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Abstract  19 

To determine hydrologic changes in a warmer climate, we impose precipitation and potential 20 

evaporation (𝐸𝑜) perturbations on hydrologic response functions constructed from precipitation 21 

and satellite soil moisture observations across the United States. Despite nonlinearities in the 22 

evaporation (E) and drainage (D) responses and opposing-sign perturbations, changes in 23 

individual fluxes are superposable. Empirical frameworks (Budyko) can misrepresent changes in 24 

E/D partitioning by neglecting shifts/trends in hydrologic regime and subseasonal precipitation 25 

dynamics. E/D both increase to balance mean precipitation (𝑃̅) increases, and increased 26 

𝐸𝑜 reduces soil moisture. E and D are generally more elastic to changes in 𝑃̅ than 𝐸𝑜. The results 27 

suggest that (1) the impacts of regional hydrologic perturbations may allow for simple 28 

superposition/scaling, (2) changes in timing/intensity of precipitation may have substantial 29 

impacts on mean moisture states and fluxes, and (3) changes to the distribution of surface 30 

moisture states are likely more relevant for E/D partitioning than common aridity indices.  31 

Plain Language Summary 32 

We use satellite observations of soil moisture and expected increase in air temperature to 33 

determine how evaporation and soil drainage (to groundwater recharge and rivers/streamflow) 34 

will change in a warmer climate. The impacts of drier air, more rainfall, and more extreme 35 

rainfall (drier dry days and wetter wet days) can largely be considered separately and then added, 36 

which will help when predicting a specific location’s water balance using scenarios from global 37 

climate models. In typical scenarios, soils are likely to dry, evaporation is likely to increase, and 38 

— when precipitation increases — drainage to groundwater/streams is likely to increase as well. 39 

Evaporation and drainage are relatively more sensitive to changes in precipitation and humidity 40 

in the Western US than the East, and the Corn Belt is particularly susceptible to changes in 41 

precipitation intensity. Common methods of determining changes in evaporation and drainage 42 

which neglect changes in soil moisture may have large errors in global change scenarios. 43 

Introduction 44 

Our best predictions for the future of the terrestrial water cycle come from Global Climate and 45 

Earth System Models (GCMs, ESMs), which forecast general increases in precipitation (Greve et 46 
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al., 2018; O’Gorman et al., 2012; O’Gorman & Schneider, 2008) and atmospheric water demand 47 

(Q. Fu & Feng, 2014), along with distributional changes in precipitation intensity (Greve et al., 48 

2014; Hirabayashi et al., 2013; Schewe et al., 2014). The spatial patterns of these changes are 49 

driven by the coupling between radiative processes, cloud physics, and moisture advection, and 50 

are affected to a large degree by unpredictable internal variability in global atmospheric 51 

dynamics (Anderson et al., 2015; Greve et al., 2018; Greve & Seneviratne, 2015; Hawkins & 52 

Sutton, 2011; Samset et al., 2016). The modeled land-surface response to these changes is 53 

represented through parameterizations — as simple as single functions or as complex as a land-54 

surface biosphere model — and is rarely separated from the uncertain atmospheric drivers or 55 

confronted with observations (Berg et al., 2017). 56 

Water cycle changes are often summarized as changes in an aridity index — typically the ratio of 57 

mean precipitation (P) to mean potential evaporation (𝐸𝑜) — following well-known hydro-58 

climatological frameworks which suggest that this ratio is sufficient (under some assumptions) to 59 

determine land-surface water flux partitioning into evaporation and drainage/runoff (Budyko, 60 

1963; Oldekop, 1911; Roderick & Farquhar, 2011; Turc, 1954). Changes in both 𝐸𝑜 and mean 61 

precipitation may offset each other, potentially with no change in 𝐸̅/𝐸𝑜. Projected changes in 62 

storm characteristics, such as intensification of precipitation extremes (Kharin et al., 2013; 63 

O’Gorman & Schneider, 2009), are neglected in these frameworks.  64 

Land surface moisture fluxes are state dependent, however (Akbar et al., 2018; Haghighi et al., 65 

