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1. Background and Zeolitic Test Results 2. Physical Processes 3. Vitric Tuff Results
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model and parameter estimation) for simpler test execution in the laboratory (i.e., a where weathering of volcanic glass occurs. Jitric tuff sample - a 1
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Previous work (Kuhlman et al., 2022b) monitored the wetting front progress with B 28 Gas molecules that adsorb onto a wetting ) d .g B | e f i
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images. We monitored the change in temperature in the core using resistance v o |8 surface are at a lower chemical potential : : 2 [LR L T > |
. : . N Y . 9217 NI cModules), while electrical g 0 T Tt T =
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constant-head Mariotte bottle (Fig 2), while £ Liquid may pr.esent an even lower chemlcal. | through a WireFlow 3132 multiplexer. | time since imbibition began [sqrt(hr)]
L : potential than planar surfaces, resulting in , _ Fig 8. Temperature rise using RTDs (bottom) and
monitoring the temperature at locations along the - The measured electrical resistance drops resistance (top) vs. square root time for vitric tuff core
. . . a comparatively large release of energy for . PJVs. 59
sides of the sample. Electrical resistance across the ) : two orders of magnitude when the
: Water on vapor adsorption (Zotgdek-Nowak et al., . : 7200
sample itself was also measured. POroUs 2012) wetting front moves past an observation o
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the arrival of the thermal front. The wetting front ‘ i Fig 6 illustrates the two mechanisms drop (top) and peak temperature s
height was estimated from images and from the Fig 1. Zeolitic tuff core sample (left) e Open to air ™\ that release energy during an (bottom), along with times and heights “ .
mass of water imbibed data (Fig 3). with RTDs attached (right) used in imbibition test. are plotted as points in Fig 10. The three 20 .
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Fig 3. Mass imbibed (black) wetting front observed Sample holdgr (upper left), Maric?t’-ce- bottle Exrliar ator . . , . 14 , . .
visually (A ) and via RTDs () vs. root time for zeolitic on balance (right), and data acquisition Fig 7 shows the . E The vitric tuff (Fig 10) has an estimated permtlegblllty of 3.1x10 m?, while the zeolitic tuff in (Fig
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