References
1. World Health Organization. Coronavirus disease (COVID-19) dashboard. Accessed July 20, 2022. https://covid19.who.int
2. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020; 383(27): 2603-2615. doi:10.1056/NEJMoa2034577
3. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5): 403-416. doi:10.1056/NEJMoa2035389
4. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021; 397(10269): 99-111. doi:10.1016/S0140-6736(20)32661-1
5. Andrews N, Tessier E, Stowe J, et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med. 2022; 386(4): 340-350. doi:10.1056/NEJMoa2115481
6. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005; 11(4 Suppl): S45-53. doi:10.1038/nm1213
7. Ketas TJ, Chaturbhuj D, Portillo VMC, et al. Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. Pathog Immun.2021; 6(1): 116-134. doi:10.1101/2021.03.11.434841
8. Chan RWY, Liu S, Cheung JY, et al. The Mucosal and Serological Immune Responses to the Novel Coronavirus (SARS-CoV-2) Vaccines. Front Immunol. 2021; 12: 744887. doi:10.3389/fimmu.2021.744887
9. Azzi L, Dalla Gasperina D, Veronesi G, et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine. 2022; 75: 103788. doi:10.1016/j.ebiom.2021.103788
10. Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001; 51(1-3): 21-42. doi:10.1016/s0169-409x(01)00162-4
11. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002; 109(5): 571-577. doi:10.1172/JCI15217
12. Correa VA, Portilho AI, De Gaspari E. Vaccines, adjuvants and key factors for mucosal immune response. Immunology. 2022; 167(2): 124-138. doi:10.1111/imm.13526
13. Grohskopf LA, Alyanak E, Ferdinands JM, et al. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021-22 Influenza Season. MMWR Recomm Rep. 2021; 70(5): 1-28. doi:10.15585/mmwr.rr7005a1
14. Kimoto T. Development of a safe and effective novel synthetic mucosal adjuvant SF-10 derived from physiological metabolic pathways and function of human pulmonary surfactant. Vaccine. 2022; 40(3): 544-553. doi:10.1016/j.vaccine.2021.11.030
15. Mizuno D, Ide-Kurihara M, Ichinomiya T, Kubo I, Kido H. Modified pulmonary surfactant is a potent adjuvant that stimulates the mucosal IgA production in response to the influenza virus antigen. J Immunol. 2006; 176(2): 1122-1130. doi:10.4049/jimmunol.176.2.1122
16. Nishino M, Mizuno D, Kimoto T, et al. Influenza vaccine with Surfacten, a modified pulmonary surfactant, induces systemic and mucosal immune responses without side effects in minipigs. Vaccine. 2009; 27(41): 5620-5627. doi:10.1016/j.vaccine.2009.07.024
17. Mizuno D, Kimoto T, Takei T, et al. Surfactant protein C is an essential constituent for mucosal adjuvanticity of Surfacten, acting as an antigen delivery vehicle and inducing both local and systemic immunity. Vaccine. 2011; 29(33): 5368-5378. doi:10.1016/j.vaccine.2011.05.090
18. Kimoto T, Mizuno D, Takei T, et al. Intranasal influenza vaccination using a new synthetic mucosal adjuvant SF-10: induction of potent local and systemic immunity with balanced Th1 and Th2 responses.Influenza Other Respir Viruses. 2013; 7(6): 1218-1226. doi:10.1111/irv.12124
19. Kimoto T, Kim H, Sakai S, Takahashi E, Kido H. Oral vaccination with influenza hemagglutinin combined with human pulmonary surfactant-mimicking synthetic adjuvant SF-10 induces efficient local and systemic immunity compared with nasal and subcutaneous vaccination and provides protective immunity in mice. Vaccine. 2019; 37(4): 612-622. doi:10.1016/j.vaccine.2018.12.002
20. Mizuno D, Kimoto T, Sakai S, Takahashi E, Kim H, Kido H. Induction of systemic and mucosal immunity and maintenance of its memory against influenza A virus by nasal vaccination using a new mucosal adjuvant SF-10 derived from pulmonary surfactant in young cynomolgus monkeys.Vaccine. 2016; 34(16): 1881-1888. doi:10.1016/j.vaccine.2016.02.061
21. Kim H, Kimoto T, Sakai S, Takahashi E, Kido H. Adjuvanting influenza hemagglutinin vaccine with a human pulmonary surfactant-mimicking synthetic compound SF-10 induces local and systemic cell-mediated immunity in mice. PLoS One. 2018; 13(1): e0191133. doi:10.1371/journal.pone.0191133
22. Arunachalam PS, Walls AC, Golden N, et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature. 2021; 594(7862): 253-258. doi:10.1038/s41586-021-03530-2
23. Goepfert PA, Fu B, Chabanon A-L, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study. The Lancet Infectious Diseases. 2021; 21(9): 1257-1270. doi:10.1016/S1473-3099(21)00147-X
24. Wu Y, Wang F, Shen C, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020; 368(6496): 1274-1278. doi:10.1126/science.abc2241
25. Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med.2021; 13(577): eabd2223. doi:10.1126/scitranslmed.abd2223
26. Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021; 34(6): 108728. doi:10.1016/j.celrep.2021.108728
27. Lei H, Alu A, Yang J, et al. Intranasal administration of a recombinant RBD vaccine induces long-term immunity against Omicron-included SARS-CoV-2 variants. Signal Transduct Target Ther. 2022; 7(1): 159. doi:10.1038/s41392-022-01002-1
28. Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013; 14(4): 372-379. doi:10.1038/ni.2552
29. Cao AT, Yao S, Gong B, Elson CO, Cong Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol. 2012; 189(9): 4666-4673. doi:10.4049/jimmunol.1200955
30. De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020; 11(1): 3434. doi:10.1038/s41467-020-17292-4
31. Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The Role of Th17 Response in COVID-19. Cells. 2021; 10(6): 1550 . doi:10.3390/cells10061550
32. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007; 8(12): 1390-1397. doi:10.1038/ni1539