2018; Koster et al., 2018; Short Gianotti et al., 2019). Thus, changes in flux partitioning are 66 

better understood through (1) changes in the probability distribution of soil moisture (𝜃, the 67 

surface moisture state variable, highly inconsistent across models; Koster et al., 2009) and (2) its 68 

downstream impacts on evaporation (𝐸), surface runoff (𝑅), and drainage/percolation (𝐷). 𝐸 69 

determines surface temperatures and humidity through the surface energy balance. 𝐷 and 𝑅 70 

together determine streamflow and groundwater recharge, and will be assessed together in this 71 

study as 𝐷 (see discussion below). Both outfluxes, 𝐸 and 𝐷, depend nonlinearly on 𝜃. It is thus 72 

necessary to query observations of the land surface to see which changes in atmospheric forcings 73 

are expected to add linearly and which may be offsetting. 74 
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Observations of surface soil moisture (Entekhabi et al., 2010; O’Neill et al., 2016) and inferred 75 

surface moisture fluxes (Akbar et al., 2019) provide an opportunity to constrain these 76 

downstream variables. The use of historical observations to develop hydrologic response 77 

functions does not replace ESMs which couple the synchronous dynamics of atmospheric 78 

circulation, surface hydrology, and land-atmosphere feedbacks (Berg et al., 2016; Milly & 79 

Dunne, 2016; Swann, 2018). These observations instead provide a framework to assess the 80 

response of each component of the surface water balance to different climate perturbations free 81 

from model-imposed parameterizations. Additionally, daily time series allow finer temporal 82 

assessment of 𝜃 variations and the mechanisms of 𝐸/𝐷 partitioning, an advantage over use of 83 

historical annual means in other frameworks (Berghuijs et al., 2017; Greve et al., 2018; Roderick 84 

et al., 2014; Roderick & Farquhar, 2011). 85 

This motivates our research question: How will precipitation be partitioned into evaporation and 86 

subsurface drainage fluxes in a warmer climate with changes in potential evaporation (𝐸𝑜), mean 87 

precipitation (𝑃̅), and precipitation extremes? 88 

To address this question, we use an observation-driven framework to assess how key fluxes pull 89 

the landscape water balance in opposing directions in response to climate perturbations. We use 90 

hydrologic response functions estimated from historical precipitation and satellite soil moisture 91 

observations to (a) determine evaporative and drainage responses to precipitation forcing and soil 92 

moisture state. We then (b) use the retrieved E and D response functions to determine changes in 93 

warm-season fluxes across the Contiguous United States (ConUS) subject to perturbed (i) 𝐸𝑜, (ii) 94 

𝑃̅, (iii) precipitation extremes, and (iv) coincident changes in all three.  95 

As we will find, these perturbations lend themselves well to superposition and magnitude-96 

scaling, and so the choice of perturbation magnitudes is not particularly significant, except in 97 

relation to the magnitude of impact on E or D. 98 

We will compare the results to typical aridity-index (Budyko) methods for estimating changes in 99 

E and D and find that changes to the precipitation distribution/extremes are critical in E/D 100 

partitioning. Finally we calculate elasticities of E and D to changes in 𝐸𝑜, 𝑃̅, and precipitation 101 

extremes.  102 
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Methods 103 

Water balance model and parameter estimation 104 

To derive time series of surface soil moisture, evaporation, and drainage we follow the method 105 

of Akbar et al., (2019). Surface soil moisture for the summers (May-September) of 2015-2017 is 106 

modeled using an estimation approach with two objective functions to minimize squared 107 

differences between modeled surface microwave brightness temperatures and observations from 108 

the SMAP satellite (Entekhabi et al., 2010; O’Neill et al., 2016) while additionally conserving 109 

water mass. The problem is solved with an adjoint variational method where the water balance 110 

equation is incorporated using a Lagrange multiplier.  The water balance is driven by gridded 111 

gauge-based precipitation observations from NCEP’s Climate Prediction Center (Chen et al., 112 

2008) and determines effluxes of water from the homogeneous surface layer as 113 

Δ𝑧 ⋅
𝑑𝜃

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝜃) − 𝐷(𝜃)  #(1)  

 114 

where Δ𝑧 is the thickness of the surface layer, 𝜃 is the volumetric soil moisture (modeled as 115 

uniform within the layer), 𝑃(𝑡) is the precipitation rate, 𝐸(𝜃) is evapotranspiration to the 116 

atmosphere, and 𝐷(𝜃) is drainage losses to subsurface soil layers. Four parameters — 𝐸𝑜, 𝑏, 𝑐, 117 

and 𝑑 determine the shapes of the evaporation (𝐸) and drainage (𝐷) components: 118 

 119 

𝐸(𝜃; 𝐸𝑜, 𝑏) =  
1

2
⋅ (1 + tanh [8 (

𝜃

𝜙
−

1

1 + 𝑒−𝑏
+ 0.25)]) ⋅ 𝐸𝑜  #(2)  

 120 

𝐷(𝜃; 𝑐, 𝑑) = 𝑐 ⋅ (
𝜃

𝜙
)

