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German city, Hamburg, where storm surge at |
coast & high discharge at Elbe combine
into CCF (Climatechange post, 2020)



https://www.climatechangepost.com/news/2020/3/10/compound-flooding-northwestern-europe-floods-coast/

Introduction

COMPOUND FLOODING: A MANUAL OF PRACTICE

Top 10 Highest Historical 24-Hour Rainfall
Storm Surge Crests During Storm Surge
(NAVD 88 Feet) (Inches)
10/29/2012 14.1 Superstorm Sandy 0.5
09/12/1960 10.0 Hurricane Donna 3.8
12/11/1992 9.7 Unnamed 2.8
08/28/2011 9.5 Hurricane Irene 3.1 Source: NOAA, at NY, JFK Int'l Airport

Country Surge Height Max. 24-hour Source
(feet) Rainfall (inch)
11/12/2019 Venice, Italy 6.1 HANZE v2.1
10/29/1999 | Paradip, India Up to 24 18.4 Kalsi, 2006; Sahoo &
Bhaskaran (2018)
10/12/2013 Phailin, India 11.5 15 CEDIM (2013)



https://essd.copernicus.org/preprints/essd-2023-321/
https://mausamjournal.imd.gov.in/index.php/MAUSAM
https://www.sciencedirect.com/science/article/pii/S2212094718301695?via%3Dihub
https://www.cedim.kit.edu/english/2873.php
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COMPOUND FLOODING: A MANUAL OF PRACTICE

» Orderly presentation of facts, supplemented by analyses of limitations and
applications

» Offers useful information & tools to the practicing engineers & decision makers

» MoP is in preparation under aegis of ASCE; will undergo review and approval by
a Blue Ribbon Panel of experts & executive committee.

e Committee on Technical Advancement

o Committee on Adaptation to a Changing Climate formed in 2011 to evaluate the
technical requirements & engineering challenges to adapt changing climate

= Technical Committee on Hydroclimatology and Engineering Adaptation
« Task Committee On Compound Flooding
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Compound Flooding

Simultaneous or sequential floods due to meteorological, hydrologic & oceanographic drivers

Key Elements

e Involvement of multiple drivers within
concise time window

* Extremeness of impact

e Statistical interdependency

Neglecting interdependence b/n driver
may lead to over/underestimation of
hazard potential

I. Background
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Physical Drivers Mediating Compound Flooding

Driving Mechanisms

« High coastal water levels impacting river flow

2 Flood-forcing due to backwater effect - prominent <10 m
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I. Background



Hydrodynamic Process-Based Models of
Compound Flooding

COMPOUND FLOODING: A MANUAL OF PRACTICE

 Rainfall and Runoff

* Riverine Flows
« Coastal dynamics
 Coupling between these processes

* Important inputs for accurately capturing inundation

Coastal Storms

AN




In Low-lying coastal areas storm surge and rainfall-runoff in coastal watersheds

are not necessarily mutually exclusive hazards

Rainfall-Runoff Processes

Subcatchment data: Width, Area, Percent
Imperviousness, Ground Slope, Manning’s
n for impervious and pervious areas,
Infiltration rate paramelers

HEC-HMS, SWMM, SWAT,
WRF-HYDRO, PRMS Riverine Models

1D/2D HD Models < HEC-RAS,

P DFLOWFM 1D
1D flow network in combination

with 2/3D coastal simulation

II. Hydrodynamic Process-based Models of Compound Flooding

Santiago-Collazo et al. (2019)



https://www.sciencedirect.com/science/article/pii/S1364815219302853?via%3Dihub

Coastal Processes

Wave Models Coastal Circulation Models
= Simulating Waves Nearshore (SWAN)

= Wave Watch Il = ADCIRC

= Xbeach = COAWST/ROMS

» Delft3d/Flexible Mesh

= Princeton Ocean Model

= MIT GCM

» Sea, Lake, and Overland Surges
from Hurricanes (SLOSH)

= Stanford Unstructured Navier
Stokes (SUNTANS)

= Finite Volume Coastal Ocean
Model (FVCOM)

