Fig. 4 The comparison results of the normalized
electrical rectification data of a conventional QCL and a π-shape
electrode QCL.
Conclusion: We have
demonstrated a CW high-speed QCL with emitting wavelength of 8.5μ m and output optical power about 141 mW at 20 ℃. By monolithic
integrating a π-shape metal contact electrode, the parasitic
capacitance of the device is effectively reduced from 36.6 pF to 7.1 pF
and the -3 dB modulation bandwidth is increased from 870 MHz to 4.5 GHz
compared with the conventional electrode configuration. The device shows
a high application potential in FSOC, active mode locking, etc.
Acknowledgments: This work was supported in part by the National
Natural Science Foundation of China under Grant Nos. 61835011, 61991430,
and the Key Program of the Chinese Academy of Sciences under Grant Nos.
XDB43000000.
2022 The Authors. Electronics Letters published by John Wiley
& Sons Ltd on behalf of The Institution of Engineering and Technology
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
References
1. Pang, X., Ozolins, O., Zhang, L., Schatz, R., Udalcovs, A., Yu, X.,
Jacobsen, G., Popov, S., Chen, J., and Lourdudoss, S., ’Free-Space
Communications Enabled by Quantum Cascade Lasers’, Phys. Status Solidi
A, 2021, 218, (3), p. 2000407.
2. Villares, G., Hugi, A., Blaser, S., and Faist, J., ’Dual-Comb
Spectroscopy Based on Quantum-Cascade-Laser Frequency Combs’, Nature
Communications, 2014, 5, (1), p. 5192.
3. Hillbrand, J., Andrews, A.M., Detz, H., Strasser, G., and Schwarz,
B., ’Coherent Injection Locking of Quantum Cascade Laser Frequency
Combs’, Nature Photonics, 2019, 13, (2), pp. 101-104.
4. Haldar, M.K., ’A Simplified Analysis of Direct Intensity Modulation
of Quantum Cascade Lasers’, IEEE Journal of Quantum Electronics, 2005,
41, (11), pp. 1349-1355.
5. Zhou, Y.H., Zhai, S.Q., Liu, J., Liu, F., Zhang, J., Zhuo, N., Wang,
L., and Wang, Z., ’High-Speed Quantum Cascade Laser at Room
Temperature’, Electronics Letters, 2016, 52, (7), pp. 548-549.
6. Calvar, A., Amanti, M.I., St-Jean, M.R., Barbieri, S., Bismuto, A.,
Gini, E., Beck, M., Faist, J., and Sirtori, C., ’High Frequency
Modulation of Mid-Infrared Quantum Cascade Lasers Embedded into
Microstrip Line’, Applied Physics Letters 2013, 102, (18), p. 181114.
7. Hinkov, B., Hugi, A., Beck, M., and Faist, J., ’Rf-Modulation of
Mid-Infrared Distributed Feedback Quantum Cascade Lasers’, Optics
Express, 2016, 24, (4), pp. 3294-3312.
8. Zhou, Y.H., Liu, J.Q., Zhai, S.Q., Zhuo, N., Zhang, J.C., Liu, S.M.,
Wang, L.J., Liu, F.Q., and Wang, Z.G., ’High-Speed Operation of
Single-Mode Tunable Quantum Cascade Laser Based on Ultra-Short Resonant
Cavity’, AIP Advances, 2021, 11, (1), p. 015325.
9. Yang, K., Liu, J., Zhai, S., Zhang, J., Zhuo, N., Wang, L., Liu, S.,
and Liu, F., ’Room-Temperature Quantum Cascade Laser Packaged Module at
∼8 μm Designed for High-Frequency Response’, Electronics Letters, 2021,
57, (17), pp. 665-667.
10. Fei, T., Zhai, S.Q., Zhang, J.C., Zhuo, N., Liu, J.Q., Wang, L.J.,
Liu, S.M., Jia, Z.W., Li, K., Sun, Y.Q., Guo, K., Liu, F.Q., Wang, Z.G.,
’High power λ~ 8.5 μm quantum cascade laser grown by
MOCVD operating continuous-wave up to 408 K’, Journal of Semiconductors,
2021, 42(11): 112301.
11. Liu, H.C., Jianmeng, L., Buchanan, M., and Wasilewski, Z.R.,
’High-Frequency Quantum-Well Infrared Photodetectors Measured by
Microwave-Rectification Technique’, IEEE Journal of Quantum Electronics,
1996, 32, (6), pp. 1024-1028.