𝑑

  #(3)  

 121 
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for porosity 𝜙. The parameters Δ𝑧, 𝐸𝑜, 𝑏, 𝑐, and 𝑑 are estimated in Akbar et al. (2019) for each 122 

36km SMAP pixel and create a forward water model for surface soil moisture given precipitation 123 

inputs and the previous soil moisture state. The loss functions (2) and (3) are intentionally 124 

flexible enough to span most plausible moisture/flux relations: 𝑏 shifts the evaporation function 125 

as a function of soil moisture, 𝑐 and 𝑑 are effective Clapp-Hornberger parameters (Clapp & 126 

Hornberger, 1978). The estimated Δ𝑧 determines the thickness of the surface layer that maintains 127 

hydrologic mass balance. An example loss function is shown for a location in Southern Iowa in 128 

Figure 1a. 129 

Climate Perturbations 130 

To begin we impose warm-season (MJJAS) climate perturbations as 3%, 6%, 9%, and 12% 131 

increases of 𝐸𝑜, 2.5%, 5%, 7.5%, and 10% increases in 𝑃̅, and 2.5%, 5%, 7.5%, and 10% 132 

increases in “heavy” (upper decile) precipitation, denoted 𝑃𝑋90. The values are selected as typical 133 

of the modeled global mean (including oceans) response to 1-4°C increases in global temperature 134 

(Fläschner et al., 2016; Hartmann et al., 2013; Kharin et al., 2013; Lambert & Webb, 2008; 135 

McVicar et al., 2012; Pall et al., 2007; Pendergrass et al., 2017; Samset et al., 2016; Scheff & 136 

Frierson, 2014), but this selection is somewhat arbitrary. We assert that these perturbations are 137 

not intended to represent real forecasts of future climate. Forecasts of perturbations at local scale 138 

will depend on uncertain changes in atmospheric water vapor dynamics (Anderson et al., 2015; 139 

Byrne & O’Gorman, 2015; Dai et al., 2018; Gianotti et al., 2014; Muller et al., 2011; Prein & 140 

Pendergrass, 2019; Romps, 2011; Sohn & Park, 2010; Thackeray et al., 2018; Vecchi et al., 141 

2006) and land-atmosphere-biosphere feedbacks (Greve et al., 2018; Greve & Seneviratne, 2015; 142 

Novick et al., 2016; Rigden et al., 2018), and must be estimated in fully-coupled settings (Berg et 143 

al., 2016; Berg & Sheffield, 2018; Milly & Dunne, 2016; Swann, 2018). Results from this study 144 

can then be applied to variable fields of perturbations. 145 

To investigate water demand-only effects, the 𝐸𝑜 parameter is perturbed at each location. 𝐸 146 

values from Equation 2 represent the soil moisture-conditioned mean-state evaporation, and 147 

hence 𝐸𝑜 represents the mean-state potential evaporation. 𝐸 itself varies at the timestep of our 148 

model (sub-daily), as it is driven by daily precipitation influxes and soil moisture states. See 149 

Figure 1b for loss function impacts. 150 
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In all scenarios, precipitation occurrence is unchanged, as is the timing of the ranked 151 

precipitation intensity (if the July 12
th

 rain event is the 10
th

 heaviest observed amount at a given 152 

location, this timing/ranking will remain true in all scenarios). The intensities themselves are 153 

altered by either: (a) increasing mean precipitation or (b) through an amplification of extreme 154 

events. To increase mean precipitation, intensities on all wet days are multiplied by a scaling 155 

factor 1 + 𝑚 ⋅ 𝑣, using 𝑣 = 0.025, 𝑚 = {1,2,3,4} (Figure 1c). Amplification of extreme 156 

precipitation re-allocates some precipitation from the dry tail of the intensity distribution to the 157 

wet tail in a manner which leaves both the mean and maximum precipitation unchanged (Figure 158 

1d and Supplementary Figure 1). See Supplementary Information for further details. Note that 159 

this re-allocation has no impact on 𝐸/𝐷 partitioning in the Budyko framework. 160 

Water Balance 161 

The time series of 𝜃, 𝐸, and 𝐷 are determined by integrating the water balance (1) using the CPC 162 

precipitation observations at 3-minute time steps and the parameters estimated in Akbar et al. 163 

