REFERENCES
Al Rubaiee, Z., Al Murayati, H., Tobolka, M., Tryjanowski, P., &
Møller, A. P., (2021). Not so black, not so white: differences in
microorganism load of contiguous feathers from white stork chicks.Current Zoology , 3, 263-270.
Bańbura, J., Sulikowska-Drozd, A., Bańbura, M., Zieliński, P., Kaliński,
A., Wawrzyniak, J., Glądalski, M., Skwarska, J., & Markowski, M.
(2019). Blue Tits Cyanistes caeruleus laying smaller eggs after a
decline in snail numbers: an indirect effect of slug control in a city
park. Acta Ornithologica , 54, 139-148.
Benskin, C. McW. H., Wilson, K., Jones, K., & Hartley, I.R. (2009).
Bacterial pathogens in wild birds: a review of the frequency and effects
of infection. Biological Reviews , 84, 349-373.
Berger, S., Disko, R., & Gwinner, H. (2003). Bacteria in starling
nests. Journal of Ornithology ,144, 317-322.
Bisson, I-A, Marra, P. P., Burtt, E. H. J., Sikarodi, M., & Gillevet,
P. M. (2007). A molecular comparison of plumage and soil bacteria across
biogeographic, ecological, and taxonomic scales. Microbial
Ecology , 54, 65-81.
Broughton, L. C. , & Gross, K. L. (2000). Patterns of diversity of
plant and soil microbial communities along a productivity gradient in a
Michigan old-field. Oecologia 125, 420-427.
Broughton, R. K., Hebda, G., Maziarz, M., Smith, K. W., Smith, L., &
Hinsley, S. A. (2015). Nest-site competition between bumblebees
(Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain
and the Western Palearctic. Bird Study, 62, 427-437.
Burtt, E. H. J., & Ichida, J. M. (1999). Occurrence of feather
degrading bacilli in the plumage of birds. Auk, 116, 364-372.
Carina-Audisio, M., Oliver, G., & Apella, M. C. (2000). Protective
effect of Enterococcus faecium J96, a potential probiotic strain, on
chicks infected with Salmonella pullorum . Journal of Food
Protection, 63, 1333-1337.
Devaynes, A., Antunes, A., Bedford, A., Ashton, P., & (2018).
Progression in the bacterial load during the breeding season in nest
boxes occupied by the Blue Tit and its potential impact on hatching or
fledging success. Journal of Ornithology, 159, 1009-1017.
Dion-Phenix, H., Charmantier, A., de Franceschi, Ch., Bourret, G.,
Kembel S. W., & Reale, D. (2021). Bacterial microbiota similarity
between predators and prey in a blue tit trophic network. ISME
Journal, 15, 1098-1107.
Glądalski, M., Bańbura, M., Kaliński, A., Markowski, M., Skwarska, J.,
Wawrzyniak, J., Zieliński, P., Cyżewska, I., Mańkowska, D., & Bańbura,
J. (2016). Effects of human-related disturbance on breeding success of
urban and non-urban blue tits (Cyanistes caeruleus ). Urban
Ecosystems, 19, 325-1334.
Gonzalez-Braojos, S., Vela AI, Ruiz-de-Casteñeda, R., Briones, V.,
Cantarero, A., & Moreno, J. (2012). Is nestling growth affected by nest
reuse and skin bacteria in Pied Flycatchers Ficedula hypoleuca ?Acta Ornithologica, 47,119-127.
Gonzalez-Braojos, S., Vela, A.I., Ruiz-de-Casteñeda, R., Briones, V.,
Cantarero, A., & Moreno, J. (2015). Bacteria on nestling skin in
relation to growth in pied flycatcher. Journal of Ornithology,156, 327-330.
Goodenough, A. E., & Stalwood, B. (2012). Differences in culturable
microbial communities in bird nestboxes according to orientation and
influences on offspring quality in Great Tits (Parus major ).Microbial Ecology, 63, 986-995.
Goodenough, A. E., & Stalwood, B. (2010). Intraspecific variation and
interspecific differences in the bacterial and fungal assemblages of
Blue Tit (Cyanistes caeruleus ) and Great Tit (Parus major )
nests. Microbial Ecology, 59, 221-232.
