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After transformation, dimensionality reduction, trend removal, time-delayed supervision, and regression analyses, model training initializes 
2.51M parameters and high dimensional, time-variant multimodal datasets, e.g., 13.1M in situ measurements, 8.06B airborne observations, 
7.48B model outputs.

The GeoCryoAI architecture is constructed with stacked convolutionally-layered memory-encoded recurrent neural networks optimized with a 
hyperparameter dictionary and a Bayesian Optimization search algorithm. Feedback nonlinearities are emulated with ground-truth teacher 
forcing and module reconstruction functions (i.e., consolidated tabular time-series layer processing and sequential time-distributed convolving 
layers).

SIGNIFICANCE AND FUTURE WORK
Frozen soil and carbon-rich permafrost characterizes approximately 14 million square 
kilometers globally, with soil organic carbon stock estimated at 130±170 PgC 
(Hugelius et al., 2014). Thaw-induced carbon release is a climate change catalyst and 
when coupled with anthropogenic-induced warming trigger, accelerate, and sustain a 
positive nonlinear carbon-climate feedback for hundreds of thousands of years 
(Schuur et al., 2015). The variability of thaw-induced carbon release and feedback 
mechanisms challenge efforts to quantify the magnitude, rate, and extent of the 
permafrost carbon feedback (PCF; Miner et al., 2021).

Due to spatiotemporal limitations, instrument constraints, and other challenges in the 
high latitudes (e.g., frequent cloud cover, short summer periods, low illumination 
angles), the ability to quantify or infer thaw variability with high confidence is restricted 
with remote sensing platforms (Gay, 2023; Esau et al., 2023). Moreover, subroutines 
and interactions governing earth system models vary widely, often overlooking the 
dynamics and long-term impacts of the PCF (Li et al., 2017; Randall et al., 2007). 
Fortunately, artificial intelligence (AI) optimizes complex earth system data 
processing, captures nonlinear relationships, and improves model skill and 
uncertainty quantification.

RESULTS
Evaluation of time-delayed naïve persistence and GeoCryoAI simulations yielded the 
following error metrics (RMSE) with loss functions and predictions illustrated in the 
plots below: ALT: 1.997cm, 1.327cm [1969-2022]; CH4: 0.884nmolCH4m-2s-1, 
0.715nmolCH4m-2s-1 [2011-2022]; CO2: 1.906µmolCO2m-2s-1, 0.697µmolCO2m-2s-1 
[2006-2019].

This study underscores the significance of thaw-induced climate change 
exacerbated by the PCF and highlights the importance of resolving the 
spatiotemporal variability of ALT as a sensitive harbinger of change. Ongoing 
research elucidates on the PCF and delayed subsurface phenomena by (1) 
expanding the flexibility and knowledge base of the model with current and future 
missions to minimize loss and improve performance (e.g., AVIRIS-3, UAVSAR, 
TROPOMI, PREFIRE, NISAR, CRISTAL; UAS DSMs; TIR), and (2) generating 
Circumarctic zero-curtain space-time maps to distribute to the State of AK, First 
Nations/Native Corporations, and the USGS as a JPL-led first-order effort to engage 
leadership and identify cross-sector risks at local, state, regional, and global levels 
(e.g., critical infrastructure damage, disturbance tipping points, cultural 
vulnerabilities). Datasets, code, and notebooks are distributed in a GitHub repository.
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MOTIVATION
This study leverages a hybridized multimodal ensemble learning formulation 
(GeoCryoAI) with site-level in situ measurements, remote sensing observations, and 
modeling outputs across the tundra and boreal landscapes in Alaska. The objective is 
to disentangle the drivers of change by constraining, scaling, and simulating the 
control factors contributing to the PCF signal to better understand periglacial 
processes, carbon-climate interactions, biogeochemical relationships, and the hidden 
determinants of ecological memory in the high latitude earth system.
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