(2019) (additionally, see Akbar et al., (2019) for validation of 𝜃 against SMAP Level 3 soil 164 

moisture retrievals, 𝐷 against gauged streamflow, and 𝐸 against flux tower latent heat flux 165 

measurements). Explicit Hortonian overland runoff is generated when precipitation influx 166 

exceeds the storage capacity of the entire pixel, but is rare at 36km scale using 3-minute time 167 

steps. Drainage from the surface layer drives both groundwater recharge and surface streamflow 168 

in this framework; the two are not estimated separately. Seasonal mean Hortonian runoff out of 169 

the saturated pixel is < 0.01% of seasonal mean precipitation for all locations. Adding this 170 

runoff to estimated drainage fluxes has no impact on the results. 171 

We integrate the water balance (1) using the observations (Figure 1a), the altered potential 172 

evaporation parameter (𝐸𝑜 experiment — Figure 1b), the altered precipitation through scaling (𝑃̅ 173 

experiment — Figure 1c), and the altered precipitation through amplification of extremes (𝑃𝑋90 174 

experiment — Figure 1d) independently to determine perturbative effects on evaporation and 175 

drainage partitioning. An example of each experiment is shown for a single summer in Figure 1. 176 

We also integrate the water balance with all interacting effects (Combined experiment) for 177 

analysis. In each case, the dynamics by which the probability distribution of soil moisture plays 178 
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out through the moisture-dependent flux functions determine the aggregate flux partitioning into 179 

E and D. 180 

Results 181 

As found previously (Akbar et al., 2019), warm season continental evaporation under present 182 

conditions is generally larger than drainage by a factor of 2 or more (Figure 2a). As shown in 183 

Figure 1b, increasing 𝐸𝑜 shifts the PDF of soil moisture towards drier states, decreasing the D 184 

component faster than the E component. E increases (and D decreases) by roughly 0.05-0.1 185 

mm/day for a 3% increase in 𝐸𝑜 in the wettest regions (Figure 2b), with notable changes in the 186 

Eastern ConUS, and minimal changes in the already water-limited West.  187 

Increasing water supply through increased precipitation (𝑃̅ experiment; Figure 2c) leads to 188 

increases in both E and D as expected, with larger magnitude increases in D in wetter, more 189 

energy-limited regions and larger magnitude increases in E in drier, more water-limited regions 190 

(effectively defined by the typical 100
th

 parallel arid/humid division of ConUS hydroclimate). 191 

Drainage is essentially unchanged in arid regions, where existing 𝐸𝑜 dominates surface fluxes. 192 

The shift in the soil moisture marginal distribution does not significantly increase drainage in 193 

these arid regions since the drainage function (steep only for wetter soils) is largely insensitive to 194 

soil moisture under drier conditions (see Fig. 1a). 195 

The redistribution of precipitation from light rainfall days to heavy days (𝑃𝑋90 experiment; 196 

Figure 2d) leads to near-universal increases in D at the expense of E. This is perhaps expected 197 

due to the sensitivity of hydraulic conductivity to soil moisture, but not a priori certain due to the 198 

complex interplay of precipitation regimes, climatic conditions, and soil texture controls on 199 

evaporative and drainage fluxes. The dominant impacts in the Eastern US highlight the role the 200 

wet end of the precipitation and soil moisture distributions can play in seasonal-scale water 201 

budgets, effectively offsetting 𝐸𝑜 (atmospheric demand) changes in 2b with no change to the 202 

seasonal supply. 203 

When integrating the water balance using the combined forcings of the 𝐸𝑜, 𝑃̅, and 𝑃𝑋90 204 

experiments, we find near-universal increases in both mean E and D across the range of changes 205 

to 𝐸𝑜 and precipitation (Figure 2e). As with the subcomponents shown in 2b-d, D is primarily 206 
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impacted in the Eastern ConUS, while E has more-nearly-equivalent magnitude changes across 207 

climate gradients for equivalent boundary condition perturbations. Recall that water supply 208 

changes in these experiments are driven by equivalent relative changes, e.g., 5% of local mean 209 

precipitation, rather than absolute changes in mm/day. Mean soil moisture decreases universally 210 

across the ConUS as well for the combined experiment (Supplementary Figure 2), which is also 211 

projected in coupled model experiments (Gu et al., 2019). The largest magnitude decreases occur 212 

in the Ohio and Mississippi River Valleys, effectively shifting the arid/humid transition zone to 213 

the East. 214 

On average across the ConUS, a 3% increase in 𝐸𝑜 alone (spatial average of leftmost column of 215 

Figure 2b) increases 𝐸 by a little more than 3 mm over a single warm season (0.017 mm/day or 216 

1% of the ConUS-averaged 𝐸). A 2.5% increase in mean precipitation increases 𝐸 by a little 217 

more than 5 mm, and a 2.5% increase in the upper decile of precipitation (transferred from the 218 

driest days) decreases E by 2.6 mm. The combined effect is an average 5.6 mm, 1.5% of the 219 