II. Hydrodynamic Process-based Models of Compound Flooding



Modelling Compound Flood Requires Coupling Different Processes-based Models

Coupling Methods S .
Technique S/ mputy i) | __
One-way Computations that are transferred # ' - Prreo L tputy/

from one model and used as an |
input in another (i.e. linking

technique) - e
Loosely Separately-running models are uitiitarnputiet ¢
coupled using information exchange ' " Al Dutputy
in an iterative manner (i.e. two-way v
coupling) Modelg |
Tightly Independent models are integrated

Fully Coupled

into a single modeling framework by m lightly—Coupled ) |
combining their source code / Inputug / / Inputass

Fully Governing equations of all the v #
physical processes considered are | o
solved simultaneously within the

Maodel ,
same modeling framework
Mod .‘|;+ :
Source: Santiago-Collazo et al. (2019) I I }
Modelg

II. Hydrodynamic Process-based Models of Compound Flooding



https://www.sciencedirect.com/science/article/pii/S1364815219302853?via%3Dihub

Joint Probability Method (JPM)

Tropical
. Cyclone

JPM is a probabilistic approach for hurricane/tropical cyclone
(TC) storm surge and flood frequency analysis
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. Linking StatiSticaI and Process COMPOUND FLOODING: A MANUAL OF PRACTICE
Based Models PN

Common practice for flood hazard assessment is based on
univariate metrics: analyzes flooding mechanism in isolation. 05

@ NOAA Atlas 14 Guidance for Flood Risk

Precipitation-Frequency Atlas Analysis and Mapping
of the United States

Guidelines for Determining Flood Flow Frequency
Bulletin 17C

@

Vokime 11 Version 2.0: Texas Coastal Flood Frequeney and
Extreme Value Analysis

Sanja Periea, Sandia Paviovie, Michael 51 Laurent,
Canl Trypakuk, Date Unnoh, rian Witvis

Natonal Ocsanc November 2016

Admisiviration Techniques and Mathods 4-85
NNNNNNN ot Version 1.1, May 2018

¥ FEMA s

River confluences




Hybrid Approaches to Link Statistical and Processes-based Models

1) Dependence-informed sampling: A method to link | A - e
bivariate statistical analysis and hydrodynamic modeling for “ T AN
flood hazard estimation in tidal channels and estuaries. € 0.8{< . AR —R3 probability density]
e 06,".‘ T e. .
. . . < =L '
2) Cumulative Likelihood of Potential Impacts (CLPI): 04-}'.3_';;,;:_5“ .
Probabilistic scheme that accumulates the potential PLET S |

hazardousness of TCs according to their intensity at a point.
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I11. Linking Statistical and Process-based Models for Compound Flooding


https://www.sciencedirect.com/science/article/pii/S1364815219302853?via%3Dihub
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023EF003731
https://www.nature.com/articles/s41598-019-49822-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EF001752

Hybrid Approaches to Link Statistical and Processes-based Models
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022EF003097
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022WR033168

Nonstationarity in Climate Exacerbates Compound Hazard Potential

Drivers Contributing Coastal Compound Floods
= Regional sea level rise and vertical land subsidence

+ coastal flood driver: storm surge & wave effects +
pluvial and fluvial drivers, runoff river flows,
rainfall

Local Rainfall

41 W
© mmom
T o om
© ommom

I Wave Setup T

= Some processes such as Antarctic Ice Sheet melting
are not well understood and may represent deep S River Flow
uncertainty_ Mean Sea Level ... } Variability ~ _ Tides

Source: NOAA, 2022
= Heavy precipitation events have the potential to be more intense
o Water holding capacity of the atmosphere increases about 7% for each 1° C of temperature rise
» Tropical cyclones may be more intense
o Proportion of tropical cyclones that are category 3 or higher has likely increased over the past forty
years and will likely increase in the future

T Population and coastal development 1 impervious areas and can change runoff
16



Sources of Uncertainty in Projected Trends in Compound Floods

Challenges for Analysis
= Correlation between drivers may be nonstationary

= Standard bias correction and downscaling approaches generally adjust individual variables independently

Aggregated Impact — Cascade of Uncertainty
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IV. Risk and Uncertainty Analysis for Compound Flooding


https://link.springer.com/article/10.1007/s00382-023-06718-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014ef000239

Hydrologic Design Considering

Nonstationarity
COMPOUND FLOODING: A MANUAL OF PRACTICE
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