-444, ISSN 0022-1910. https://doi.org/10.1016/S0022-1910(98)00032-8
Wilson, R.S., Pavlic, T.P., Wheatley, R., Niehaus, A.C., & Levy, O. (2020). Modeling escape success in terrestrial predator–prey interactions. Integrative and Comparative Biology, 60(2),497–508. https://doi.org/10.1093/icb/icaa070