ConUS average, and equivalent to a roughly 0.82 W/m
2
 latent heat equivalent. These are all 220 

roughly an order of magnitude larger than the corresponding (same sign) changes in surface soil 221 

moisture storage. 222 

Water balance sensitivities to climate perturbations using superposition 223 

In Figure 2 — while each location is driven by the unique local characteristics of the retrieved 224 

moisture loss functions — all locations are subject to identical relative perturbations, which 225 

would not be the case in a broader future climate change scenario. We investigate the impact of 226 

the relative perturbation magnitudes on the combined (Figure 2e) experiment in Supplementary 227 

Figures 3-5 and find similar spatial patterns with changes in E/D partitioning magnitudes. 228 

Exploring every combination of 𝐸𝑜, 𝑃̅, and 𝑃𝑋90 perturbations is infeasible, and it prompts the 229 

question of how significant the interactions of multiple simultaneous perturbations is on changes 230 

to E/D partitioning.  231 

We find that adding the change in evaporation Δ𝐸 (or changes in drainage Δ𝐷) from each of the 232 

𝐸𝑜, 𝑃̅, and 𝑃𝑋90 perturbations modeled independently is quite similar to the Δ𝐸 from imposing 233 

the perturbations separately. Figure 3a shows the difference between the rightmost column of 234 

Figure 2e (𝐸𝑜 + 12%, 𝑃̅ + 10%, and 𝑃𝑋90 + 10%, all perturbations simultaneously) and the sum 235 
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of the rightmost columns of Figure 2b-d. Errors are on the order of 1% or less, suggesting 236 

counterintuitively small impact of interactions between moisture supply and demand when 237 

averaged over the warm season. 238 

We also find that scaling the impact of a perturbation is a close approximation of the impact of a 239 

scaled perturbation. Figure 3b shows the error in estimating Δ𝐸 in the rightmost column of 240 

Figure 2e (𝐸𝑜 + 12%, 𝑃̅ + 10%, and 𝑃𝑋90 + 10% simultaneously) as four times Δ𝐸 in the 241 

leftmost column (𝐸𝑜 + 3%, 𝑃̅ + 2.5%, and 𝑃𝑋90 + 2.5% simultaneously). Just as for 242 

superposition errors (combining different types of perturbations), combining multiple, say, 3% 243 

perturbations of 𝐸𝑜 to get a 12% 𝐸𝑜 perturbation works quite well.  Errors are on the order of 2% 244 

or less in terms of Δ𝐸, and much less in terms of the total 𝐸 + Δ𝐸 estimate for the season. 245 

Comparison with aridity-index approach: The Budyko framework misses important dynamics 246 

The integration of the water balance in (1)-(3) results in time series of 𝐸 across the ConUS, 247 

which can then be used to fit the spatially-varying 𝑛 parameter of the standard 248 

hydroclimatological Budyko curve (Choudhury, 1999) for each pixel location: 249 

𝐸

𝐸𝑜
=

𝑃

(𝑃𝑛 + 𝐸𝑜
𝑛)

1
𝑛

#(4)  

Without the actual evaporation (𝐸) time series, 𝑛 is typically either assumed constant (often 250 

𝑛 = 2 as from Turc [1954], although for a single continent-wide fit we find better fit with 251 

𝑛 = 2.24), or 𝑛 comes somewhat circularly from land surface model output, where the internal 252 

functions driving water flux partitioning are themselves parameterized. We emphasize that using 253 

model output to fit these hydroclimatological parameters without some ingested water cycle data 254 

will necessarily return results based largely on the parameters used to drive the same land surface 255 

model. We fit 𝑛 for each pixel using monthly aggregated values across the warm season using 256 

total least-squares (or “errors in variables”) regression (Figure 4a), giving a spatial map of the 𝑛 257 

parameter (Figure 4b). This 𝑛 estimation technique is independent of these circularities arising 258 

from use of land surface model outputs. 259 
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Changes in evaporation (Δ𝐸) due to perturbations of 𝐸𝑜 and 𝑃̅ alone are similar for the 260 

framework in this study and the Budyko-based method (Figure 4c, 𝑟2 = 0.88 for 𝐸𝑜 + 12%, 261 

𝑟2 = 0.96 for 𝑃̅ + 10%, similar for Δ𝐷 and for smaller perturbations), but with some bias. 262 

