REFERENCES
Al Rubaiee, Z., Al Murayati, H., Tobolka, M., Tryjanowski, P., & Møller, A. P., (2021). Not so black, not so white: differences in microorganism load of contiguous feathers from white stork chicks.Current Zoology , 3, 263-270.
Bańbura, J., Sulikowska-Drozd, A., Bańbura, M., Zieliński, P., Kaliński, A., Wawrzyniak, J., Glądalski, M., Skwarska, J., & Markowski, M. (2019). Blue Tits Cyanistes caeruleus laying smaller eggs after a decline in snail numbers: an indirect effect of slug control in a city park. Acta Ornithologica , 54, 139-148.
Benskin, C. McW. H., Wilson, K., Jones, K., & Hartley, I.R. (2009). Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biological Reviews , 84, 349-373.
Berger, S., Disko, R., & Gwinner, H. (2003). Bacteria in starling nests. Journal of Ornithology ,144, 317-322.
Bisson, I-A, Marra, P. P., Burtt, E. H. J., Sikarodi, M., & Gillevet, P. M. (2007). A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microbial Ecology , 54, 65-81.
Broughton, L. C. , & Gross, K. L. (2000). Patterns of diversity of plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125, 420-427.
Broughton, R. K., Hebda, G., Maziarz, M., Smith, K. W., Smith, L., & Hinsley, S. A. (2015). Nest-site competition between bumblebees (Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain and the Western Palearctic. Bird Study, 62, 427-437.
Burtt, E. H. J., & Ichida, J. M. (1999). Occurrence of feather degrading bacilli in the plumage of birds. Auk, 116, 364-372.
Carina-Audisio, M., Oliver, G., & Apella, M. C. (2000). Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum . Journal of Food Protection, 63, 1333-1337.
Devaynes, A., Antunes, A., Bedford, A., Ashton, P., & (2018). Progression in the bacterial load during the breeding season in nest boxes occupied by the Blue Tit and its potential impact on hatching or fledging success. Journal of Ornithology, 159, 1009-1017.
Dion-Phenix, H., Charmantier, A., de Franceschi, Ch., Bourret, G., Kembel S. W., & Reale, D. (2021). Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME Journal, 15, 1098-1107.
Glądalski, M., Bańbura, M., Kaliński, A., Markowski, M., Skwarska, J., Wawrzyniak, J., Zieliński, P., Cyżewska, I., Mańkowska, D., & Bańbura, J. (2016). Effects of human-related disturbance on breeding success of urban and non-urban blue tits (Cyanistes caeruleus ). Urban Ecosystems, 19, 325-1334.
Gonzalez-Braojos, S., Vela AI, Ruiz-de-Casteñeda, R., Briones, V., Cantarero, A., & Moreno, J. (2012). Is nestling growth affected by nest reuse and skin bacteria in Pied Flycatchers Ficedula hypoleuca ?Acta Ornithologica, 47,119-127.
Gonzalez-Braojos, S., Vela, A.I., Ruiz-de-Casteñeda, R., Briones, V., Cantarero, A., & Moreno, J. (2015). Bacteria on nestling skin in relation to growth in pied flycatcher. Journal of Ornithology,156, 327-330.
Goodenough, A. E., & Stalwood, B. (2012). Differences in culturable microbial communities in bird nestboxes according to orientation and influences on offspring quality in Great Tits (Parus major ).Microbial Ecology, 63, 986-995.
Goodenough, A. E., & Stalwood, B. (2010). Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of Blue Tit (Cyanistes caeruleus ) and Great Tit (Parus major ) nests. Microbial Ecology, 59, 221-232.
Gosler, A. The Great Tit (Hamlyn, London, 1993).
Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018). The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology, 49,10.1111/jav.01788.
Gunderson, A. R., (2008). Feather-degrading bacteria: a new frontier in avian and host-parasite research? Auk, 125, 972-979.
Horner-Devine, M. C., Carney, K.M., & Bohannan, B. J. M. (2004). An ecological perspective on bacterial biodiversity. Proceeding of the Royal Society of London, B . 271, 113-122.
Kaliński, A., Wawrzyniak, J., Bańbura, M., Skwarska, J., Zieliński, P., Glądalski, M., & Bańbura, J. (2014). Does the threat of European Pine Marten (Martes martes) predation influence the height of nests built by Blue Tits (Cyanistes caeruleus) and Great Tits (Parus major)?Avian Biology Research, 7, 83-90.
Levin, D., Raab, N., Pinto, Y., Rothschild, D., Zanir, G., Godneva, A., Mellul, N., Futorian, D., Gal, D., Leviatan, S., Zeevi, D., Bachelet, I., & Segal, E. (2021). Diversity and functional landscapes in the microbiota of animals in the wild. Science, 372(6539):eabb5352.
Llado, S., Lopez-Mondejar, R., & Baldrian, P. (2017). Forest soil bacteria: diversity involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 8, e00063-16.
Lucas, F. S., Broennimann, O., Febbraro, I., & Heeb, P. (2003). High diversity among feather-degrading bacteria from a dry meadow soil.Microbial Ecology , 45, 282-290.
Mainwaring, M. C. (2011). The use of nestboxes by roosting birds during the nonbreeding season: a review of the costs and benefits.Ardea , 99, 167-176.
McComb, W. C., & Noble, R.E. (1982). Invertebrate use of natural tree cavities and vertebrate nest boxes. American Midland Naturalist , 107, 163-172.
Saag, P., Tilgar, V., Mänd, R., Kilgas, P., & Mägi, M. (2011). Plumage bacterial assemblages in a breeding wild Passerine: relationship with ecological factors and body condition. Microbial Ecology , 61, 740-749.
Singleton, D. R., & Harper, R. G. (1998). Bacteria in old House Wren nests. Journal of Field Ornithology , 69, 71-74.
Soler, J. J., Martin-Vivaldi, M., Peralta-Sanchez, J.M., & Ruiz-Rodriguez, M. (2010). Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithology Journal , 3, 93-100.
Soler, J.J., Martin-Vivaldi, M., Ruiz-Rodriguez, M., Valdivia, E., Martin-Platero, A. M., Martinez-Bueno, M., Peralta-Sanchez, J. M., & Mendez, M. (2008). Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland.Functional Ecology , 22, 864-871.
StatSoft Inc. Statistica (data analysis software system) ver. 12.http://www.statsoft.com (2014).
Wang, F., Gao, L., & Zhang, S. (2020). Effects of bird aggregation on the soil properties and microbial community diversity of urban forest fragments. Science of the Total Environment , 737, 1-9.
Zabłotni, A., Kaliński, A., Bańbura, M., Glądalski, M., Markowski, M., Skwarska, J., Wawrzyniak, J., & Bańbura, J. (2020). Experimental nest replacement suggests that the bacterial load of nests may mediate nestling physiological condition in cavity nesting Great Tits (Parus major ). Journal of Ornithology , 161, 819-828.
TABLE 1 . The mean, minimum, and maximum values of the entrance hole bacterial load (CFU/ml) in the parkland and forest study areas in both nest categories (occupied and unoccupied in the previous year). Values are ln-transformed. SD values are given in parentheses.