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Abstract
We present a novel approach and algorithm to the problem of 
time-varying magnetic field interference cancellation using 
distributed magnetometers and spacecraft telemetry with 
particular emphasis on the constrained computational and power 
requirements of CubeSats. The traditional approach to enable 
space-based low-amplitude and low-noise magnetometry is to 
develop a spacecraft magnetic cleanliness design and place the 
magnetometer sensor at the end of a boom far enough away from 
the bus to minimize remaining stray magnetic fields. In addition, 
secondary magnetometers are often placed partway along the 
boom to apply magnetic field gradiometry to clean the data  
(e.g., NASA MMS has 8 meter booms with a sensor half-way down 
and another at the end).  We employ a different approach taking 
advantage of low-cost chip-based magnetometers that can be 
placed throughout the satellite bus instead of utilizing a boom. 
The spacecraft magnetic field interference cancellation problem 
that we solve involves estimation of noise when the number of 
interfering sources far exceeds the number of sensors required to 
decouple the noise from the signal. The proposed approach 
models this as a contextual bandit learning problem and the 
proposed algorithm learns to identify the optimal low-noise 
combination of distributed magnetometers based on indirect 
information gained on spacecraft currents through telemetry. 
The algorithmic behaviors are tested with synthetically modeled 
spacecraft data and on real world data generated in a lab-based 
setting with telemetry and currents collected from the GRIFEX 
CubeSat and provides a way for accurate magnetic field 
measurements with CubeSats without booms.

Enabling Magnetometer

Simple Regret Minimization and
Contextual Bandit Algorithm

Conclusions 
The results show that a Machine Learning approach can be used in 
combination with low-SWAP+C magnetometers [Regoli et al., 2017] to identify 
and cancel s/c magnetic interference [Sheinker and Moldwin 2016] on 
CubeSats. Sharma [2018] describes the mathematics, algorithm and results in
detail.
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Fig. 4. The GRIFFEX CubeSat provided 
solar panel current and temperature data and
we created a 4U CubeSat model with 8 coils
representing reaction wheels, solar panels and
electrical power system (EPS) with 3 mags.

Fig. 5. Distribution of interference levels for
individual magnetometers, best mag, and
sensor combination results.  

Contextual Bandits are a sub-class of Multi-Armed Bandits where the 
player has access to side information that helps refine policy in arm 
identification. Simple regret minimization deals with the idea of 
splitting the exploration and exploitation phases in bandits, where 
the algorithm is allowed to perform pure exploration either for a 
period of time or until sufficiently confident enough and identify the 
best arm at the end of the given period. 

  
 

Fig. 6. Raw magnetometer 
magnitude data from 3 sensors 
with residual interference data
from Contextual Bandit
Algorithm.

The 8 noise coils were fed
with noise profiles from EPS.
solar panels and reaction
wheels and geomagnetic
field data observed from a
spinning spacecraft using 
the POMME magnetic 
field model were added in 
addition to random noise 
profiles. The algorithm found
the best sensor that had the
minimum noise. 

Fig 1. The PNI mag 
compared to a US quarter.
The 3-axis sensors are
highlighted in red.

Fig 3. Machine Learning algorithms used in web-page optimization and sales
are adapted to �nd the best combinations of magnetometers with information
from telemetry to minimize noise.
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Both simulated and a laboratory 
experiment were conducted to test
the algorithm. Fig 3 shows the lab set
up and Fig 4 shows the results. Note
the purple distribution. 

Fig. 7. Minimization of Regret as a function of
Exploration Phase duration showing that with
increased data, the Contextual Gap Algorithm was able to identify combinations of
sensors that minimized interference. Note that regret does not go to zero indicating
the the optimum sensor combination is imperfect.

Fig 2. Modi�ed sensor has noise �oor
of a �uxgate. resolution of about 1 nT,
consumes 5 mW and mass of 5 grams.
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