Errors between the methods are nearly entirely explained by changes in surface moisture storage, 263 

and the Budyko method’s evaporation bias for increased 𝑃̅ is similarly due to neglecting the shift 264 

in mean soil moisture towards wetter, more drainage-favorable conditions.  265 

Changes in the distribution of precipitation intensities, however, have no representation in the 266 

Budyko framework (Figure 4c Δ𝑃𝑋90 + 10%), and can be a major player in the partitioning of E 267 

and D (bias in Δ𝐸 by a factor of 2, and 𝑟2 = 0.58 for all effects combined). 268 

Elasticity of evaporation and drainage to 𝑬𝒐, 𝑷̅, and extreme 𝑷 perturbations 269 

To assess relative impacts with more spatial granularity, we calculate the rate of change of each 270 

hydrologic response to a given climate perturbation (Supplementary Figure 6). When 271 

normalized, these are elasticities of fluxes to perturbations (Andréassian et al., 2016; Chiew, 272 

2006; G. Fu et al., 2007; Risbey & Entekhabi, 1996; Sankarasubramanian et al., 2001; Yang & 273 

Yang, 2011). These elasticities are calculated as regression slopes of 𝐸 versus 𝐸𝑜 (normalized by 274 

observed 𝐸/𝐸𝑜) for 0-12% changes in 𝐸𝑜, of 𝐸 vs 𝑃̅  (normalized by observed 𝐸/𝑃̅) for 0-10% 275 

changes in 𝑃̅, and of 𝐸 vs 𝑃𝑋90 (normalized by observed 𝐸/𝑃𝑋90) for 0-10% changes in 𝑃𝑋90 — 276 

where 𝑃𝑋90 is the amount of precipitation in the upper decile of the observed precipitation 277 

distribution. 𝑃𝑋90 increasing by 5% represents the wettest days originally providing 10% of 278 

seasonal average precipitation now provide 10.5% of seasonal precipitation, and the driest days 279 

contributing 0.5% of seasonal precipitation now see no rain. Elasticities for drainage are 280 

calculated similarly. 281 

Evaporation is more sensitive to relative changes in 𝑃̅ than 𝐸𝑜 (both positive elasticities) in 74% 282 

of ConUS pixels, and drainage is more sensitive to relative changes in 𝑃̅ than 𝐸𝑜 in 99% of 283 

pixels. Differences between these numbers are due to the difference in effect of surface soil 284 

drying/wetting for E and D (i.e., transient climate change effects of changes in storage). The 285 

general finding that a 1% change in moisture supply 𝑃̅ has a larger impact on downstream fluxes 286 
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than a 1% change in moisture demand 𝐸𝑜 is typical of elasticity studies using aridity index 287 

frameworks and modeled evaporation data (Berghuijs et al., 2017). 288 

Drainage elasticities to change in mean potential evaporation 𝐸𝑜 and mean precipitation 𝑃̅ are an 289 

order of magnitude larger than for 𝐸, and with opposing signs (Supplementary Figures 6d and 290 

6e). The shifts in precipitation extremes 𝑃𝑋90 has equivalent magnitude as shifts in 𝑃̅, amplifying 291 

the impacts on drainage. 292 

Separating the ConUS into East and West halves (Supplementary Figure 7) leads to average 𝐸 293 

increases of 0.17 mm/day per each additional 1 mm/day of 𝐸𝑜 in the East (aggregate elasticity of 294 

0.34) versus 0.05 mm/day in the West (aggregate elasticity of 0.28). East (West) ConUS 𝐸 295 

increases by 0.35 (0.66) mm/day per 1 mm/day of additional 𝑃̅, an aggregate elasticity of 0.48 296 

(0.72). By changing precipitation extremes, 𝐸 in the East (West) decreases 0.62 (0.34) mm 297 

seasonally per 1 mm of precipitation reallocated to wet days from dry days, an aggregate 298 

elasticity of -0.30 (-0.14). Actual evaporation increases slightly with increased extremes in the 299 

most arid pixels (Supplementary Figures 6 and 10) due to a shift of the soil moisture PDF from 300 

“Stage III” evaporation to “Stage II” evaporation, but magnitudes of both fluxes are vanishingly 301 

small.    302 

Discussion and Conclusions 303 

This study assesses the responses of evaporation and soil drainage to changes in potential 304 

evaporation, mean precipitation, and the distribution of daily precipitation intensities using a 305 

water balance framework developing observed fields of surface soil brightness temperatures and 306 

precipitation alone. These response sensitivities have been previously calculated using models, 307 

but we argue that modeled sensitivities are inherently determined by land surface 308 

parameterizations of evapotranspiration and soil moisture pedotransfer functions. This study 309 

confronts these sensitivities with data directly—in an “offline” mode with no representation of 310 

feedbacks (e.g., canopy conductance) other than that captured in the water cycle observations—311 

and thus serves as a partial derivative of land surface moisture fluxes to climate perturbations, 312 

holding feedbacks constant. We claim that this uncoupled (but data-driven) approach serves as a 313 

necessary counterbalance to data-blind models (but with fully coupled dynamics), and we 314 