Gosler, A. The Great Tit (Hamlyn, London, 1993).
Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018).
The avian gut microbiota: community, physiology and function in wild
birds. Journal of Avian Biology, 49,10.1111/jav.01788.
Gunderson, A. R., (2008). Feather-degrading bacteria: a new frontier in
avian and host-parasite research? Auk, 125, 972-979.
Horner-Devine, M. C., Carney, K.M., & Bohannan, B. J. M. (2004). An
ecological perspective on bacterial biodiversity. Proceeding of
the Royal Society of London, B . 271, 113-122.
Kaliński, A., Wawrzyniak, J., Bańbura, M., Skwarska, J., Zieliński, P.,
Glądalski, M., & Bańbura, J. (2014). Does the threat of European Pine
Marten (Martes martes) predation influence the height of nests built by
Blue Tits (Cyanistes caeruleus) and Great Tits (Parus major)?Avian Biology Research, 7, 83-90.
Levin, D., Raab, N., Pinto, Y., Rothschild, D., Zanir, G., Godneva, A.,
Mellul, N., Futorian, D., Gal, D., Leviatan, S., Zeevi, D., Bachelet,
I., & Segal, E. (2021). Diversity and functional landscapes in the
microbiota of animals in the wild. Science, 372(6539):eabb5352.
Llado, S., Lopez-Mondejar, R., & Baldrian, P. (2017). Forest soil
bacteria: diversity involvement in ecosystem processes, and response to
global change. Microbiology and Molecular Biology Reviews, 8,
e00063-16.
Lucas, F. S., Broennimann, O., Febbraro, I., & Heeb, P. (2003). High
diversity among feather-degrading bacteria from a dry meadow soil.Microbial Ecology , 45, 282-290.
Mainwaring, M. C. (2011). The use of nestboxes by roosting birds during
the nonbreeding season: a review of the costs and benefits.Ardea , 99, 167-176.
McComb, W. C., & Noble, R.E. (1982). Invertebrate use of natural tree
cavities and vertebrate nest boxes. American Midland Naturalist ,
107, 163-172.
Saag, P., Tilgar, V., Mänd, R., Kilgas, P., & Mägi, M. (2011). Plumage
bacterial assemblages in a breeding wild Passerine: relationship with
ecological factors and body condition. Microbial Ecology , 61,
740-749.
Singleton, D. R., & Harper, R. G. (1998). Bacteria in old House Wren
nests. Journal of Field Ornithology , 69, 71-74.
Soler, J. J., Martin-Vivaldi, M., Peralta-Sanchez, J.M., &
Ruiz-Rodriguez, M. (2010). Antibiotic-producing bacteria as a possible
defence of birds against pathogenic microorganisms. Open
Ornithology Journal , 3, 93-100.
Soler, J.J., Martin-Vivaldi, M., Ruiz-Rodriguez, M., Valdivia, E.,
Martin-Platero, A. M., Martinez-Bueno, M., Peralta-Sanchez, J. M., &
Mendez, M. (2008). Symbiotic association between hoopoes and
antibiotic-producing bacteria that live in their uropygial gland.Functional Ecology , 22, 864-871.
StatSoft Inc. Statistica (data analysis software system) ver. 12.http://www.statsoft.com (2014).
Wang, F., Gao, L., & Zhang, S. (2020). Effects of bird aggregation on
the soil properties and microbial community diversity of urban forest
fragments. Science of the Total Environment , 737, 1-9.
Zabłotni, A., Kaliński, A., Bańbura, M., Glądalski, M., Markowski, M.,
Skwarska, J., Wawrzyniak, J., & Bańbura, J. (2020). Experimental nest
replacement suggests that the bacterial load of nests may mediate
nestling physiological condition in cavity nesting Great Tits
(Parus major ). Journal of Ornithology , 161, 819-828.
TABLE 1 . The mean, minimum, and maximum values of the entrance
hole bacterial load (CFU/ml) in the parkland and forest study areas in
both nest categories (occupied and unoccupied in the previous year).
Values are ln-transformed. SD values are given in parentheses.