Table 1. Information of the study cases, including the name of mainstream rivers and the corresponding tributary rivers, the length of the river reaches for modeling, the validation datasets and location, and the values of the calibrated parameters organized with the order of upstream low-flow depth (m), downstream low-flow depth (m), beta and Strickler roughness coefficient (m1/3/s), calibration and validation results.
References
Frias, M.C., Liu, S., Mo, X., Nielsen, K., Ranndal, H., Jiang, L., Ma, J., Bauer-gottwein, P., 2022. River hydraulic modelling with ICEsat-2 land and water surface elevation 1–27.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., Pappenberger, F., 2020. GloFAS-ERA5 operational global river discharge reanalysis 1979-present. Earth Syst. Sci. Data 12, 2043–2060. https://doi.org/10.5194/essd-12-2043-2020
Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L., 2015. SPOTting model parameters using a ready-made python package. PLoS One 10, e0145180.
Kittel, C.M.M., Hatchard, S., Neal, J.C., Nielsen, K., Bates, P.D., Bauer‐Gottwein, P., 2021. Hydraulic model calibration using CryoSat‐2 observations in the Zambezi catchment. Water Resour. Res. 1–19. https://doi.org/10.1029/2020wr029261
Lawrence, D.S., 2007. Analytical derivation of at-a-station hydraulic-geometry relations. J. Hydrol. 334, 17–27. https://doi.org/10.1016/j.jhydrol.2006.09.021
Lehner, B., Liermann, C.R., Revenga, C., Vörömsmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf, N., Wisser, D., 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502. https://doi.org/10.1890/100125
Liu, J., Jiang, L., Bandini, F., Kittel, C.M.M., Balbarini, N., Hansted, N.G., Grosen, H., Bauer-Gottwein, P., 2021. Spatio-temporally Varying Manning Roughness in Rivers and Streams: A calibration approach using in-situ water level and UAS altimetry.
Ma, Y., Xu, N., Liu, Z., Yang, B., Yang, F., Wang, X.H., Li, S., 2020. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 250, 112047. https://doi.org/10.1016/j.rse.2020.112047
Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., Brunt, K.M., Cavanaugh, J., Fernandes, S.T., Hancock, D.W., Harbeck, K., Lee, J., Kurtz, N.T., Luers, P.J., Luthcke, S.B., Magruder, L., Pennington, T.A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., Thomas, T.C., 2019. The Ice, Cloud, and Land Elevation Satellite – 2 mission: A global geolocated photon product derived from the Aadvanced Ttopographic Llaser Aaltimeter Ssystem. Remote Sens. Environ. 233, 111325. https://doi.org/10.1016/j.rse.2019.111325
Paris, A., Dias de Paiva, R., Santos da Silva, J., Medeiros Moreira, D., Calmant, S., Garambois, P., Collischonn, W., Bonnet, M., Seyler, F., 2016. Stage‐discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin. Water Resour. Res. 52, 3787–3814.
Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M., 2016. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016. https://doi.org/10.1186/s13634-016-0383-6
Vatankhah, A.R., 2020. Optimum simple and complex power-law channels. SN Appl. Sci. 2, 1–18. https://doi.org/10.1007/s42452-020-03197-w
Vreugdenhil, C.B., 1994. Numerical methods for shallow-water flow. Springer Science & Business Media.
Xu, N., Ma, X., Ma, Y., Zhao, P., Yang, J., Wang, X.H., 2021. Deriving Highly Accurate Shallow Water Bathymetry from Sentinel-2 and ICESat-2 Datasets by a Multitemporal Stacking Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 6677–6685. https://doi.org/10.1109/JSTARS.2021.3090792