Confidential manuscript submitted to Geophysical Research Letters 

 

advocate for future assimilation and reanalysis schemes incorporating dynamical land surface 315 

and vegetation data streams. 316 

We find that the E/D partitioning response to climate perturbations is generally additive and 317 

scalable (Figure 4). This is unexpected, given the nonlinearity of the loss functions and time 318 

series responses shown in Figure 1, but may prove quite useful in both parameterized land 319 

surface schemes in global climate models and in estimating climate impacts from the output of 320 

GCMs with simplified land surface hydrology representations. As an example, locally-estimated 321 

climate sensitivities for 𝐸𝑜, 𝑃̅, and 𝑃𝑋90 to surface temperature changes from a coupled model 322 

could be multiplied by the perturbation responses in Figure 2b-d for temperature-driven future 323 

scenario estimation of water flux partitioning.  324 

There are, however, many processes that could change this linearity, including land-cover 325 

change, changes to seasonal water storage (snowpack), and land-atmosphere feedbacks such as 326 

convective triggering and changes in vegetation-controlled surface conductance and water-use 327 

efficiency. We hypothesize that the major non-linearities occur around the transition from water-328 

limited to energy-limited states; thus, this simple additivity is unlikely to hold for shifts large 329 

enough to transition between moisture regimes (see the Central Plains, Supplementary Figure 8). 330 

Our method for amplifying precipitation extremes is simple, and one of many possible 331 

approaches to represent this process. Actually characterizing the local changes to the 332 

precipitation distribution as a function of global mean temperature changes is likely empirically 333 

intractable, due to the magnitude of internal variability relative to low-frequency signals 334 

(Gianotti et al., 2014). Similarly, we do not investigate changes in the timing of precipitation (Pal 335 

et al., 2013) or storm/interstorm durations, which might expose more of the nonlinearity of the 336 

land surface flux partitioning. The results of these investigations would only be as robust as our 337 

estimation of the climate signal itself, which remains highly uncertain at this time. 338 

While the superposability and scaling of impacts of climate perturbations is similar to the 339 

assumptions of aridity-index based hydroclimatology frameworks (Budyko), we find differences 340 

between these frameworks and our observation-driven scheme. These differences include large 341 

biases in changes to evaporation and drainage when precipitation extremes change (Figure 4). 342 

This suggests that mean-state conditions alone (𝐸𝑜, seasonal 𝑃 totals) are not sufficient to 343 
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characterize changes to land-surface wetting of the atmosphere and surface- and ground-water 344 

resource supplies under changing climate scenarios. 345 

Two major consequences of using our more process-based representation over a steady-state 346 

aridity-index formulation are 1) that transient changes in water storage (not part of the Budyko 347 

scheme) are significant for global change scenarios which display trends/shifts in surface 348 

moisture regimes, and 2) that assumptions embedded in aridity-index frameworks where E/D 349 

partitioning responds identically to a 10% increase in seasonal precipitation as to a 10% decrease 350 

in 𝐸𝑜 neglect the significant nuance of water balance dynamics. We argue that both of these 351 

effects are important, and that the dynamic system state of (2) — summarized here as the 352 

probability distribution of soil moisture — plays a role in the long-term average E and D 353 

partitioning. This is shown clearly in the 𝑃𝑋90 experiment in Figures 2d, 4c, and 5c,f. 354 

GCM studies suggest trends towards drier warm season surface soils, but perhaps wetter 355 

subsurface soils (Berg et al., 2017), which align with our global mean-state perturbation 356 

experiments (Figure 2e and Supplementary Figure 2). We argue that this is the expected 357 

consequence of an increase in both water supply and water demand, and that these trends are 358 

likely to only be amplified by increases in precipitation extremes (heavy days and dry spells). 359 

The results of this study suggest that caution is necessary when viewing land surface conditions 360 

through a simple aridity lens when asking questions about global change. The downstream 361 

responses to water supply and demand will depend on the dynamics and distribution of land 362 

surface state variables (e.g., soil moisture). Changes in these state variables will more directly 363 

determine how the continental water cycle responds to global climate change. 364 
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 566 

Figure 1: Example evaporation and drainage loss losses for observations and experimental 567 

perturbations for a location in Southern Iowa, summer 2015. a) Retrieved evaporation (E) 568 

and drainage (D) loss functions; observed precipitation (P); and time series of soil moisture (𝜃), 569 

E, and D based on observations.  Grey shaded regions show the marginal probability density 570 

(PDF) of soil moisture 𝑓(𝜃). Blue bars show daily precipitation with accompanying PDF for wet 571 

days. Black line, orange line, and green markers show 𝜃, E, and D time series (E and D shown 572 

on right axis). Orange (green) bar shows E’s (D’s) fractional contribution to seasonal outfluxes 573 

from the land surface. b) Same as (a), except for the increased potential evaporation (𝐸𝑜) 574 

experiment using the orange dashed line for 𝐸(𝜃). Precipitation unchanged, but 𝑓(𝜃) moves 575 

towards drier conditions where E losses dominate D. c) Same as (a) except for with increased 576 

daily precipitation, shown as red bars above observed (blue) precipitation bars. 𝑓(𝜃) (in red) 577 

shifts to wetter conditions, increasing D. d) Same as (a) except with increased precipitation 578 

extremes (mean and maximum daily P unchanged). Red P bars show added precipitation on wet 579 

days, taken from an equal amount of precipitation removed on drier days. 𝑓(𝜃) (in red) increases 580 

the wet tail at the expense of the dry tail, leading to increased D 0.and reduced E. 581 

 582 

 583 
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 586 

Figure 2: Evaporation, drainage, and hydrologic sensitivities to climate perturbations. a) 587 

Mean evaporation (E) and drainage (D) for warm season 2015–2017 from the estimated loss 588 

functions and climate perturbations. b) First column shows changes Δ𝐸 and Δ𝐷 relative to (a) for 589 
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a 3% increase in 𝐸𝑜. Columns 2–4 show impacts for 𝐸𝑜 increases of 6%, 9%, and 12%. 590 

Evaporation increases across the ConUS and drainage decreases, with the most substantial 591 

changes in the energy-limited East. c) Same as (b) but for perturbations to 𝑃̅. d) Same as (b) but 592 

for increases in extreme precipitation (percentages show heaviest decile increase — no change in 593 

𝑃̅). e) Changes in mean E and D when simultaneously combining the impacts of increased 𝐸𝑜, 𝑃̅, 594 

and precipitation extremes. 595 
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 597 

Figure 3: Superposability and scaling of individual perturbations. a) The percentage error in 598 

evaporation when adding the individual 𝐸𝑜, mean P, and extreme P perturbations (the sum of the 599 

rightmost column of Figure 2b-d) in place of the fully-coupled system (rightmost column of 600 

Figure 2e). b) The percentage error in evaporation when assuming linear temperature-equivalent 601 

scaling of perturbations (4 times the leftmost column of Figure 2e in place of the rightmost 602 

column of Figure 2e). Both the superposition errors and the scaling errors are small (~1-2%), 603 

suggesting that the effects shown in Figure 2b-d can be combined and scaled directly based on 604 

local estimated climate sensitivities of 𝐸𝑜, 𝑃̅, and P extremes. See also Supplementary Figures 8-605 

9. 606 

 607 

608 
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 609 

Figure 4: Comparison with Budyko hydroclimatological framework. a) The classical 610 

Budyko curve fit to a single location. Each point is a month of mean evaporation 𝐸̅ versus mean 611 

precipitation 𝑃̅, both normalized by potential evaporation 𝐸𝑜. Evaporation time series and 612 

estimated potential evaporation are from the integration of the water balance (1)-(3). Lines show 613 

the shift in 𝐸̅/𝐸𝑜 that follows a change in  𝑃̅/𝐸𝑜 by changing 𝐸𝑜 (red) or 𝑃̅ (blue). Equal 𝐸𝑜 and 614 

𝑃̅ changes cancel each other. b) The estimated Budyko 𝑛 parameter for each location: 𝐸̅ =  𝑃̅ ⋅615 

𝐸𝑜 ⋅ (𝑃̅𝑛 + 𝐸𝑜
𝑛)−

1

𝑛. c) Comparison of changes in evaporation Δ𝐸 versus the Budyko method. 616 

Plots show comparison for increased 𝐸𝑜, increased 𝑃̅, increased precipitation extremes (𝑃𝑋90), 617 

and all simultaneous effects combined. Colors show mean soil moisture calculated as part of the 618 

water balance. Bias in increased 𝑃̅ comparison due primarily to changes in soil water storage. 619 

Bias in All Effects comparison due primarily to impact of precipitation extremes. 620 
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